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In this file, proofs of theorems and lemmas in the main
body are first given in Supp-§-A. Then, the proposed Algo-
rithm 1 and Algorithm 2 are presented in Supp-§-B.

Supp-§-A. Proofs of Theorems and Lemmas
More Preliminaries of t-SVD
Before proving the theorems and lemmas, we will introduce
more preliminaries omitted in the main submission due to
space limitation.

Tensor Singular Value Decomposition At a high level,
the framework of t-SVD treats a 3-way tensor T ∈
Rd1×d2×d3 as a matrix M whose (i, j)th entry M(i, j) is
T (i, j, :) (i.e., the (i, j)th tube of T ).

By using circular convolution of tube vectors instead of
product of scalars, the t-product (in Definition 1) is an ex-
tension of standard matrix multiplication. This t-product can
be implemented efficiently in the Fourier domain according
to the relationship between circular convolution and DFT
(Kilmer et al. 2013). Specifically, let T̃ = fft(T , [], 3) denote
its Fourier version obtained conducting 1D-DFT on the tubes
of T . Given T ∈ Rd1×d2×d3 , let T(i) (or T (i)) denote its ith
frontal slice T (:, :, i). The t-product of T1 and T2 in original
domain is equivalent to frontal slice-wise matrix product of
T̃1 and T̃2 in spectral domain, i.e,

T = T1 ∗ T2 ⇔ T̃
(l)

= T̃
(l)

1 T̃
(l)

2 , ∀l ∈ [d3]. (15)

The t-SVD (in Definition 2) is a 3-way extension of stan-
dard SVD. It decomposes any tensor T ∈ Rd1×d2×d3 as

T = U ∗ S ∗ V>, (16)

where U ∈ Rd1×d1×d3 ,V ∈ Rd2×d2×d3 are orthogonal ten-
sors, and S ∈ Rd1×d2×d3 is an f -diagonal tensor (see Fig. 9
(Wang and Jin 2017)). The t-SVD is indeed constructed in
the spectral (Fourier) domain by using the relationship be-
tween circular convolution and DFT (Kilmer et al. 2013;
Lu et al. 2019). Relevant concepts including tensor trans-
pose, f-diagonal tensor and orthogonal tensor, are defined as
follows.

Figure 9: Illustration of t-SVD.

Definition 8 (Tensor transpose (Kilmer et al. 2013)). Let T
be a tensor of size d1× d2× d3, then T > is the d2× d1× d3
tensor obtained by transposing each of the frontal slices and
then reversing the order of transposed frontal slices 2 through

d3. In spectral domain, we have (T̃ >)(l) = (T̃
(l)

)H, ∀l ∈
[d3].

Definition 9 (Identity tensor (Kilmer et al. 2013)). The iden-
tity tensor I ∈ Rd×d×d3 is a tensor whose first frontal slice is
the d× d identity matrix and all other frontal slices are zero.
In spectral domain, we have Ĩ(l) = Id ∈ Rd×d, ∀l ∈ [d3].

Definition 10 (f-diagonal tensor (Kilmer et al. 2013)). A
tensor is called f-diagonal if each frontal slice of the tensor
is a diagonal matrix.

Definition 11 (Orthogonal tensor (Kilmer et al. 2013)). A
tensor Q ∈ Rd×d×d3 is orthogonal if

Q> ∗ Q = Q ∗ Q> = I.
In spectral domain, we have

(Q̃
(l)

)HQ̃
(l)

= Q̃
(l)

(Q̃
(l)

)H = Id ∈ Rd×d, ∀l ∈ [d3], (17)

which means all frontal slices of the Fourier version of an
orthogonal tensor Q are unitary matrices.

The block diagonal matrix of 3-way tensors are further
defined for the convenience of analysis.

Definition 12. (Kilmer et al. 2013). Let T (or T ) denote the
block-diagonal matrix of the tensor T̃ in the Fourier domain,
i.e.,

T :=




T̃
(1)

. . .

T̃
(d3)


 ∈ Cd1d3×d2d3 (18)

Then, it holds naturally according to Eq. (15)

T = T1 ∗ T2 ⇔ T = T1T2.

We further have the following relationship for t-SVD

T = U ∗ S ∗ V> ⇔ T = U S VH,

which also indicates that the average rank and TNN satisfy

rankavg(T ) =
1

d3
rank(T) =

1

d3
rank(S),

‖T‖? =
1

d3
‖T‖∗ =

1

d3
‖S‖∗.

Further, the property of DFT indicates that the tubal rank
of T defined in Eq. (2) is lower bounded by the average rank:

ranktb(T ) := #
{
i
∣∣S(i, i, :) 6= 0

}

= #
{
i
∣∣S̃(i, i, :) 6= 0

}

= max
l∈[d3]

rank(S(l))

≥ 1

d3

d3∑

l=1

rank(S(l))

≥ rankavg(S).

(19)

The inner product between two tensors T1 and T2 is defined
as 〈T1, T2〉 := vec(T1)Hvec(T2). The the inner product of
two 3-D tensors T1, T2 ∈ Rd1×d2×d3 and the inner product



of their corresponding block diagonal matrices T1,T2 ∈
Cd1d3×d2d3 has the relationship

〈T1, T2〉 =
1

d3

〈
T̃1, T̃2

〉
=

1

d3

〈
T1,T2

〉
. (20)

The relationship between matrix nuclear norm and matrix
F-norm holds for any M:

‖M‖∗ ≤
√

rank(M)‖M‖F. (21)

Similar relationship between TNN and F-norm also holds for
any tensor T ∈ Rd1×d2×d3 as follows:

‖T‖? =
1

d3
‖T‖∗ ≤

1

d3

√
d3ranktb(T )‖T‖F

=
1

d3

√
d3ranktb(T )(

√
d3‖T ‖F)

=
√

ranktb(T )‖T‖F.

(22)

It is also known that, for any tensor T , the l1-norm and the
F-norm has the following relationship

‖T ‖1 =
√
‖T‖l0‖T ‖F. (23)

Decomposability of Tubal Nuclear Norm In (Recht,
Fazel, and Parrilo 2007), the matrix nuclear norm is proved
to have the following property, called additivity.

Lemma 3 (Additivity of Matrix Nuclear Norm(Recht, Fazel,
and Parrilo 2007)). Given A and B of the same dimension, if
ABH = 0 and AHB = 0, then‖A + B‖∗ =‖A‖∗ +‖B‖∗.

Here, we will show that the tubal nuclear norm also has
the property.

