Robust Tensor Decomposition via Orientation Invariant Tubal Nuclear Norms

WANG Andong, ${ }^{1}$ LI Chao, ${ }^{2}$ JIN Zhong, ${ }^{1}$ ZHAO Qibin ${ }^{2}$
${ }^{1}$ Nanjing University of Science and Technology, China
${ }^{2}$ Tensor Learning Unit, RIKEN AIP, Japan

Table of Contents

(1) Motivation

- Robust Tensor Decomposition
- Low-tubal-rank Structure
(2) Orientation Invariant TNNs for RTD
- Orientation Invariant TNNs
- Proposed RTD Models
- Error bounds
(3) Experiments

4 Conclusion

Tensor data is everywhere!

Measurement

Video surveillance
Anomaly detection

Question system Topic model

Image/Video processing
Inpainting/De-noising

Process monitoring
 Failure detection

EEG signal processing
Disease surveillance

Social networks Community detection

Environment monitoring Quality assessment

MRI
Behavior recognition

Robust Tensor Decomposition (RTD)

```
(<) Observed tensor data are often not clean
May be corrupted by both outliers and noises
Due to: sensor failures, lens pollution, video abnormalities, corruption of images,
```


Many tensor data are low-rank

```
E.g. images and videos have (well/approx.) low-rank structure
(Liu J et al. PAMI 2013; Zhao QB et al. PAMI 2015)
```


This paper

An Observation Model (Gu QQ et al. NIPS 2014)

Robust Tensor Decomposition (RTD)

© Observed tensor data are often not clean

May be corrupted by both outliers and noises

Due to:

Many tensor data are low-rank

E.g. images and videos have (well/approx.) low-rank structure
(Liu J et al. PAMI 2013; Zhao QB et al. PAMI 2015)

This paper

An Observation Model (Gu QQ et al. NIPS 2014)

Robust Tensor Decomposition (RTD)

© Observed tensor data are often not clean

May be corrupted by both outliers and noises
Due to:
Many tensor data are low-rank
E.g. images and videos have (well/approx.) low-rank structure
(Liu J et al. PAMI 2013; Zhao QB et al. PAMI 2015)

This paper

An Observation Model reu ce atal Nips 2014

Robust Tensor Decomposition (RTD)

© Observed tensor data are often not clean

May be corrupted by both outliers and noises
Due to:
Many tensor data are low-rank
E.g. images and videos have (well/approx.) low-rank structure
(Liu J et al. PAMI 2013; Zhao QB et al. PAMI 2015)

This paper

An Observation Model reu ce atal Nips 2014

Robust Tensor Decomposition (RTD)

© Observed tensor data are often not clean

May be corrupted by both outliers and noises
Due to: sensor failures, lens pollution, video abnormalities, corruption of images, ...
Many tensor data are low-rank
E.g. images and videos have (well/approx.) low-rank structure
(Liu J et al. PAMI 2013; Zhao QB et al. PAMI 2015)

This paper

An Observation Model (Gu QQ et al. NIPS 2014)

Robust Tensor Decomposition (RTD)

© Observed tensor data are often not clean

May be corrupted by both outliers and noises
Due to: sensor failures, lens pollution, video abnormalities, corruption of images, ...

© Many tensor data are low-rank

E.g. images and videos have (well/approx.) low-rank structure
(Liu J et al. PAMI 2013; Zhao QB et al. PAMI 2015)

This paper

An Observation Model (Gu QQ et al. NIPS 2014)

Robust Tensor Decomposition (RTD)

© Observed tensor data are often not clean

May be corrupted by both outliers and noises
Due to: sensor failures, lens pollution, video abnormalities, corruption of images, ...

© Many tensor data are low-rank

E.g. images and videos have (well/approx.) low-rank structure (Liu J et al. PAMI 2013; Zhao QB et al. PAMI 2015)

This paper

An Observation Model (Gu QQ et al. NIPS 2014)

Robust Tensor Decomposition (RTD)

© Observed tensor data are often not clean

May be corrupted by both outliers and noises
Due to: sensor failures, lens pollution, video abnormalities, corruption of images, ...

© Many tensor data are low-rank

E.g. images and videos have (well/approx.) low-rank structure (Liu J et al. PAMI 2013; Zhao QB et al. PAMI 2015)

$$
\Downarrow \text { This paper }
$$

An Observation Model (Gu QQ et al. NIPS 2014)

Robust Tensor Decomposition (RTD)

© Observed tensor data are often not clean

May be corrupted by both outliers and noises
Due to: sensor failures, lens pollution, video abnormalities, corruption of images, ...

© Many tensor data are low-rank

E.g. images and videos have (well/approx.) low-rank structure (Liu J et al. PAMI 2013; Zhao QB et al. PAMI 2015)

$$
\Downarrow \text { This paper }
$$

An Observation Model (Gu QQ et al. NIPS 2014)

$$
\mathcal{Y}=\mathcal{L}^{*}+\mathcal{S}^{*}+\mathcal{E} \in \mathbb{R}^{d_{1} \times \cdots \times d_{K}}
$$

Observed tensor

\mathcal{Y}

Low-rank tensor

\mathcal{L}^{*}

Sparse outliers

Small noises

Robust Tensor Decomposition

Problem

How to estimate the clean \mathcal{L}^{*} from corrupted observation $\mathcal{Y} \in \mathbb{R}^{d_{1} \times \cdots \times d_{K}}$?

