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Motivation Robust Tensor Decomposition

Robust Tensor Decomposition (RTD)
./ Observed tensor data are often not clean..

.
May be corrupted by both outliers and noises
Due to: sensor failures, lens pollution, video abnormalities, corruption of images, ...
.- Many tensor data are low-rank
..

.
E.g. images and videos have (well/approx.) low-rank structure
(Liu J et al. PAMI 2013; Zhao QB et al. PAMI 2015)

⇓ This paper
.

An Observation Model (Gu QQ et al. NIPS 2014)..

. Y = L∗ + S∗ + E ∈ Rd1×⋯×dK
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Motivation Robust Tensor Decomposition

Robust Tensor Decomposition

.
Problem..

.How to estimate the clean L∗ from corrupted observation Y ∈ Rd1×⋯×dK?

..
How to exploit the low-rank structure of L∗?
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Motivation Low-tubal-rank Structure
.

Commonly used tensor low-rank strucure
...

.
Low-tubal-rank Structure..

.

shown to have stronger modeling capabilities than low-Tucker-rank/low-
CP-rank structure for images and videosa

a
E.g. Liu XY et al. TIT 2020; Zhang ZM et al. CVPR 2014, IJCAI 2016; Lu CY et al. CVPR 2016,

IJCAI 2018, PAMI 2019; Zhou P et al. CVPR 2017, PAMI 2020; Xie Y et al. IJCV 2018
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Low-tubal-rank Structure

.
Theorem 1 (Tensor SVD (Kilmer et al. 2013)).
..

......

Any 3-way tensor T ∈ Rd1×d2×d3 can be decomposed as

T = U∗S∗V⊺

...1 ∗ is the tensor-tensor product (t-product) (Kilmer et al. 2013)

...2 U ∈ Rd1×d1×d3 ,V ∈ Rd2×d2×d3 are orthogonal tensors (Kilmer et al. 2013)

...3 S ∈ Rd1×d2×d3 is an f -diagonal tensor (Kilmer et al. 2013)
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.
Definition 2 (Tubal Rank (Kilmer et al. 2013)).
..

......

The tubal rank of T ∈ Rd1×d2×d3 is the number of non-zero tubes in S

rtb(T ) ∶=#{i ∣ S(i, i, ∶) ≠ 0}

.

.

Relationship between t-product and DFT indicates (Lu CY et al. PAMI 2019):

rtb(T ) =#{i ∣ S(i, i,1) ≠ 0}
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Motivation Low-tubal-rank Structure

.
Tensor “Singular Values”
..

.

rtb(T ) =#{i ∣ S(i, i,1) ≠ 0}

S(i, i,1)’s are also called the “singular values” of tensor T ( Lu CY et al. PAMI 2019)

.
Definition 3 (Tubal Nuclear Norm, TNN).
..

......

The TNN of T is the sum of its singular values

∥T ∥⋆ ∶=
d1∧d2

∑
i=1
S(i, i,1)
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Low-rankness in spectral domain
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.

Relationship between t-product and DFT indicates:

∥T ∥⋆ =
1

d3
∑

d3

k=1∥T̃ (∶, ∶, k)∥∗

TNN measures low-rankness in spectral domain along the 3d orientation
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Motivation Low-tubal-rank Structure

.
Weaknesses of TNN..

.

∥T ∥⋆ =
1

d3

d3

∑
k=1
∥T̃ (∶, ∶, k)∥∗, where T̃ = dft(T , [],3) ∈ Rd1×d2×d3

/ Orientation sensitivity: computed after DFT along the 3-rd
orientation

/ Order limitation: defined only for 3-way tensors

⇓ TNN fails to model
.

Multi-orientational spectral low-rankness for K-way (K ≥ 3) tensors
...
⇓ This work
.

.

- Defines 2 Orientation Invariant TNNs for K-way tensors
- Applies them to Robust Tensor Decomposition
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Orientation Invariant TNNs for RTD Orientation Invariant TNNs

Exploiting multi-orientational spectral low-rankness

.
Idea: convert a K-way tensor to K 3-way tensors

..

. then, each 3-way tensor handles one orientation

.
Step 1: Define mode-(k, t) 3d-unfolding
..