Lemma 4 (Additivity of Tubal Nuclear Norm). Given
T1, T2 ∈ Rd1×d2×d3 , If T1 ∗ T2> = 0 and T1> ∗ T2 = 0,
then

‖T1 + T2‖? =‖T1‖? +‖T2‖?. (24)

Proof. Using the relationship between a 3D tensor and its
block-diagonal matrix we have

T1 ∗ T2> = 0⇒ T1 T2
H = 0,

T1> ∗ T2 = 0⇒ T1
HT2 = 0.

(25)

Thus, we obtain

‖T1 + T2‖? =
1

d3
‖T1 + T2‖∗

=
1

d3

(
‖T1‖∗ +‖T2‖∗

)

=‖T1‖? +‖T2‖?.

(26)

Suppose X ∈ Rd1×d2×d3 with tubal rank r∗ has reduced
t-SVD as follows

X = UX ∗ SX ∗ VX>, (27)

where UX ∈ Rd1×r∗×d3 and VX ∈ Rd2×r∗×d3 are orthog-
onal and SX ∈ Rr∗×r∗×d3 is f-diagonal. Define a tensor
space T as follows:

T =

{
UX ∗ A+ B ∗ V>X :

where A ∈ Rr
∗×d2×d3 ,B ∈ Rd1×r

∗×d3
}
.

We further define the projectors to T and T⊥ as PT :
Rd1×d2×d3 → Rd1×d2×d3 and PT⊥ : Rd1×d2×d3 →
Rd1×d2×d3 respectively

PT (T ) = UX ∗ U>X ∗ T + T ∗ VX ∗ V>X
− UX ∗ U>X ∗ T ∗ VX ∗ V>X ,

PT⊥(T ) = (I − UX ∗ U>X ) ∗ T ∗ (I − VX ∗ V>X ).

(28)

Thus, we have
ranktb(PT (T ))
≤ ranktb(UX ∗ U>X ∗ T ) + ranktb((I − UX ∗ U>X ) ∗ T ∗ VX ∗ V>X )
≤ 2ranktb(X ).

(29)

Equipped with Lemma 4, we will present an inequality
frequently used in our work as follows.
Lemma 5. Given T ∈ Rd1×d2×d3 , we have

‖X + PT⊥(T )‖? =‖X‖? +‖PT⊥(T )‖?. (30)

Proof. It is easy to check that X ∗ PT⊥(T )> = 0 and X> ∗
PT⊥(T ) = 0. By Lemma 4, we have‖L∗ + PT⊥(T )‖? =
‖X‖? +‖PT⊥(T )‖?.

Note that Lemmas 4 and 5 indicate that the tubal nuclear
norm belongs to the class of decomposable norms (Negahban
et al. 2009).

Proofs of Lemma 1
Lemma 1 asserts that~ra(T ) ≤ min{~rt(T ),~rTucker(T )}. Thus
the low OIAR assumption is weaker than the commonly used
low Tucker rank assumption. In other words, many data like
color images which satisfy low Tucker rank assumption also
satisfy the low OIAR assumption. Here, we prove Lemma 1.

Proof of Lemma 1. Given any tensor T ∈ Rd1×···×dK , let
K = T[k] ∈ Rdk×(Dd

−1
k d−1

k+1)×dk+1 denote its mode-(k, k+1)
3d-unfolding (k ∈ [K]). We first show that~ra(T ) ≤ ~rt(T ).
Indeed, it holds that

(~ra(T ))k = rankavg(K)
(i)

≤ ranktb(K) = (~rt(T ))k,
(31)

where inequality (i) holds due to Eq. (19).
Then, we show ~ra(T ) ≤ ~rTucker(T ). On the one hand,

according to (Lu et al. 2019), we have

(~ra(T ))k = rankavg(K) ≤ rank(K(1)), (32)

where K(1) is the mode-1 matricization of K. On the other
hand, since K is the mode-(k, k + 1) 3d-unfolding of T , it
holds naturally that

rank(K(1)) = rank(T(k)) = (~rTucker(T ))k, (33)



where T(k) is the mode-k matricization of T . Thus, we
have~ra(T ) ≤~rTucker(T ). Putting things together, we obtain
~ra(T ) ≤ min{~rt(T ),~rTucker(T )}.

Proofs of Lemma 2
Before proving Lemma 2, we need the following lemma.

Lemma 6 (Dual norm of TNN (Lu et al. 2018)). The tubal
nuclear norm and the tensor spectral norm are dual to each
other.

Proof of Lemma 2. The lemma can be proved through for-
mulating the following maximization problems:

‖T‖∗?o = sup
M
〈M, T 〉, s.t. ‖M‖?o ≤ 1, (34)

and
‖T‖∗?ι = sup

M
〈M, T 〉 , s.t. ‖M‖?ι ≤ 1. (35)

They are constrained maximization problems. We prove
the first part. Since Problem (34) satisfies Slatter’s condition,
the strong duality holds. Thus, we only need to show that its
dual problem agrees with

inf∑
k T (k)=T

max
k
{w−1k ‖T

(k)
[k] ‖}. (36)

Dual to Fenchel’s duality theorem, we have the following
equality:

sup
M

(
〈M, T 〉+ δ(‖M‖?o ≤ 1)

)

= inf
{T (k)}k

(
δ(
∑

k

T (k) = T ) + max
k
{w−1k ‖T

(k)
[k] ‖}

)
,

where δ(C) is the indicator of condition C (0 if C is true
and +∞ otherwise). In this way, the first part is proved. The
second part can be proved similarly.

Proofs of Theorem 1 and Theorem 3
For notational simplicity, we also define 3d-unfolding oper-
ator for T ∈ Rd1×···×dK as Fk(T ) := T[k] and let F−1k (·)
denote its inverse, i.e., F−1k (T[k]) = T .

Proof of Theorem 1 In this subsection, we provide the
proof of Theorem 1.

Proof. Recall model OITNN-O:

(L̂o, Ŝo) ∈ argmin
L,S

f(L,S),

s.t. ‖L‖l∞ ≤ α,

where f(L,S) := 1
2‖Y − L − S‖F + λo‖L‖?o + µo‖S‖l1 .

Let ∆L
o = L∗ − L̂o and ∆S

o = S∗ − Ŝo. Using the opti-
mality of (L̂o, Ŝo), we have:

f(L̂o, Ŝo) ≤ f(L∗,S∗). (37)

By the observation model of RTD, we have Y−L∗−S∗ =
E . According to Eq. (37), we obtain
1

2

(
‖∆L

o‖2F +‖∆S
o‖2F
)

≤ λo(‖L∗‖?o −‖L∗ −∆L
o‖?o)︸ ︷︷ ︸

I

+µo(‖S∗‖l1 −‖S∗ −∆S
o‖l1)︸ ︷︷ ︸

II

+
〈
∆L

o ,∆
S
o

〉
︸ ︷︷ ︸

III

+
〈
∆L

o , E
〉

︸ ︷︷ ︸
IV

+
〈
∆S

o , E
〉

︸ ︷︷ ︸
V

,

(38)
where the right hand side involves 5 items I to V. We will
upper bound Items I to V as follows.
Bound Item I: Let Pk(·) = P

Fk

(
L∗
)(·) (see the definition

of PT in Eq. (28)). For any tensor ∆ ∈ Rd1×···×dK , define

∆′k = Pk(Fk
(
∆
)
), and ∆′′k = ∆[k] −∆′k.