How to exploit the low-rank structure of \mathcal{L}^{*} ?

Robust Tensor Decomposition

Problem

How to estimate the clean \mathcal{L}^{*} from corrupted observation $\mathcal{Y} \in \mathbb{R}^{d_{1} \times \cdots \times d_{K}}$?

How to exploit the low-rank structure of \mathcal{L}^{*} ?

Commonly used tensor low-rank strucure

Low-tubal-rank Structure

shown to have stronger modeling capabilities than low-Tucker-rank/low-CP-rank structure for images and videosa

Commonly used tensor low-rank strucure

Low Tucker rank structure

Low CP rank structure

Low-tubal-rank Structure

shown to have stronger modeling capabilities than low-Tucker-rank/low-CP-rank structure for images and videos ${ }^{a}$

[^0]
Low-tubal-rank Structure

Theorem 1 (Tensor SVD (Kilmer et al. 2013)).
Any 3-way tensor $\mathcal{T} \in \mathbb{m}^{d_{1} \times d_{2} \times d_{3}}$ can be decomposed as

$$
\mathcal{T}=\mathcal{U} * \mathcal{S} * \mathcal{V}^{\top}
$$

(1) * is the tensor-tensor product (t-product) (Kilmer et al. 2013)
(2) $\mathcal{U} \in \mathbb{R}^{d_{1} \times d_{1} \times d_{3}}, \mathcal{V} \in \mathbb{R}^{d_{2} \times d_{2} \times d_{3}}$ are orthogonal tensors (Kilmer et al. 2013)
(3) $\mathcal{S} \in \mathbb{R}^{d_{1} \times d_{2} \times d_{3}}$ is an f-diagonal tensor (Kilmer et al. 2013)

Low-tubal-rank Structure

Theorem 1 (Tensor SVD (Kilmer et al. 2013)).
Any 3-way tensor $\mathcal{T} \in \mathbb{R}^{d_{1} \times d_{2} \times d_{3}}$ can be decomposed as

$$
\mathcal{T}=\mathcal{U} * \mathcal{S} * \mathcal{V}^{\top}
$$

(1) * is the tensor-tensor product (t-product) (Kilmer et al. 2013)
(2) $\mathcal{U} \in \mathbb{R}^{d_{1} \times d_{1} \times d_{3}}, \mathcal{V} \in \mathbb{R}^{d_{2} \times d_{2} \times d_{3}}$ are orthogonal tensors (Kilmer et al. 2013)
(3) $\mathcal{S} \in \mathbb{R}^{d_{1} \times d_{2} \times d_{3}}$ is an f-diagonal tensor (Kilmer et al. 2013)

Low-tubal-rank Structure

Theorem 1 (Tensor SVD (Kilmer et al. 2013)).
Any 3-way tensor $\mathcal{T} \in \mathbb{R}^{d_{1} \times d_{2} \times d_{3}}$ can be decomposed as

$$
\mathcal{T}=\mathcal{U} * \mathcal{S} * \mathcal{V}^{\top}
$$

(1) * is the tensor-tensor product (t-product) (Kilmer et al. 2013)
(3) $\mathcal{U} \in \mathbb{R}^{d_{1} \times d_{1} \times d_{3}}, \mathcal{V} \in \mathbb{R}^{d_{2} \times d_{2} \times d_{3}}$ are orthogonal tensors (Kilmer et al. 2013)
(3) $\mathcal{S} \in \mathbb{R}^{d_{1} \times d_{2} \times d_{3}}$ is an f-diagonal tensor (Kilmer et al. 2013)

Low-tubal-rank Structure

Theorem 1 (Tensor SVD (Kilmer et al. 2013)).
Any 3-way tensor $\mathcal{T} \in \mathbb{R}^{d_{1} \times d_{2} \times d_{3}}$ can be decomposed as

$$
\mathcal{T}=\mathcal{U} * \mathcal{S} * \mathcal{V}^{\top}
$$

(1) $*$ is the tensor-tensor product (t-product) (Kilmer et al. 2013)
(2) $\mathcal{U} \in \mathbb{R}^{d_{1} \times d_{1} \times d_{3}}, \mathcal{V} \in \mathbb{R}^{d_{2} \times d_{2} \times d_{3}}$ are orthogonal tensors (Kilmer et al. 2013)
(3) $\mathcal{S} \in \mathbb{R}^{d_{1} \times d_{2} \times d_{3}}$ is an f-diagonal tensor (Kilmer et al. 2013)

Low-tubal-rank Structure

Theorem 1 (Tensor SVD (Kilmer et al. 2013)).
Any 3-way tensor $\mathcal{T} \in \mathbb{R}^{d_{1} \times d_{2} \times d_{3}}$ can be decomposed as

$$
\mathcal{T}=\mathcal{U} * \mathcal{S} * \mathcal{V}^{\top}
$$

(1) * is the tensor-tensor product (t-product) (Kilmer et al. 2013)
(2) $\mathcal{U} \in \mathbb{R}^{d_{1} \times d_{1} \times d_{3}}, \mathcal{V} \in \mathbb{R}^{d_{2} \times d_{2} \times d_{3}}$ are orthogonal tensors (Kilmer et al. 2013)
(3) $\mathcal{S} \in \mathbb{R}^{d_{1} \times d_{2} \times d_{3}}$ is an f-diagonal tensor (Kilmer et al. 2013)

Definition 2 (Tubal Rank (Kilmer et al. 2013)).

