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U This paper

An Observation Model (Gu QQ et al. NIPS 2014)
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Robust Tensor Decomposition

Problem

How to estimate the clean £* from corrupted observation ) € R%1**dx?

Observed tensor Sparse outliers Small noises
E s
S*

[ How to exploit the low-rank structure of £*? ]
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Motivation Low-tubal-rank Structure
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Motivation Low-tubal-rank Structure

Commonly used tensor low-rank strucure

A

4

Low Tucker rank structure Low CP rank structure

Low-tubal-rank Structure

shown to have stronger modeling capabilities than low-Tucker-rank/low-
CP-rank structure for images and videos?

aE.g. Liu XY et al. TIT 2020; Zhang ZM et al. CVPR 2014, IJCAI 2016; Lu CY et al. CVPR 2016,
1JCAI 2018, PAMI 2019; Zhou P et al. CVPR 2017, PAMI 2020; Xie Y et al. IJCV 2018
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Any 3-way tensor T € R41*%%d3 can pe decomposed as

T =U+S*VT

@ = is the tensor-tensor product (t-product) (kiimer et al. 2013)
Q U e RUrxdixds 1)) ¢ Rd2xd2xds are orthogonal tensors (kiimer et al. 2013)

Q S eRU*%xds i an f-diagonal tensor (kimer et al. 2013)
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Definition 2 (Tubal Rank (kimer et al. 2013)).

The tubal rank of 7 € R4*d2%ds i the number of non-zero tubes in S
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.
T u

Relationship between t-product and DFT indicates (Lu CY et al. PAMI 2019):

rtb(T) = #{Z | S(iaia 1) # 0}
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Tensor “Singular Values”
reo(T) = #{i | S(i,i,1) # 0}

S(i,4,1)'s are also called the “singular values” of tensor T (Lu cY et al. PAMI 2010)

Definition 3 (Tubal Nuclear Norm, TNN).

The TNN of T is the sum of its singular values
dl/\dz

HTH*: Z S(ivi,l)
i=1

T
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Original Domain Spectral Domain

Low-rankness in spectral domain

Relationship between t-product and DFT indicates:

171 = Z ATk
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T =dft(T; 1, 3)
DFT ¢/
| 4 | 4
T T
Original Domain Spectral Domain

Low-rankness in spectral domain

Relationship between t-product and DFT indicates:

|7 = Z AT G )

TNN measures low-rankness in spectral domain along the 3d orientation
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Weaknesses of TNN

1 & - = dyxdgxd
171l = a0 YNTCs k)., where T =dft(T,[],3) e R
3 k=1

® Orientation sensitivity: computed after DFT along the 3-rd
orientation

® Order limitation: defined only for 3-way tensors

|l TNN fails to model

Multi-orientational spectral low-rankness for K-way (K > 3) tensors

| This work
® Defines 2 Orientation Invariant TNNs for K-way tensors
® Applies them to Robust Tensor Decomposition
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Orientation Invariant TNNs for RTD Orientation Invariant TNNs

Exploiting multi-orientational spectral low-rankness

then, each 3-way tensor handles one orientation

o d,

mode-(k, 1) dy

3d-unfolding
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Orientation Invariant TNNs for RTD Orientation Invariant TNNs

Exploiting multi-orientational spectral low-rankness

Idea: convert a K-way tensor to K 3-way tensors

then, each 3-way tensor handles one orientation
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Orientation Invariant TNNs for RTD Orientation Invariant TNNs

Exploiting multi-orientational spectral low-rankness

Idea: convert a K-way tensor to K 3-way tensors

then, each 3-way tensor handles one orientation

Step 1: Define mode-(k,t) 3d-unfolding

d,
o> e :
YT1e mode-(k, 7) dye 7{1{ a
Rbax-xdg ————— ‘oomcooool b
.e .o 3d-unfolding -
o

Step 2: Let t =k + 1. Then mode t traverses all the K orientations when k=1: K.

Step 3: Let T[] be the mode-(k, k + 1) 3d-unfolding of 7, and use TNN to exploit its spectral
low-rankness.
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Orientation Invariant TNNs for RTD Orientation Invariant TNNs

Definition 4 (Overlapped OITNN: Sum of TNNs after unfolding).

OITNN-O of T e R4**dx is the sum of K TNNs after 3-d unfoldings

K
170 = X wel Tiw I
k=1

with weights >, wy = 1.

ge ™
.
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10=] 8

Figure 1: OITNN-O encourages simultaneous low-tubal-rankness in all
orientations
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Orientation Invariant TNNs for RTD

Orientation Invariant TNNs

Definition 5 (Latent OITNN: Sum of TNNs after decomposition).

OITNN-L of T € R4*¥4K s the infimum of sum of K TNNs among all decompositions

with weights >, vi = 1.
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Figure 2: OITNN-L models 7 as sum of K low-tubal-rank tensors {£()}
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Proposed Models for RTD
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Bounds on the Estimation Error

When noise tensor £ has i.i.d. A(0,5?) entries

For £* e R4%dxxd 'it holds w.h.p. after parameter tuning:

1£0 = L*[ + |80 = 5%
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v" Bound on Model I: controlled by spectral low-rankness of all orientations

v~ Bound on Model II: controlled by the orientation with lowest rank in spectral domain
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Experiments

Robust Image Recovery

® OITNN-O mOITNN-L mTNN = (-TNN mSNN = LatentNN m SqNN m NN

30 PSNR 26 PSNR

28

Im'!ze lmage lnnge !m'\ze lmage ]nngc lmage Im'me lmage mw lmdzzc Tma 'xe Tua ‘xe Tmag -.e lmazze Tma ‘ge Image Im;xe

(a) (s,¢) =1(0.05,0.1) (b) (s,¢) = (0.15,0.15)

%)

%)
e

¥

Figure 3: Robust image recovery with different corruption ratio s and noise level c.
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Image Completion

Q Setting I: 90% random missing
@ Setting Il: rows and columns missing, total ratio 85%

M OITNN-O M OITNN-L TNN t-TNN B SNN M LatentNN B SqgNN  H NN

PSNR PSNR
26 25
20
23 15
20 |
5
; m| H “““ “HH I || “ * Dbl b s Rl R K
Image Image Image Image Image Image Image Image Image Image Image Image Image Image Image Image Image Image
1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9
(a) Setting | (b) Setting Il

Figure 4: Quantitative comparison in image completion.
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@ Row 1: robust image recovery with corruption ratio s = 0.05 and noise level ¢ = 0.1
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(a) Observation  (b) OITNN-O (c) OITNN-L (d) TNN (e) SNN (e) LatentNN

@ Row 1: robust image recovery with corruption ratio s = 0.05 and noise level ¢ = 0.1

@ Row 2: image completion with 90% random missing entries
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i
1 B
(a) Observation  (b) OITNN-O (c) OITNN-L (d) TNN (e) SNN (e) LatentNN

© Row 1: robust image recovery with corruption ratio s = 0.05 and noise level ¢ = 0.1
@ Row 2: image completion with 90% random missing entries

© Row 3: image completion with missing columns and rows (total missing ratio 85%)
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Video Completion

PSNR = OITNN-O = OITNN-L TNN SNN = LatentNN

5
15

akiyo  bridge-far  silent  caphone  claire  coastguard container foreman  salesman grandma  hall

w

~

N

Figure 5: Video completion with 90% random missing
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Conclusion

Conclusion

Contributions

© We defined two new norms for K-way (K > 3) tensors.

@ We presented two models for RTD with error bounds.

Thank you.
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