Using Lemma 4 directly yields
‖L∗[k] −∆′′k‖? =‖L∗[k]‖? +‖∆′′k‖?.

It leads to
‖L∗[k] − (∆L

o )[k]‖? =‖(L∗[k] − (∆L
o )′′k)− (∆L

o )′k‖?
≥‖(L∗[k] − (∆L

o )′′k)‖? −‖(∆L
o )′k‖?

=‖L∗[k]‖? +‖(∆L
o )′′k‖? −‖(∆L

o )′k‖?.
Thus, we have

I =λo

∑

k

wk
(
‖L∗[k]‖? −‖(L∗ −∆L

o )[k]‖?
)

≤λo

∑

k

wk

(
‖L∗[k]‖? −

(
‖L∗[k]‖? +‖(∆L

o )′′k‖? −‖(∆L
o )′k‖?

))

=λo

∑

k

wk‖(∆L
o )′k‖? − λo

∑

k

wk‖(∆L
o )′′k‖?.

(39)
Bound Item II: Let S be the true sparse tensor S∗, i.e., S =
supp(S∗) =

{
(i1, i2, · · · , iK)|S∗i1i2···iK 6= 0

}
. According

to the decomposability of l1-norm (Negahban et al. 2009),
any tensor T ∈ Rd1×···×dK satisfies

‖T‖l1 =‖TS‖l1 +‖TS⊥‖l1 .
Then, we have

‖S∗ −∆S
o‖l1 =‖(S∗ − (∆S

o )S⊥)− (∆S
o )S‖l1

≥‖S∗ − (∆S
o )S⊥‖l1 −‖(∆S

o )S‖l1
≥‖S∗‖l1 +‖(∆S

o )S⊥‖l1 −‖(∆S
o )S‖l1 ,

leading to the bound

II ≤ µo‖(∆S
o )S‖l1 − µo‖(∆S

o )S⊥‖l1 . (40)

Bound Items III, IV and V. Due to the feasibility of L̂, we
have‖L̂‖l∞ ≤ α. Then, by the triangular inequality, we have

‖∆L
o‖l∞ =‖L∗ − L̂o‖l∞ ≤‖L∗‖l∞ +‖L̂o‖l∞ ≤ 2α.

Using the definition of dual norm, we have

III ≤‖∆L
o‖l∞‖∆S

o‖l1 ≤ 2α‖∆S
o‖l1 ,

IV ≤‖∆L
o‖?o‖E‖∗?o,

V ≤‖∆S
o‖l1‖E‖l∞ .

(41)



Combining Eq. (38) and Eqs (39)-(41) yields

1

2

(
‖∆L

o‖2F +‖∆S
o‖2F
)

≤ λo

∑

k

wk‖(∆L
o )′k‖? − λo

∑

k

wk‖(∆L
o )′′k‖? + µo‖(∆S

o )S‖l1

− µo‖(∆S
o )S⊥‖l1 +‖E‖∗?o‖∆L

o‖?o + (‖E‖l∞ + 2α)‖∆S
o‖l1

≤ (λo +‖E‖∗?o)
∑

k

wk‖(∆L
o )′k‖? − (λo −‖E‖∗?o)

∑

k

wk‖(∆L
o )′′k‖?

+
(
µo + (‖E‖l∞ + 2α)

)
‖(∆S

o )S‖l1 −
(
µo − (‖E‖l∞ + 2α)

)
‖(∆S

o )S⊥‖l1 .

Choosing
λo > 2‖E‖∗?o, (42)

and
µo ≥ 2(‖E‖l∞ + 2α), (43)

we have

λo

∑

k

wk‖(∆L
o )′′k‖? + µo‖(∆S

o )S⊥‖l1

≤ 3
(
λo

∑

k

wk‖(∆L
o )′k‖? + µo‖(∆S

o )‖l1
)
.

(44)

Note that according to Eq. (38) and the triangular inequal-
ity, we obtain

1

2

(
‖∆L

o‖2F +‖∆S
o‖2F
)

≤ (λo +‖E‖∗?o)
(∑

k

wk‖(∆L
o )′k‖? +

∑

k

wk‖(∆L
o )′′k‖?

)

+
(
µo + (‖E‖l∞ + 2α)

)(
‖(∆S

o )S‖l1 +‖(∆S
o )S⊥‖l1

)
.

(45)
That leads to

‖∆L
o‖2F +‖∆S

o‖2F ≤ 16λo

∑

k

wk‖(∆L
o )′k‖? + 16µo‖(∆S

o )S‖l1 .

(46)
By the definition of (∆L

o )′k, we have

ranktb((∆L
o )′k) ≤ 2ranktb(L∗[k]) = 2ro

k, (47)

and
‖(∆L

o )′k‖F ≤‖(∆L
o )[k]‖F =‖∆L

o‖F. (48)

We also have ‖(∆S
o )S‖l0 ≤ |S| = s. Then we reach the

inequality:

‖∆L
o‖2F +‖∆S

o‖2F
≤ 16λo

∑

k

wk
√

2ro
k‖∆L

o‖F + 16µo
√
s‖∆S

o‖F.
(49)

The usage of ab ≤ a2/4 + b2 leading to the conclusion of
Theorem 1.

Proof of Theorem 3 The key of proving Theorem 3 is to
bound the quantity‖E‖∗?o, when E denotes the tensor whose
entries are i.i.d. Gaussian N (0, σ2). To bound this quantity,
we need the following two lemmas:

Lemma 7. For anyK-way (K ≥ 3) tensor T ∈ Rd1×···×dK ,
the following inequality holds:

‖T‖∗?ι ≤
1

K2

∑

k

w−1k ‖T[k]‖. (50)

Proof. Recall the formulation of‖T‖∗?ι as follows

‖T‖∗?o := inf∑
k T (k)=T

max
k
{w−1k ‖T

(k)
[k] ‖}. (51)

Letting

T (k) =
wk‖T (k)

[k] ‖−1∑
k wk‖T

(k)
[k] ‖−1

T , (52)

then for any k ∈ [K],

w−1k ‖T
(k)
[k] ‖ = w−1k

wk‖T (k)
[k] ‖−1∑

k wk‖T
(k)
[k] ‖−1

‖T (k)
[k] ‖

=
1

∑
k wk‖T

(k)
[k] ‖−1

≤ 1

K2

∑

k

w−1k ‖T
(k)
[k] ‖,

(53)

where the last inequality holds because the “harmonic mean"
is no larger than the “arithmetic mean". In this way, the
lemma is proved.