The tubal rank of $\mathcal{T} \in \mathbb{R}^{d_{1} \times d_{2} \times d_{3}}$ is the number of non-zero tubes in \mathcal{S}

$$
r_{\mathrm{tb}}(\mathcal{T}):=\#\{i \mid \mathcal{S}(i, i,:) \neq \mathbf{0}\}
$$

Relationship between t-product and DFT indicates (Lu CY et al. PAMI 2019):

$$
r_{\mathrm{tb}}(\mathcal{T})=\#\{i \mid \mathcal{S}(i, i, 1) \neq 0\}
$$

Definition 2 (Tubal Rank (Kilmer et al. 2013)).

The tubal rank of $\mathcal{T} \in \mathbb{R}^{d_{1} \times d_{2} \times d_{3}}$ is the number of non-zero tubes in \mathcal{S}

$$
r_{\mathrm{tb}}(\mathcal{T}):=\#\{i \mid \mathcal{S}(i, i,:) \neq \mathbf{0}\}
$$

Relationship between t-product and DFT indicates (Lu CY et al. PAMI 2019):

$$
r_{\mathrm{tb}}(\mathcal{T})=\#\{i \mid \mathcal{S}(i, i, 1) \neq 0\}
$$

Tensor "Singular Values"

$$
r_{\mathrm{tb}}(\mathcal{T})=\#\{i \mid \mathcal{S}(i, i, 1) \neq 0\}
$$

$\mathcal{S}(i, i, 1$)'s are also called the "singular values" of tensor \mathcal{T} (Lu CY et al. PAMI 2019)

Definition 3 (Tubal Nuclear Norm, TNN).

The TNN of \mathcal{T} is the sum of its singular values

Tensor "Singular Values"

$$
r_{\mathrm{tb}}(\mathcal{T})=\#\{i \mid \mathcal{S}(i, i, 1) \neq 0\}
$$

$\mathcal{S}(i, i, 1)$'s are also called the "singular values" of tensor \mathcal{T} (Lu CY et al. PAMI 2019)

Definition 3 (Tubal Nuclear Norm, TNN).

The TNN of \mathcal{T} is the sum of its singular values

Tensor "Singular Values"

$$
r_{\mathrm{tb}}(\mathcal{T})=\#\{i \mid \mathcal{S}(i, i, 1) \neq 0\}
$$

$\mathcal{S}(i, i, 1)$'s are also called the "singular values" of tensor \mathcal{T} (Lu CY et al. PAMI 2019)

Definition 3 (Tubal Nuclear Norm, TNN).

The TNN of \mathcal{T} is the sum of its singular values

$$
\|\mathcal{T}\|_{\star}:=\sum_{i=1}^{d_{1} \wedge d_{2}} \mathcal{S}(i, i, 1)
$$

Low-rankness in spectral domain

Relationship between t-nroduct and DFT indicates:

TNN measures low-rankness in spectral domain along the 3d orientation

$$
\widetilde{\mathcal{T}}=\operatorname{dft}(\mathcal{T},[], 3)
$$

Low-rankness in spectral domain

Relationship between t-product and DFT indicates:

$$
\|\mathcal{T}\|_{\star}=\frac{1}{d_{3}} \sum_{k=1}^{d_{3}}\|\widetilde{\mathcal{T}}(:,:, k)\|_{\star}
$$

TNN measures low-rankness in spectral domain along the 3d orientation

$$
\widetilde{\mathcal{T}}=\operatorname{dft}(\mathcal{T},[], 3)
$$

Spectral Domain

Low-rankness in spectral domain

Relationship between t-product and DFT indicates:

$$
\|\mathcal{T}\|_{\star}=\frac{1}{d_{3}} \sum_{k=1}^{d_{3}}\|\widetilde{\mathcal{T}}(:,:, k)\|_{*}
$$

TNN measures low-rankness in spectral domain along the 3d orientation

Weaknesses of TNN

$$
\|\mathcal{T}\|_{\star}=\frac{1}{d_{3}} \sum_{k=1}^{d_{3}}\|\widetilde{\mathcal{T}}(:,:, k)\|_{*}, \text { where } \widetilde{\mathcal{T}}=\operatorname{dft}(\mathcal{T},[], 3) \in \mathbb{R}^{d_{1} \times d_{2} \times d_{3}}
$$

(사 Orientation sensitivity: computed after DFT along the 3-rd orientation
(3) Order limitation: defined only for 3-way tensors

TNN fails to model

Multi-orientational spectral low-rankness for K-way ($K \geq 3$) tensors
\square
This work
© Defines 2 Orientation Invariant TNNs for K-way tensors
© Applies them to Robust Tensor Decomposition