.

.
Step 2: Let t = k + 1. Then mode t traverses all the K orientations when k = 1 ∶K.
...
.
Step 3: Let T[k] be the mode-(k, k + 1) 3d-unfolding of T , and use TNN to exploit its spectral
low-rankness.
...
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Orientation Invariant TNNs for RTD Orientation Invariant TNNs

.
Definition 4 (Overlapped OITNN: Sum of TNNs after unfolding).
..

......

OITNN-O of T ∈ Rd1×⋯×dK is the sum of K TNNs after 3-d unfoldings

∥T ∥⋆o ∶=
K

∑
k=1

wk∥T[k]∥⋆,

with weights ∑k wk = 1.

Figure 1: OITNN-O encourages simultaneous low-tubal-rankness in all
orientations
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Orientation Invariant TNNs for RTD Orientation Invariant TNNs

.
Definition 5 (Latent OITNN: Sum of TNNs after decomposition).
..

......

OITNN-L of T ∈ Rd1×⋯×dK is the infimum of sum of K TNNs among all decompositions

∥T ∥⋆ι ∶= inf
∑k L(k)=T

K

∑
k=1

vk∥L(k)[k] ∥⋆,

with weights ∑k vk = 1.

Figure 2: OITNN-L models T as sum of K low-tubal-rank tensors {L(k)}
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Orientation Invariant TNNs for RTD Proposed RTD Models

Proposed Models for RTD

.
Model I: RTD based on OITNN-O

..

.

(L̂o, Ŝo) ∈ argmin
L,S

1

2
∥Y −L − S∥2F + λo∥L∥⋆o + µo∥S∥1

s.t. ∥L∥∞ ≤ α ← (incoherence condition)
.

Model II: RTD based on OITNN-L
..

.

({ ˆL(k)}, Ŝι) ∈ argmin
{L(k)},S

1

2
∥Y −L − S∥2F + λι∑

k

vk∥L(k)[k] ∥⋆ + µι∥S∥1

s.t. ∥L(l)[k]∥ ≤ βd̃k, ∀l ≠ k; ∥∑
k

L(k)∥∞ ≤ α ← (incoherence condition)
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. . . . . .

Orientation Invariant TNNs for RTD Error bounds

Bounds on the Estimation Error
.

When noise tensor E has i.i.d. N (0, σ2) entries
..

.

For L∗ ∈ Rd×d×⋯×d, it holds w.h.p. after parameter tuning:

∥L̂o −L∗∥2F + ∥Ŝo − S∗∥2F
dK

≾ σ2(d−1K−2∑
k

rtb(L∗[k]) + ∥S
∗∥l0K log d) ← (Model I)

∥∑k L̂(k) −L∗∥2F + ∥Ŝι − S
∗∥2F

dK
≾ σ2(d−1min

k
{rtb(L∗[k])} + ∥S

∗∥l0K log d) ← (Model II)

⇓
.
✓ Bound on Model I: controlled by spectral low-rankness of all orientations

✓ Bound on Model II: controlled by the orientation with lowest rank in spectral domain

...
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Experiments

Robust Image Recovery

(a) (s, c) = (0.05,0.1) (b) (s, c) = (0.15,0.15)

Figure 3: Robust image recovery with different corruption ratio s and noise level c.

(NJUST&RIKEN TLU) OITNN for RTD 17 / 21



. . . . . .

Experiments

Image Completion
.

.

...1 Setting I: 90% random missing

...2 Setting II: rows and columns missing, total ratio 85%

(a) Setting I (b) Setting II

Figure 4: Quantitative comparison in image completion.
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Experiments

...1 Row 1: robust image recovery with corruption ratio s = 0.05 and noise level c = 0.1

...2 Row 2: image completion with 90% random missing entries

...3 Row 3: image completion with missing columns and rows (total missing ratio 85%)
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Experiments

Video Completion

Figure 5: Video completion with 90% random missing
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Conclusion

Conclusion

.
Contributions..

.

...1 We defined two new norms for K-way (K ≥ 3) tensors.

...2 We presented two models for RTD with error bounds.

..
Thank you.
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