Lemma 8. Let T ∈ Rd1×d2×d3 be random tensors with
i.i.d. Gaussian entries N (0, 1). Then the following inequality
holds

‖T‖ ≤
√
d1d3 +

√
d2d3 + t, (54)

with probability at least 1− exp
(
− ct2/d3

)
.

Proof. By letting U and V in Lemma 9 of (Lu et al. 2018) be
the identity tensors, this lemma can be proved directly.

We also have the following lemma to bound the l∞-norm
of E :
Lemma 9. Let T ∈ Rd1×···×dK be random tensors with i.i.d.
Gaussian entries N (0, 1). Then for the following inequality
hold

‖G‖l∞ ≤
√

2 log(2D) + t, (55)

with probability at least 1− exp
(
− ct2

)
.

Proof of Theorem 3. Using Lemma III.2, we have for any
k ∈ [K]:

‖E[k]‖ ≤ 2σd̃k, (56)

with probability at least 1 − exp(−ckd̃2k/dk+1). Taking
union bound, we have with probability at least 1 −∑
k exp(−ckd̃2k/dk+1),

‖E‖∗?o ≤
2σ

K2

∑

k

w−1k d̃k. (57)

Accodring to Lemma 9, we also have

‖E‖l∞ ≤ 4σ
√

logD, (58)

with probability at least 1− exp(−c′D).
Combing Eqs. (57)-(58) and Theorem 1, Theorem 3 can

be proved.



Proofs of Theorem 2 and Theorem 4
For notational simplicity, we recall the definition 3d-
unfolding operator for T ∈ Rd1×···×dK as Fk(T ) := T[k]
and its F−1k (·) such that F−1k (T[k]) = T .

Proof of Theorem2 In this subsection, we provide the
proof of Theorem 2.

Proof. Recall model OITNN-L:

({L̂(k)}k, Ŝι) ∈ argmin
{L(k)}k,S

g({L(k)}k,S), (59)

where
g({L(k)}k,S)

=
1

2
‖Y −

∑
k
L(k) − S‖F + λι

∑
k
vk‖L(k)

[k]‖? + µι‖S‖l1 .
(60)

Let ∆L
ι,k = L(k)∗ − L̂(k)}k and ∆S

ι = S∗ − Ŝι. Using the
optimality of ({L̂(k)}k, Ŝι), we have:

g({L̂(k)}k, Ŝι) ≤ g({L(k)∗}k,S∗). (61)

Note that
∑
k L(k)∗ = L∗. Through the observation model

of RTD, we have Y − L∗ − S∗ = E . After some algebra, we
obtain
1

2

(
‖
∑

k

∆L
ι,k‖2F +‖∆S

ι‖2F
)

≤ λι
∑

k

vk(‖L(k)∗
[k] ‖? −‖L

(k)∗
[k] −∆L(k)

[k]‖?)
︸ ︷︷ ︸

I

+µι(‖S∗‖l1 −‖S∗ −∆S
ι‖l1)︸ ︷︷ ︸

II

+

〈∑

k

∆L
ι,k,∆

S
ι

〉

︸ ︷︷ ︸
III

+

〈∑

k

∆L
ι,k, E

〉

︸ ︷︷ ︸
IV

+
〈
∆S
ι , E

〉
︸ ︷︷ ︸

V

.

(62)
and

1

2

(∑

k

‖∆L
ι,k‖2F +‖∆S

ι‖2F
)

≤ I + II + III + IV + V +
∑

k

∑

l 6=k

〈
∆L(k),∆L(l)

〉

︸ ︷︷ ︸
VI

.

(63)
We will bound Items I to VI as follows.
Bound Item I. LetPk(·) = P

Fk

(
L(k)∗

)(·) (see the definition

of PT in Eq. (28)). For ∆L(k) ∈ Rd1×···×dK , define

∆′L(k)
[k] = Pk(L(k)

[k] ), and ∆′′L(k)
[k] = ∆L(k)

[k] −∆′L(k)
[k] .

Using Lemma 4 directly yields

‖L(k)∗
[k] −∆′′L(k)

[k]‖? =‖L(k)∗
[k] ‖? +‖∆′′L(k)

[k]‖?,
leading to

‖L(k)∗
[k] −∆L(k)

[k]‖? =‖(L(k)∗
[k] −∆′′L(k)

[k] )−∆′L(k)
[k]‖?

≥‖(L(k)∗
[k] −∆′′L(k)

[k] )‖? −‖∆′L(k)
[k]‖?

=‖L(k)∗
[k] ‖? +‖∆′′L(k)

[k]‖? −‖∆′L
(k)
[k]‖?.

Thus, we have

I =λι
∑

k

vk
(
‖L(k)∗

[k] ‖? −‖L
(k)∗
[k] −∆L(k)

[k]‖?
)

≤λι
∑

k

vk‖∆′L(k)
[k]‖? − λι

∑

k

vk‖∆′′L(k)
[k]‖?.

(64)

Bound Item II. Similar to the proof of Theorem 1, we have

II ≤ µι‖(∆S
ι )S‖l1 − µι‖(∆S

ι )S⊥‖l1 . (65)
Bound Items III and V. Using the definition of dual norm,
we have

III+V ≤(‖E‖l∞ + 2α)‖∆S
ι‖l1 . (66)

Bound Item IV.〈∑

k

∆L(k), E
〉

=
∑

k

〈
∆L(k), E

〉

≤
∑

k

‖∆L(k)
[k]‖?‖E[k]‖

=
∑

k

(vk‖∆L(k)
[k]‖?)(‖E[k]‖/vk)

≤(
∑

k

vk‖∆L(k)
[k]‖?) max

k
(‖E[k]‖/vk)

=‖E‖∗?ι
∑

k

vk‖∆L(k)
[k]‖?.

(67)
Bound Item VI.∑

k

∑

l 6=k

〈
∆L(k),∆L(l)

〉

≤
∑

k

∑

l 6=k
‖∆L(k)

[k]‖?‖∆L
(l)
[k]‖

≤
∑

k

(K − 1)βd̃k‖∆L(k)
[k]‖?

= (K − 1)β
∑

k

(d̃k/vk)(vk‖∆L(k)
[k]‖?)

= (K − 1)βmax
k

(d̃k/vk)
∑

k

vk‖∆L(k)
[k]‖?.