Weaknesses of TNN

$$
\|\mathcal{T}\|_{\star}=\frac{1}{d_{3}} \sum_{k=1}^{d_{3}}\|\widetilde{\mathcal{T}}(:,:, k)\|_{\star}, \quad \text { where } \widetilde{\mathcal{T}}=\operatorname{dft}(\mathcal{T},[], 3) \in \mathbb{R}^{d_{1} \times d_{2} \times d_{3}}
$$

(ㄷ) Orientation sensitivity: computed after DFT along the 3-rd orientation
(2) Order limitation: defined only for 3-way tensors

TNN fails to model

Multi-orientational_spectral low-rankness for K-way ($K \geq 3$) tensors
This work
(9) Defines 2 Orientation Invariant TNNs for K-way tensors
(e) Applies them to Robust Tensor Decomposition

Weaknesses of TNN

$$
\|\mathcal{T}\|_{\star}=\frac{1}{d_{3}} \sum_{k=1}^{d_{3}}\|\widetilde{\mathcal{T}}(:,:, k)\|_{\star}, \quad \text { where } \widetilde{\mathcal{T}}=\operatorname{dft}(\mathcal{T},[], 3) \in \mathbb{R}^{d_{1} \times d_{2} \times d_{3}}
$$

(ㄷ) Orientation sensitivity: computed after DFT along the 3-rd orientation
(3) Order limitation: defined only for 3-way tensors

Multi-orientational spectral low-rankness for K-way ($K \geq 3$) tensors
This work
© Defines 2 Orientation Invariant TNNs for K-way tensors
(ㅅ) Applies them to Robust Tensor Decomposition

Weaknesses of TNN

$$
\|\mathcal{T}\|_{\star}=\frac{1}{d_{3}} \sum_{k=1}^{d_{3}}\|\widetilde{\mathcal{T}}(:,:, k)\|_{\star}, \quad \text { where } \widetilde{\mathcal{T}}=\operatorname{dft}(\mathcal{T},[], 3) \in \mathbb{R}^{d_{1} \times d_{2} \times d_{3}}
$$

(ㄷ) Orientation sensitivity: computed after DFT along the 3-rd orientation
(3) Order limitation: defined only for 3-way tensors
\Downarrow TNN fails to model

This work
© Defines 2 Orientation Invariant TNNs for K-way tensors
(e) Applies them to Robust Tensor Decomposition

Weaknesses of TNN

$$
\|\mathcal{T}\|_{\star}=\frac{1}{d_{3}} \sum_{k=1}^{d_{3}}\|\widetilde{\mathcal{T}}(:,:, k)\|_{\star}, \quad \text { where } \widetilde{\mathcal{T}}=\operatorname{dft}(\mathcal{T},[], 3) \in \mathbb{R}^{d_{1} \times d_{2} \times d_{3}}
$$

(2) Orientation sensitivity: computed after DFT along the 3-rd orientation
(3) Order limitation: defined only for 3-way tensors
\Downarrow TNN fails to model
Multi-orientational spectral low-rankness for K-way $(K \geq 3)$ tensors
This work
© Defines 2 Orientation Invariant TNNs for K-way tensors
(1) Applies them to Robust Tensor Decomposition

Weaknesses of TNN

$$
\|\mathcal{T}\|_{\star}=\frac{1}{d_{3}} \sum_{k=1}^{d_{3}}\|\widetilde{\mathcal{T}}(:,:, k)\|_{\star}, \quad \text { where } \widetilde{\mathcal{T}}=\operatorname{dft}(\mathcal{T},[], 3) \in \mathbb{R}^{d_{1} \times d_{2} \times d_{3}}
$$

(2) Orientation sensitivity: computed after DFT along the 3-rd orientation
(3) Order limitation: defined only for 3-way tensors
\Downarrow TNN fails to model
Multi-orientational spectral low-rankness for K-way $(K \geq 3)$ tensors
\Downarrow This work
© Defines 2 Orientation Invariant TNNs for K-way tensors

- Applies them to Robust Tensor Decomposition

Weaknesses of TNN

$$
\|\mathcal{T}\|_{\star}=\frac{1}{d_{3}} \sum_{k=1}^{d_{3}}\|\widetilde{\mathcal{T}}(:,,, k)\|_{\star}, \text { where } \widetilde{\mathcal{T}}=\operatorname{dft}(\mathcal{T},[], 3) \in \mathbb{R}^{d_{1} \times d_{2} \times d_{3}}
$$

(2) Orientation sensitivity: computed after DFT along the 3-rd orientation
(3) Order limitation: defined only for 3-way tensors
\Downarrow TNN fails to model
Multi-orientational spectral low-rankness for K-way $(K \geq 3)$ tensors
\Downarrow This work
© Defines 2 Orientation Invariant TNNs for K-way tensors

- Applies them to Robust Tensor Decomposition

Weaknesses of TNN

$$
\|\mathcal{T}\|_{\star}=\frac{1}{d_{3}} \sum_{k=1}^{d_{3}}\|\widetilde{\mathcal{T}}(:,:, k)\|_{\star}, \quad \text { where } \widetilde{\mathcal{T}}=\operatorname{dft}(\mathcal{T},[], 3) \in \mathbb{R}^{d_{1} \times d_{2} \times d_{3}}
$$

(ㄹ) Orientation sensitivity: computed after DFT along the 3-rd orientation
(ㄹ) Order limitation: defined only for 3-way tensors
\Downarrow TNN fails to model
Multi-orientational spectral low-rankness for K-way ($K \geq 3$) tensors
\Downarrow This work
© Defines 2 Orientation Invariant TNNs for K-way tensors
© Applies them to Robust Tensor Decomposition

Exploiting multi-orientational spectral low-rankness

Idea: convert a K-way tensor to K 3-way tensors

then, each 3-way tensor handles one orientation

Step 1: Define mode-(k, t) 3d-unfolding

Step 2: Let $t=k+1$. Then mode t traverses all the K orientations when

Step 3: Let $\mathcal{T}_{[k]}$ be the mode- $(k, k+1)$ 3d-unfolding of \mathcal{T}, and use TNN to exploit its spectral low-rankness.

Exploiting multi-orientational spectral low-rankness

Idea: convert a K-way tensor to K 3-way tensors

then, each 3-way tensor handles one orientation

Step 1: Define mode- $(k, t) 3 \mathrm{~d}$-unfolding

Step 2: Let $t=k+1$. Then mode t traverses all the K orientations when

\square
Step 3: Let $T_{[k]}$ be the mode- $(k, k+1)$ 3d-unfolding of T, and use TNN to exploit its spectral low-rankness.

Exploiting multi-orientational spectral low-rankness

Idea: convert a K-way tensor to K 3-way tensors

 then, each 3-way tensor handles one orientation
Step 1: Define mode-(k, t) 3d-unfolding

Step 2: Let $t=k+1$. Then mode t traverses all the K orientations when

\square
\qquad
and use TNN to exploit its spectral

Exploiting multi-orientational spectral low-rankness

Idea: convert a K-way tensor to K 3-way tensors

then, each 3-way tensor handles one orientation
Step 1: Define mode- $(k, t) 3 \mathrm{~d}$-unfolding

Step 2: Let $t=k+1$. Then mode t traverses all the K orientations when

Step 3: Let $T_{[k]}$ be the mode- $(k, k+1)$ 3d-unfolding of T, and use TNN to exploit its spectral

 low-rankness.
Exploiting multi-orientational spectral low-rankness

Idea: convert a K-way tensor to K 3-way tensors

then, each 3-way tensor handles one orientation
Step 1: Define mode- (k, t) 3d-unfolding

Step 2: Let $t=k+1$. Then mode t traverses all the K orientations when $k=1: K$.

Exploiting multi-orientational spectral low-rankness

Idea: convert a K-way tensor to K 3-way tensors

then, each 3-way tensor handles one orientation
Step 1: Define mode- (k, t) 3d-unfolding

Step 2: Let $t=k+1$. Then mode t traverses all the K orientations when $k=1: K$.
Step 3: Let $\mathcal{T}_{[k]}$ be the mode- $(k, k+1)$ 3d-unfolding of \mathcal{T}, and use TNN to exploit its spectral low-rankness.

Definition 4 (Overlapped OITNN: Sum of TNNs after unfolding).

OITNN-O of $\mathcal{T} \in \mathbb{R}^{d_{1} \times \cdots \times d_{K}}$ is the sum of K TNNs after 3-d unfoldings

$$
\|\mathcal{T}\|_{\star o}:=\sum_{k=1}^{K} w_{k}\left\|\mathcal{T}_{[k]}\right\|_{\star},
$$

with weights $\sum_{k} w_{k}=1$.

Figure 1: OITNN-O encourages simultaneous low-tubal-rankness in all orientations

Definition 5 (Latent OITNN: Sum of TNNs after decomposition).

OITNN-L of $\mathcal{T} \in \mathbb{R}^{d_{1} \times \cdots \times d_{K}}$ is the infimum of sum of K TNNs among all decompositions

$$
\|\mathcal{T}\|_{\star \iota}:=\inf _{\sum_{k} \mathcal{L}^{(k)}=\mathcal{T}} \sum_{k=1}^{K} v_{k}\left\|\mathcal{L}_{[k]}^{(k)}\right\|_{\star},
$$

with weights $\sum_{k} v_{k}=1$.

Figure 2: OITNN-L models \mathcal{T} as sum of K low-tubal-rank tensors $\left\{\mathcal{L}^{(k)}\right\}$