(68)

Combining Eq. (63) and the above bounds yields
1

2

(∑

k

‖∆L(k)‖2F +‖∆S
ι‖2F
)

≤ λι
∑

k

vk‖∆′L(k)
[k]‖? − λι

∑

k

vk‖∆′′L(k)
[k]‖?

+ µι‖(∆S
ι )S‖l1 − µι‖(∆S

ι )S⊥‖l1 + (‖E‖l∞ + 2α)‖∆S
ι‖l1

+ (‖E‖∗?ι + (K − 1)βmax
k

(d̃k/vk))
∑

k

vk‖∆L(k)
[k]‖?

≤
(
λι + (‖E‖∗?ι + (K − 1)βmax

k
(d̃k/vk))

)∑

k

vk‖∆′L(k)
[k]‖?

−
(
λι − (‖E‖∗?ι + (K − 1)βmax

k
(d̃k/vk))

)∑

k

vk‖∆′′L(k)
[k]‖?

+
(
µι + (‖E‖l∞ + 2α)

)
‖(∆S

ι )S‖l1
−
(
µι − (‖E‖l∞ + 2α)

)
‖(∆S

ι )S⊥‖l1 .



Choosing

λι > 2(‖E‖∗?ι + (K − 1)βmax
k

(d̃k/vk)) (69)

and
µι ≥‖E‖l∞ + 2α, (70)

we have

λι
∑

k

vk‖∆′′L(k)
[k]‖? + µι‖(∆S

ι )S⊥‖l1

≤ 3
(
λι
∑

k

vk‖∆′L(k)
[k]‖? + µι‖(∆S

ι )‖l1
)
.

(71)

Note that according to Eq. (63) and the triangular inequal-
ity, we have

1

2

(∑

k

‖∆L(k)‖2F +‖∆S
ι‖2F
)

≤
(
λι + (‖E‖∗?ι + (K − 1)βmax

k
(d̃k/vk))

)

(∑

k

vk‖∆′L(k)
[k]‖? +

∑

k

vk‖∆′′L(k)
[k]‖?

)

+
(
µι + (‖E‖l∞ + 2α)

)(
‖(∆S

ι )S‖l1 +‖(∆S
ι )S⊥‖l1

)
.

(72)
That leads to∑

k

‖∆L(k)‖2F +‖∆S
ι‖2F ≤ 16λι

∑

k

vk‖∆′L(k)
[k]‖? + 16µι‖(∆S

ι )S‖l1 .

(73)
By the definition of ∆′L(k)

[k] , we have

ranktb(∆′L(k)
[k] ) ≤ 2ranktb(L(k)∗

[k] ) = 2rιk, (74)

and
‖∆′L(k)

[k]‖F ≤‖∆L(k)
[k]‖F =‖∆L(k)‖F. (75)

We also have‖(∆S
ι )S‖l0 ≤ |S| = s. Then, we reach the

inequality:
∑

k

‖∆L(k)‖2F +‖∆S
ι‖2F

≤ 16λι
∑

k

vk
√

2rιk‖∆L(k)‖F + 16µι
√
s‖∆S

ι‖F

≤ 16λι

√∑

k

(vk
√

2rιk)2
√∑

k

‖∆L(k)‖2F + 16µι
√
s‖∆S

ι‖F

(76)
The usage of ab ≤ a2/4 + b2 leading to the first part of

Theorem 2, i.e.,
∑

k

‖∆L(k)‖2F +‖∆S
ι‖2F ≤ c3λ2ι

∑

k

v2kr
ι
k + c4µ

2
ι s. (77)

To prove the second part of Theorem 2. First, we discuss
in two cases:
Case 1: If ‖∑k ∆L(k)‖2F ≤

∑
k‖∆L(k)‖2F, according to

Eq. (77) we have

‖
∑

k

∆L(k)‖2F +‖∆S
ι‖2F ≤ c3λ2ι

∑

k

v2kr
ι
k + c4µ

2
ι s. (78)

Case 2: If ‖∑k ∆L(k)‖2F >
∑
k‖∆L(k)‖2F, according to

Eq. (62), we have

1

2

(
‖
∑

k

∆L(k)‖2F +‖∆S
ι‖2F
)

≤
(
λι +‖E‖∗?ι

)(∑

k

vk‖∆′L(k)
[k]‖? +

∑

k

vk‖∆′′L(k)
[k]‖?

)

+
(
µι + (‖E‖l∞ + 2α)

)(
‖(∆S

ι )S‖l1 +‖(∆S
ι )S⊥‖l1

)
,
(79)

which leads to

‖
∑

k

∆L(k)‖2F +‖∆S
ι‖2F

≤16λι
∑

k

vk
√

2rιk‖∆L(k)‖F + 16µι
√
s‖∆S

ι‖F

≤16λι

√∑

k

(vk
√

2rιk)2
√∑

k

‖∆L(k)‖2F + 16µι
√
s‖∆S

ι‖F

≤16λι

√∑

k

(vk
√

2rιk)2
√
‖
∑

k

∆L(k)‖2F + 16µι
√
s‖∆S

ι‖F

≤c3λ2ι
∑

k

v2kr
ι
k + c4µ

2
ι s.

(80)
Select k∗ ∈ argmaxk v

2
kranktb(L∗[k]). Letting L(k∗) = L∗

and L(l)∗ = O ,∀l 6= k∗, then ({L(k)∗}k,S∗) is feasible. In
this case, rιk∗ = ro

k∗ and rιl = 0,∀l 6= k∗. Then, we obtain

‖
∑

k

∆L(k)‖2F +‖∆S
ι‖2F

≤ c3λ2ι
∑

k

v2kr
ι
k + c4µ

2
ι s

≤ c3λι min
k
v2kr

o
k + c4µ

2
ι s.

(81)

Then, the proof is completed.

Proof of Theorem 4 Since the proof of Theorem 4 differs
from Theorem 3 only in bounding the maximum of the tensor
spectral norms instead of their sum, we simply omit it.



Supp-§-B. Optimization Algorithms
Due to space limitation, the description of Algorithm 1 and
Algorithm 2 is omitted. In this section, we present the pro-
posed Algorithms 1 and 2 for Model I and Model II, re-
spectively. In Algorithms 1 and 2, each sub-problem has a
closed-form solution.

For notational simplicity, recall the definition 3d-unfolding
operator for T ∈ Rd1×···×dK as Fk(T ) := T[k] and its F−1k (·)
such that F−1k (T[k]) = T .

Algorithm 1 ADMM for Model I
Input: Observation Y , parameters λo, µo, {wk}k, ρ > 0, ε > 0.
1: Initialize L0 = K0 = W0 = S0 = T 0 = Z0 = 0,K0

k =
Y0
k = 0, ∀k.