Proposed Models for RTD

$$
\begin{aligned}
& \text { Model I: RTD based on OITNN-O } \\
& \left(\hat{\mathcal{L}}_{0}, \hat{S}_{0}\right) \in \underset{\mathcal{L}, \mathcal{S}}{\operatorname{argmin}} \frac{1}{2}\|\mathcal{Y}-\mathcal{L}-S\|_{\mathrm{F}}^{2}+\lambda_{0}\|\mathcal{L}\|_{* 0}+\mu_{0}\|S\|_{1} \\
& \text { s.t. }\|\mathcal{L}\|_{\infty} \leq \alpha \leftarrow \text { (incoherence condition) } \\
& \text { Mode II: RTD based on OITNM-L } \\
& \left(\left\{\mathcal{L}^{\hat{(} k)}\right\}, \hat{\mathcal{S}}_{\iota}\right) \in \underset{\left\{\mathcal{L}^{(k)}\right\}, \mathcal{S}}{\operatorname{argmin}} \frac{1}{2}\|\mathcal{Y}-\mathcal{L}-\mathcal{S}\|_{\mathbf{F}}^{2}+\lambda_{\iota} \sum_{k} v_{k}\left\|\mathcal{L}_{[k]}^{(k)}\right\|_{\star}+\mu_{\iota}\|\mathcal{S}\|_{1} \\
& \text { s.t. } \quad\left\|\mathcal{L}_{[k]}^{(l)}\right\| \leq \beta \tilde{d}_{k}, \quad \forall l+k ;\left\|\sum_{k} \mathcal{L}^{(k)}\right\|_{\infty} \leq \alpha \leftarrow \text { (incoherence condition) }
\end{aligned}
$$

Proposed Models for RTD

Model I: RTD based on OITNN-O

Proposed Models for RTD

Model I: RTD based on OITNN-O

$$
\begin{aligned}
\left(\hat{\mathcal{L}}_{\mathrm{o}}, \hat{\mathcal{S}}_{\mathrm{\circ}}\right) \in \underset{\mathcal{L}, \mathcal{S}}{\operatorname{argmin}} & \frac{1}{2}\|\mathcal{Y}-\mathcal{L}-\mathcal{S}\|_{\mathrm{F}}^{2}+\lambda_{\mathrm{\circ}}\|\mathcal{L}\|_{\star \circ}+\mu_{\mathrm{\circ}}\|\mathcal{S}\|_{1} \\
\text { s.t. } & \|\mathcal{L}\|_{\infty} \leq \alpha \quad \leftarrow \text { (incoherence condition) }
\end{aligned}
$$

Model II: RTD based on OITNN-L

$$
\begin{aligned}
&\left(\left\{\mathcal{L}^{\hat{(k)}}\right\}, \hat{\mathcal{S}}_{\iota}\right) \in \underset{\left\{\mathcal{L}^{(k)}\right\}, \mathcal{S}}{\operatorname{argmin}} \frac{1}{2}\|\mathcal{Y}-\mathcal{L}-\mathcal{S}\|_{\mathrm{F}}^{2}+\lambda_{\iota} \sum_{k} v_{k}\left\|\mathcal{L}_{[k]}^{(k)}\right\|_{\star}+\mu_{\iota}\|\mathcal{S}\|_{1} \\
& \quad \text { s.t. } \quad\left\|\mathcal{L}_{[k]}^{(l)}\right\| \leq \beta \tilde{d}_{k}, \quad \forall l \neq k ;\left\|\sum_{k} \mathcal{L}^{(k)}\right\|_{\infty} \leq \alpha \leftarrow \text { (incoherence condition) }
\end{aligned}
$$

Proposed Models for RTD

Model I: RTD based on OITNN-O

$$
\begin{aligned}
\left(\hat{\mathcal{L}}_{\mathrm{o}}, \hat{\mathcal{S}}_{\mathrm{o}}\right) \in \underset{\mathcal{L}, \mathcal{S}}{\operatorname{argmin}} & \frac{1}{2}\|\mathcal{Y}-\mathcal{L}-\mathcal{S}\|_{\mathrm{F}}^{2}+\lambda_{\circ}\|\mathcal{L}\|_{\star \circ}+\mu_{\circ}\|\mathcal{S}\|_{1} \\
\text { s.t. } & \|\mathcal{L}\|_{\infty} \leq \alpha \quad \leftarrow \text { (incoherence condition) }
\end{aligned}
$$

Model II: RTD based on OITNN-L

Proposed Models for RTD

Model I: RTD based on OITNN-O

$$
\begin{aligned}
\left(\hat{\mathcal{L}}_{\mathrm{o}}, \hat{\mathcal{S}}_{\mathrm{\circ}}\right) \in \underset{\mathcal{L}, \mathcal{S}}{\operatorname{argmin}} & \frac{1}{2}\|\mathcal{Y}-\mathcal{L}-\mathcal{S}\|_{\mathrm{F}}^{2}+\lambda_{\mathrm{\circ}}\|\mathcal{L}\|_{\star \circ}+\mu_{\mathrm{\circ}}\|\mathcal{S}\|_{1} \\
\text { s.t. } & \|\mathcal{L}\|_{\infty} \leq \alpha \quad \leftarrow \text { (incoherence condition) }
\end{aligned}
$$

Model II: RTD based on OITNN-L

$$
\begin{aligned}
&\left(\left\{\mathcal{L}^{(k)}\right\}, \hat{\mathcal{S}}_{\iota}\right) \in \underset{\left\{\mathcal{L}^{(k)}\right\}, \mathcal{S}}{\operatorname{argmin}} \frac{1}{2}\|\mathcal{Y}-\mathcal{L}-\mathcal{S}\|_{\mathrm{F}}^{2}+\lambda_{\iota} \sum_{k} v_{k}\left\|\mathcal{L}_{[k]}^{(k)}\right\|_{\star}+\mu_{\iota}\|\mathcal{S}\|_{1} \\
& \text { s.t. } \quad\left\|\mathcal{L}_{[k]}^{(l)}\right\| \leq \beta \tilde{d}_{k}, \quad \forall l \neq k ;\left\|\sum_{k} \mathcal{L}^{(k)}\right\|_{\infty} \leq \alpha \leftarrow(\text { incoherence condition) }
\end{aligned}
$$

Bounds on the Estimation Error

When noise tensor \mathcal{E} has i.i.d. $\mathcal{N}\left(0, \sigma^{2}\right)$ entries

For $\mathcal{L}^{*} \in \mathbb{R}^{d \times d \times \cdots \times d}$, it holds w.h.p. after parameter tuning:

$\frac{\left\|\sum_{k} \hat{\mathcal{L}}^{(k)}-\mathcal{L}^{*}\right\|_{\mathbf{F}}^{2}+\left\|\hat{\mathcal{S}}_{\iota}-\mathcal{S}^{*}\right\|_{\mathbf{F}}^{2}}{d^{K}} \precsim \sigma^{2}\left(d^{-1} \min _{k}\left\{r_{\mathrm{tb}}\left(\mathcal{L}_{[k]}^{*}\right)\right\}+\left\|\mathcal{S}^{*}\right\|_{l_{0}} K \log d\right)$

Bound on Model I: controlled by spectral low-rankness of all orientations
\checkmark Bound on Model II: controlled by the orientation with lowest rank in spectral domain

Bounds on the Estimation Error

When noise tensor \mathcal{E} has i.i.d. $\boldsymbol{\mathcal { N }}\left(0, \sigma^{2}\right)$ entries

\Downarrow

```
Bound on Model I: controlled by spectral low-rankness of all orientations
    Bound on Model II: controlled by the orientation with lowest rank in spectral domain
```


Bounds on the Estimation Error

When noise tensor \mathcal{E} has i.i.d. $\mathcal{N}\left(0, \sigma^{2}\right)$ entries

For $\mathcal{L}^{*} \in \mathbb{R}^{d \times d \times \cdots \times d}$, it holds w.h.p. after parameter tuning:

\Downarrow

```
\(\checkmark\) Bound on Model I: controlled by spectral low-rankness of all orientations
Bound on Model II: controlled by the orientation with lowest rank in spectral domain
```


Bounds on the Estimation Error

When noise tensor \mathcal{E} has i.i.d. $\mathcal{N}\left(0, \sigma^{2}\right)$ entries

For $\mathcal{L}^{*} \in \mathbb{R}^{d \times d \times \cdots \times d}$, it holds w.h.p. after parameter tuning:

$$
\begin{aligned}
\frac{\left\|\hat{\mathcal{L}}_{\mathrm{o}}-\mathcal{L}^{*}\right\|_{\mathrm{F}}^{2}+\left\|\hat{\mathcal{S}}_{\mathrm{o}}-\mathcal{S}^{*}\right\|_{\mathrm{F}}^{2}}{d^{K}} \precsim \sigma^{2}\left(d^{-1} K^{-2} \sum_{k} r_{\mathrm{tb}}\left(\mathcal{L}_{[k]}^{*}\right)+\left\|\mathcal{S}^{*}\right\|_{l_{0}} K \log d\right) & \leftarrow(\text { Model I) } \\
\frac{\left\|\sum_{k} \hat{\mathcal{L}}^{(k)}-\mathcal{L}^{*}\right\|_{\mathrm{F}}^{2}+\left\|\hat{\mathcal{S}}_{\iota}-\mathcal{S}^{*}\right\|_{\mathrm{F}}^{2}}{d^{K}} \precsim \sigma^{2}\left(d^{-1} \min _{k}\left\{r_{\mathrm{tb}}\left(\mathcal{L}_{[k]}^{*}\right)\right\}+\left\|\mathcal{S}^{*}\right\|_{l_{0}} K \log d\right) & \leftarrow(\text { Model II })
\end{aligned}
$$

\Downarrow

```
Bound on Model I: controlled by spectral low-rankness of all orientations
    Bound on Model II: controlled by the orientation with lowest rank in spectral domain
```


Bounds on the Estimation Error

When noise tensor \mathcal{E} has i.i.d. $\mathcal{N}\left(0, \sigma^{2}\right)$ entries

For $\mathcal{L}^{*} \in \mathbb{R}^{d \times d \times \cdots \times d}$, it holds w.h.p. after parameter tuning:

$$
\begin{aligned}
\frac{\left\|\hat{\mathcal{L}}_{\mathrm{o}}-\mathcal{L}^{*}\right\|_{\mathrm{F}}^{2}+\left\|\hat{\mathcal{S}}_{\mathrm{o}}-\mathcal{S}^{*}\right\|_{\mathrm{F}}^{2}}{d^{K}} \precsim \sigma^{2}\left(d^{-1} K^{-2} \sum_{k} r_{\mathrm{tb}}\left(\mathcal{L}_{[k]}^{*}\right)+\left\|\mathcal{S}^{*}\right\|_{l_{0}} K \log d\right) & \leftarrow(\text { (Model I) } \\
\frac{\left\|\sum_{k} \hat{\mathcal{L}}^{(k)}-\mathcal{L}^{*}\right\|_{\mathrm{F}}^{2}+\left\|\hat{\mathcal{S}}_{\iota}-\mathcal{S}^{*}\right\|_{\mathrm{F}}^{2}}{d^{K}} \precsim \sigma^{2}\left(d^{-1} \min _{k}\left\{r_{\mathrm{tb}}\left(\mathcal{L}_{[k]}^{*}\right)\right\}+\left\|\mathcal{S}^{*}\right\|_{l_{0}} K \log d\right) & \leftarrow(\text { Model II })
\end{aligned}
$$