2: while not converged do
3: Update (Lt+1,St+1) simultaneously by:

min
L,S

l(L,S) +
∑

k

ρ

2
‖L − F−1

k (Ktk +
Yt
ρ
)‖2F

+
ρ

2
‖S − (T t + Z

t

ρ
)‖2F +

ρ

2
‖L − (Kt + W

t

ρ
)‖2F

4: Update {Kt+1
k }k, T t+1 and Kt+1 simultaneously by:

min
Kk

λowk‖Kk‖? + ρ

2
‖Kk − Fk

(
Lt+1)+ Y

t
k

ρ
‖2F

min
T

µo‖T‖l1 +
ρ

2
‖T − (St+1 − Z

t

ρ
)‖2F

min
K

δl∞α (K) + ρ

2
‖K − (Lt+1 − W

t

ρ
)‖2F

5: Dual update: Zk+1 = Zt + ρ(T t+1 − St+1),
Wk+1 =Wt + ρ(Kt+1 − Lt+1) and
Yt+1
k = Ytk + ρ(Kt+1

k − Fk
(
Lt+1

)
), ∀k ∈ [K];

6: Check the convergence conditions:
‖X t+1 −X t‖l∞ ≤ ε, ∀X ∈

{
L,S, T ,K, {Kk}

}
;

‖T t+1 − St+1‖l∞ ≤ ε ‖Kt+1 − Lt+1‖l∞ ≤ ε;
‖Kt+1

k − Fk
(
Lt+1

)
‖l∞ ≤ ε,∀k ∈ [K];

7: t = t+ 1.
8: end while

Several operators
Before giving solutions to the sub-problems in Algorithm 1
and Algorithm 2, we briefly give the proximal operators of
TNN‖·‖? as follows:

Lemma 10. (Wang and Jin 2017). Let tensor T ∈
Rd1×d2×d3 with t-SVD T = U ∗ S ∗ V>, where U ∈
Rd1×r×d3 and V ∈ Rd2×r×d3 are orthogonal tensors and
S ∈ Rr×r×d3 is the f-diagonal tensor of singular tubes. Then
the proximal operator of function τ‖·‖? at point T0, denoted
by Prox‖·‖?τ (T0), can be computed as follows

Prox‖·‖?τ (T0) = argmin
T

1

2
‖T0 − T‖2F + τ‖T‖?

= U ∗ ifft3(max(fft3(S)− τ, 0)) ∗ V>.
(82)

Algorithm 2 ADMM for Model II
Input: Observation Y , parameters λι, µι, {vk}k, ρ > 0, ε > 0.
1: Initialize S0 = T 0 = Z0 = K0 = W0 = 0, (L(k))0 =
K0
k = Y0

k = 0, ∀k.
2: while not converged do
3: Update {(L(k))t+1}k and St+1 simultaneously by:

min
{L(k)}k,S

l(
∑

k
L(k),S) +

∑
k

ρ

2
‖L(k) − F−1

k (Ktk +
Yt
ρ
)‖2F

+
ρ

2
‖S − (T t + Z

t

ρ
)‖2F +

ρ

2
‖
∑

k
L(k) − (Kt + W

t

ρ
)‖2F ;

4: Update {Kt+1
k }k, T t+1 and Kt+1 simultaneously by:

min
Kk

λιvk‖Kk‖? + ρ

2
‖Kk − Fk

(
(L(k))t+1)+ Y

t
k

ρ
‖2F

min
T

µι‖T‖l1 +
ρ

2
‖T − (St+1 − Z

t

ρ
)‖2F

min
K

δl∞α (K) + ρ

2
‖K −

∑

k

(L(k))t+1 +
Wt

ρ
‖2F

5: Dual update: Zt+1 = Zt + ρ(T t+1 − St+1),
Wt+1 =Wt + ρ(Kt+1 −∑k(L(k))t+1) and
Yt+1
k = Ytk + ρ

(
Kt+1
k − Fk

(
(L(k))t+1

))
, ∀k ∈ [K];

6: Check the convergence conditions:
‖X t+1 −X t‖l∞ ≤ ε, ∀X ∈

{
{L(k)}k,S, T ,K, {Kk}

}
;

‖T t+1 − St+1‖l∞ ≤ ε; ‖Kt+1 −∑k(L(k))t+1‖l∞ ≤
ε;‖Kt+1

k − Fk
(
(L(k))t+1

)
‖l∞ ≤ ε,∀k ∈ [K];

7: t = t+ 1.
8: end while

The proximal operator of l1-norm‖·‖l1 is given as

Prox
‖·‖l1
τ (T0) = argmin

T

1

2
‖T0 − T‖2F + τ‖T‖l1

= sgn(T0) ~ max
(
|T0| − τ, 0

)
,

(83)

and the proximal operator of indicator function of l∞-norm
ball δl∞α (·) is a projector:

Proj‖·‖l∞α (T0) = argmin
T

1

2
‖T0 − T‖2F + δl∞α (T0)

= sgn(T0) ~ min
(
|T0|, α

)
.

(84)

Solutions to Sub-problems in Algorithm 1

In this subsection, we derive solutions to sub-problems in
Algorithm 1.

First, adding auxiliary variables to Problem (12), we get

min
L,S,T ,
K,{Kk}k

1

2
‖Y − L − S‖2F + λo

∑
k
wk‖Kk‖? + µo‖T‖l1 + δl∞α (K)

s.t. Kk = Fk
(
L
)
,∀k; T = S;K = L.



Then, the augmented Lagrangian is given as follows

LI
ρ(L,S, T ,K, {Kk}k, {Yk}k,Z,W)

=
1

2
‖Y − L − S‖2F + λo

∑
k
wk‖Kk‖? + µo‖T‖l1 + δl∞α (K)

+
∑

k

( 〈
Yk,Kk − Fk

(
L
)〉

+
ρ

2
‖Kk − Fk

(
L
)
‖F
)

+ 〈Z, T − S〉+
ρ

2
‖T − S‖2F + 〈W,K − L〉+

ρ

2
‖K − L‖2F.

Further, we update blocks (L,S) and ({Kk}, T ,K) alter-
natively by fixing the other variables.

Update (L,S). Fixing ({Kk}, T ,K), we update (L,S) by
minimizing the augmented Lagrangian LI

rho with respect to
(L,S), which can be simplified as follows

min
L,S

l(L,S) +
∑

k

ρ

2
‖L − F−1k (Ktk +

Yt
ρ

)‖2F

+
ρ

2
‖S − (T t +

Zt
ρ

)‖2F +
ρ

2
‖L − (Kt +

Wt

ρ
)‖2F

(85)
Taking the derivatives with respect to L and S and setting

the derivatives to zero, we obtain

(Kρ+ ρ+ 1)L+ S = ρK̃ + ρ
∑

k

K̃k + Y; (86)

and
L+ (1 + ρ)S = Y + µT̃ . (87)

where

K̃ = Kt +
Wt

ρ
, K̃k = Ktk +

Yt
ρ

and T̃ = T t +
Zt
ρ
.

By solving matrix equation group, we get the closed-form
solution of Lt+1 and St+1

Lt+1 =
(1 + ρ)K̃ + (1 + ρ)

∑
k K̃k + Y − T

(K + 1)(ρ+ 1) + 1
,

St+1 =
(K + 1)Y + (Kρ+ ρ+ 1)T̃ − K̃ −∑k T̃k

(K + 1)(ρ+ 1) + 1
.

Update ({Kk}, T ,K). Fixing (L,S), we update {Kk}k, T ,
and K by minimizing the augmented Lagrangian LI

rho with
respect to ({Kk}, T ,K). The problem can be solved sepa-
rately as follows.

Kt+1
k = argmin

Kk
λowk‖Kk‖? +

ρ

2
‖Kk − Fk

(
Lt+1

)
+
Ytk
ρ
‖2F

= Prox‖·‖?λowk/ρ
(Fk
(
Lt+1

)
− Y

t
k

ρ
)

T t+1 = argmin
T

µo‖T‖l1 +
ρ

2
‖T − (St+1 − Z

t

ρ
)‖2F

= Prox
‖·‖l1
µo/ρ

(St+1 − Z
t

ρ
).

Kt+1 argmin
K

δl∞α (K) +
ρ

2
‖K − (Lt+1 − W

t

ρ
)‖2F

= Proj‖·‖l∞α (Lt+1 − W
t

ρ
))

Solutions to Sub-problems in Algorithm 2
We solve the sub-problems in Algorithm 2 as follows. First,
adding auxiliary variables Problem (13) yields

min
{L(k)}k,S,
{Kk}k,T ,K

l(
∑

k
L(k),S)+λo

∑
k
vk‖Kk‖?+µι‖T‖l1 +δl∞α (K)

s.t. Kk = Fk
(
L(k)), ∀k; T = S;K =

∑
k
L(k).

Then, the augmented Lagrangian is given as follows

LII
ρ({L(k)}k,S, T ,K, {Kk}k, {Yk}k,Z,W)

=
1

2
‖Y −

∑

k

L(k) − S‖2F + λo

∑
k
wk‖Kk‖? + µι‖T‖l1

+
∑

k

(〈
Yk,Kk − Fk

(
L(k)

)〉
+
ρ

2
‖Kk − Fk

(
L(k)

)
‖F

)

+ δl∞α (K) + 〈Z, T − S〉 +
ρ

2
‖T − S‖2F

+
〈
W,K − L(k)

〉
+
ρ

2
‖K −

∑

k

L(k)‖2F.

Further, we update blocks ({(L(k))},S) and ({Kk}, T ,K)
alternatively by fixing the other variables.

Update ({(L(k))},S). Fixing ({Kk}, T ,K), we update
({(L(k))},S) by minimizing the augmented Lagrangian
LII
rho with respect to (L,S), which can be simplified to the

following problem

min
{L(k)}k,S

l(
∑

k
L(k),S) +

∑
k

ρ

2
‖L(k) − F−1k (Ktk +

Yt
ρ

)‖2F

+
ρ

2
‖S − (T t +

Zt
ρ

)‖2F +
ρ

2
‖
∑

k

L(k) − (Kt +
Wt

ρ
)‖2F.

Taking the derivatives with respect to L(k) and S and setting
the derivatives to zero, we obtain
∑

k

L(k) + S − Y + ρL(k) − ρK̃k + ρ
∑

k

L(k) − ρK̃ = 0

(88)
and ∑

k

L(k) + S − Y + ρS − µT̃ = 0. (89)

where

K̃ = Kt +
Wt

ρ
, K̃k = Ktk +

Yt
ρ

and T̃ = T t +
Zt
ρ
.

By solving matrix equation group, we get the closed-form
solution of Lt+1:

(L(k))t+1 = ρ−1
(
ρK̃ +

∑

k

K̃ + Y − (1 + ρ)M−St+1
)

with

St+1 =
(1 +K)Y + (K + ρ+Kρ)T̃ −KK̃ −∑k K̃k

(1 +K)(1 + ρ) +K
,



where

M =
K(1 + ρ)K̃ + (1 + ρ)

∑
k K̃k +KY −KT̃

(1 +K)(1 + ρ) +K
.

Update ({Kk}, T ,K). Fixing ({L(k)},S), we update
{Kk}k, T , and K by minimizing the augmented Lagrangian
LII
rho with respect to ({Kk}, T ,K). The problem can be

solved separately as follows.

Kt+1
k = min

Kk
λιvk‖Kk‖? +

ρ

2
‖Kk − Fk

(
(L(k))t+1

)
+
Ytk
ρ
‖2F

=Prox‖·‖?λιvk/ρ
(Fk
(
(L(k))t+1

)
− Y

t
k

ρ
),

T t+1 = argmin
T

µι‖T‖l1 +
ρ

2
‖T − (St+1 − Z

t

ρ
)‖2F

=Prox
‖·‖l1
µι/ρ

(St+1 − Z
t

ρ
),

Kt+1 = argmin
K

δl∞α (K) +
ρ

2
‖K −

∑

k

(L(k))t+1 +
Wt

ρ
‖2F

=Proj‖·‖l∞α (
∑

k

(L(k))t+1 − W
t

ρ
).

References
[Agarwal, Negahban, and Wainwright 2012] Agarwal, A.;
Negahban, S.; and Wainwright, M. J. 2012. Noisy matrix
decomposition via convex relaxation: Optimal rates in high
dimensions. The Annals of Statistics 1171–1197.

[Boyd et al. 2011] Boyd, S.; Parikh, N.; Chu, E.; Peleato, B.;
and Eckstein, J. 2011. Distributed optimization and statistical
learning via the alternating direction method of multipliers.
Foundations and Trends R© in Machine Learning 3(1):1–122.

[Candès and Tao 2010] Candès, E. J., and Tao, T. 2010. The
power of convex relaxation: near-optimal matrix completion.
IEEE TIT 56(5):2053–2080.

[Candès et al. 2011] Candès, E. J.; Li, X.; Ma, Y.; and Wright,
J. 2011. Robust principal component analysis? Journal of
the ACM 58(3):11.

[Fazel 2002] Fazel, M. 2002. Matrix rank minimization with
applications. Ph.D. Dissertation, PhD thesis, Stanford Uni-
versity.

[Gu, Gui, and Han 2014] Gu, Q.; Gui, H.; and Han, J. 2014.
Robust tensor decomposition with gross corruption. In NIPS
2014, 1422–1430.