\Downarrow

\checkmark Bound on Model I: controlled by spectral low-rankness of all orientations \checkmark Bound on Model II: controlled by the orientation with lowest rank in spectral domain

Bounds on the Estimation Error

When noise tensor \mathcal{E} has i.i.d. $\mathcal{N}\left(0, \sigma^{2}\right)$ entries

For $\mathcal{L}^{*} \in \mathbb{R}^{d \times d \times \cdots \times d}$, it holds w.h.p. after parameter tuning:

$$
\begin{aligned}
\frac{\left\|\hat{\mathcal{L}}_{\mathrm{o}}-\mathcal{L}^{*}\right\|_{\mathrm{F}}^{2}+\left\|\hat{\mathcal{S}}_{\mathrm{o}}-\mathcal{S}^{*}\right\|_{\mathrm{F}}^{2}}{d^{K}} \precsim \sigma^{2}\left(d^{-1} K^{-2} \sum_{k} r_{\mathrm{tb}}\left(\mathcal{L}_{[k]}^{*}\right)+\left\|\mathcal{S}^{*}\right\|_{l_{0}} K \log d\right) & \leftarrow(\text { Model I) } \\
\frac{\left\|\sum_{k} \hat{\mathcal{L}}^{(k)}-\mathcal{L}^{*}\right\|_{\mathrm{F}}^{2}+\left\|\hat{\mathcal{S}}_{\iota}-\mathcal{S}^{*}\right\|_{\mathrm{F}}^{2}}{d^{K}} \precsim \sigma^{2}\left(d^{-1} \min _{k}\left\{r_{\mathrm{tb}}\left(\mathcal{L}_{[k]}^{*}\right)\right\}+\left\|\mathcal{S}^{*}\right\|_{l_{0}} K \log d\right) & \leftarrow(\text { Model II })
\end{aligned}
$$

\Downarrow

\checkmark Bound on Model I: controlled by spectral low-rankness of all orientations
\checkmark Bound on Model II: controlled by the orientation with lowest rank in spectral domain

Robust Image Recovery

(a) $(\mathfrak{s}, c)=(0.05,0.1)$

(b) $(\mathfrak{s}, c)=(0.15,0.15)$

Figure 3: Robust image recovery with different corruption ratio \mathfrak{s} and noise level c.

Image Completion

(1) Setting I: 90% random missing
(2) Setting II: rows and columns missing, total ratio 85%

■OITNN-O ■ OITNN-L ■TNN ■ t-TNN ■SNN ■ LatentNN ■ SqNN ■NN

(a) Setting I

PSNR

Figure 4: Quantitative comparison in image completion.

(1) Row 1: robust image recovery with corruption ratio $\mathfrak{s}=0.05$ and noise level $c=0.1$ (2) Row 2: image completion with 90% random missing entriesRow 3: image completion with missing columns and rows (

```
(total missing ratio 85%)
```


(1) Row 1: robust image recovery with corruption ratio $\mathfrak{s}=0.05$ and noise level $c=0.1$
image completion with 90% random missing entries

(1) Row 1: robust image recovery with corruption ratio $\mathfrak{s}=0.05$ and noise level $c=0.1$
(2) Row 2: image completion with 90% random missing entries
(3) Row 3: image completion with missing columns and rows (total missing ratio 85\%)

(1) Row 1: robust image recovery with corruption ratio $\mathfrak{s}=0.05$ and noise level $c=0.1$
(2) Row 2: image completion with 90% random missing entries
(3) Row 3: image completion with missing columns and rows (total missing ratio 85\%)

Video Completion

Figure 5: Video completion with 90% random missing

Conclusion

Contributions

(1) We defined two new norms for K-way $(K \geq 3)$ tensors.
(2) We presented two models for RTD with error bounds.
Thank you.

Conclusion

Contributions

(1) We defined two new norms for K-way $(K \geq 3)$ tensors.
(2) We presented two models for RTD with error bounds.

Thank you.

Conclusion

Contributions

(1) We defined two new norms for K-way $(K \geq 3)$ tensors.
(2) We presented two models for RTD with error bounds.

Thank you.

[^0]: ${ }^{\text {a }}$ E.g. Liu XY et al. TIT 2020; Zhang ZM et al. CVPR 2014, IJCAI 2016; Lu CY et al. CVPR 2016, IJCAI 2018, PAMI 2019; Zhou P et al. CVPR 2017, PAMI 2020; Xie Y et al. IJCV 2018