[Harshman 1970] Harshman, R. A. 1970. Foundations of the
parafac procedure: Models and conditions for an “explana-
tory” multi-modal factor analysis.

[Hillar and Lim 2009] Hillar, C. J., and Lim, L. 2009. Most
tensor problems are np-hard. Journal of the ACM 60(6):45.

[Hu et al. 2017] Hu, W.; Tao, D.; Zhang, W.; Xie, Y.; and
Yang, Y. 2017. The twist tensor nuclear norm for video
completion. IEEE TNNLS 28(12):2961–2973.

[Huang et al. 2015] Huang, B.; Mu, C.; Goldfarb, D.; and
Wright, J. 2015. Provable models for robust low-rank tensor
completion. Pacific Journal of Optimization 11(2):339–364.

[Kilmer et al. 2013] Kilmer, M. E.; Braman, K.; Hao, N.; and
Hoover, R. C. 2013. Third-order tensors as operators on
matrices: A theoretical and computational framework with
applications in imaging. SIAM Journal on Matrix Analysis
and Applications 34(1):148–172.

[Klopp, Lounici, and Tsybakov 2016] Klopp, O.; Lounici,
K.; and Tsybakov, A. B. 2016. Robust matrix completion.
Probability Theory and Related Fields 1–42.

[Kolda and Bader 2009] Kolda, T. G., and Bader, B. W. 2009.
Tensor decompositions and applications. SIAM Review
51(3):455–500.

[Liu et al. 2013] Liu, J.; Musialski, P.; Wonka, P.; and Ye, J.
2013. Tensor completion for estimating missing values in
visual data. IEEE TPAMI 35(1):208–220.

[Liu et al. 2016a] Liu, X. Y.; Aeron, S.; Aggarwal, V.; and
Wang, X. 2016a. Low-tubal-rank tensor completion using
alternating minimization. arXiv preprint arXiv:1610.01690.

[Liu et al. 2016b] Liu, X.; Aeron, S.; Aggarwal, V.; Wang,
X.; and Wu, M. 2016b. Adaptive sampling of rf fingerprints
for fine-grained indoor localization. IEEE Transactions on
Mobile Computing 15(10):2411–2423.

[Lu et al. 2016] Lu, C.; Feng, J.; Chen, Y.; Liu, W.; Lin, Z.;
and Yan, S. 2016. Tensor robust principal component analy-
sis: Exact recovery of corrupted low-rank tensors via convex
optimization. In CVPR 2016, 5249–5257.

[Lu et al. 2018] Lu, C.; Feng, J.; Lin, Z.; and Yan, S. 2018.
Exact low tubal rank tensor recovery from gaussian measure-
ments. In IJCAI 2018.

[Lu et al. 2019] Lu, C.; Feng, J.; Chen, Y.; Liu, W.; Lin, Z.;
and Yan, S. 2019. Tensor robust principal component analysis
with a new tensor nuclear norm. IEEE TPAMI 1–1.

[Mu et al. 2014] Mu, C.; Huang, B.; Wright, J.; and Gold-
farb, D. 2014. Square deal: Lower bounds and improved
relaxations for tensor recovery. In ICML 2014, 73–81.

[Negahban et al. 2009] Negahban, S.; Yu, B.; Wainwright,
M. J.; and Ravikumar, P. K. 2009. A unified framework
for high-dimensional analysis of m-estimators with decom-
posable regularizers. In NIPS, 1348–1356.

[Oseledets 2011] Oseledets, I. V. 2011. Tensor-train decom-
position. SIAM Journal on Scientific Computing 33(5):2295–
2317.

[Recht, Fazel, and Parrilo 2007] Recht, B.; Fazel, M.; and
Parrilo, P. A. 2007. Guaranteed minimum-rank solutions
of linear matrix equations via nuclear norm minimization.
SIAM Review 52(3):471–501.

[Tomioka and Suzuki 2013] Tomioka, R., and Suzuki, T.
2013. Convex tensor decomposition via structured schat-
ten norm regularization. In NIPS 2013, 1331–1339.

[Tomioka et al. 2011] Tomioka, R.; Suzuki, T.; Hayashi, K.;
and Kashima, H. 2011. Statistical performance of convex
tensor decomposition. In NIPS 2011, 972–980.



[Tucker 1966] Tucker, L. R. 1966. Some mathematical notes
on three-mode factor analysis. Psychometrika 31(3):279–
311.

[Wang and Jin 2017] Wang, A., and Jin, Z. 2017. Near-
optimal noisy low-tubal-rank tensor completion via singular
tube thresholding. In IEEE ICDMW, 553–560.

[Wei et al. 2018] Wei, D.; Wang, A.; Feng, X.; Wang, B.; and
Wang, B. 2018. Tensor completion based on triple tubal
nuclear norm. Algorithms 11(7).

[Xie et al. 2017] Xie, Y.; Tao, D.; Zhang, W.; Liu, Y.; Zhang,
L.; and Qu, Y. 2017. On unifying multi-view self-
representations for clustering by tensor multi-rank minimiza-
tion. IJCV (4):1–23.

[Yokota et al. 2018] Yokota, T.; Erem, B.; Guler, S.; Warfield,
S. K.; and Hontani, H. 2018. Missing slice recovery for
tensors using a low-rank model in embedded space. arXiv
preprint arXiv:1804.01736.

[Yuan and Zhang 2016] Yuan, M., and Zhang, C. H. 2016.
On tensor completion via nuclear norm minimization. Foun-
dations of Computational Mathematics 16(4):1–38.

[Zhang and Aeron 2017] Zhang, Z., and Aeron, S. 2017. Ex-
act tensor completion using t-svd. IEEE TSP 65(6):1511–
1526.

[Zhang et al. 2014] Zhang, Z.; Ely, G.; Aeron, S.; Hao, N.;
and Kilmer, M. 2014. Novel methods for multilinear data
completion and de-noising based on tensor-svd. In CVPR
2014, 3842–3849.

[Zhao et al. 2015a] Zhao, Q.; Meng, D.; Kong, X.; Xie, Q.;
Cao, W.; Wang, Y.; and Xu, Z. 2015a. A novel sparsity
measure for tensor recovery. In ICCV 2015, 271–279.

[Zhao et al. 2015b] Zhao, Q.; Zhou, G.; Zhang, L.; Cichocki,
A.; and Amari, S.-I. 2015b. Bayesian robust tensor factoriza-
tion for incomplete multiway data. IEEE TNNLS 27(4):736–
748.

[Zhou and Feng 2017] Zhou, P., and Feng, J. 2017. Outlier-
robust tensor pca. In CVPR 2017, 3938–3946.


