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Abstract

Low-rank tensor recovery has been widely applied to comput-
er vision and machine learning. Recently, tubal nuclear norm
(TNN) based optimization is proposed with superior perfor-
mance as compared to other tensor nuclear norms. However,
one major limitation is its orientation sensitivity due to low-
rankness strictly defined along tubal orientation and it cannot
simultaneously model spectral low-rankness in multiple ori-
entations. To this end, we introduce two new tensor norms
called OITNN-O and OITNN-L to exploit multi-orientational
spectral low-rankness for an arbitrary K-way (K ≥ 3) ten-
sors. We further formulate two robust tensor decomposition
models via the proposed norms and develop two algorithms as
the solutions. Theoretically, we establish non-asymptotic error
bounds which can predict the scaling behavior of the estima-
tion error. Experiments on real-world datasets demonstrate the
superiority and effectiveness of the proposed norms.

Introduction
Tensor decomposition has become a paradigm in modern
multi-way data analysis. Due to various reasons like sensor
failures, occlusion in videos, or abnormalities, the multi-way
data are often corrupted by noises and gross corruptions. For
example, the embedded noises in hyper-spectral image is
probably a mixture of small dense noises and sparse gross
corruptions (Zhao et al. 2015a). To tackle both small noises
and gross corruptions, the robust tensor decomposition (RTD)
(Gu, Gui, and Han 2014) is studied to robustify traditional
tensor decompositions like CANDECOMP/PARAFAC (CP)
decomposition (Harshman 1970) and Tucker decomposition
(Tucker 1966) which are sensitive to gross corruptions.

In many real-world applications, most variation of the
multi-way data can be linearly dominated by a relatively
small number of latent factors due to intrinsic correlations and
redundancy. Thus, such data can be well approximated by a
“low rank” tensor. Thanks to the multiple definitions of tensor
rank function, such as CP rank (Harshman 1970), Tucker
rank (Tucker 1966), TT rank (Oseledets 2011) and Tubal
rank (Kilmer et al. 2013), multi-way data can be modeled
with different types of low-rank structures.

To recover a low-rank tensor, one natural way is to solve
the rank minimization problem (RMP) (Liu et al. 2013).
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Unfortunately, RMP is NP-hard in general for matrices
(2-way tensors) (Candès and Tao 2010) and even hard-
er for higher-way tensors (Hillar and Lim 2009). In low-
rank matrix estimation, matrix nuclear norm is proposed
as the convex envelop of rank function (Fazel 2002) for
tractable algorithms. Motivated by the great success of ma-
trix nuclear norm, its tensor extensions have been extensive-
ly studied, like tensor trace norm (Yuan and Zhang 2016),
overlapped Schatten-1 norm (SNN) (Tomioka et al. 2011;
Liu et al. 2013), latent Schatten norm (LatentNN) (Tomio-
ka and Suzuki 2013), squared nuclear norm (SqNN) (Mu
et al. 2014) and tubal nuclear norm (TNN) (Zhang et al.
2014). Among existing tensor nuclear norms1, TNN is in-
duced by the tensor singular value decomposition (t-SVD)
(Kilmer et al. 2013) and has shown superior performance
in various applications, such as image/video inpainting/de-
noising (Zhou and Feng 2017; Zhang and Aeron 2017;
Lu et al. 2019), clustering (Xie et al. 2017) and WiFi
fingerprint-based indoor localization (Liu et al. 2016b).

In real multi-way data like images and videos, there is an
ubiquitous “spatial-shifting” correlation making such data
spatial-temporally smooth (Liu et al. 2016a). From a sig-
nal processing standpoint, smoothness in original domain
often reflects the existence of some simple patterns in spec-
tral domain (Yokota et al. 2018). TNN is quite suitable to
capture such simple patterns since it exploits spectral low-
rankness for 3-way tensors. However, by computing nuclear
norms of frontal slices after 1D-DFT on the mode-3 fiber-
s, it is strictly orientation sensitive and fails to capture the
complex intra-mode and inter-mode correlations in multiple
orientations for higher-order tensors. To improve the limit-
ed representation ability and flexibility of TNN in modeling
multi-orientational correlations, we propose two orientation
invariant tensor norms for K-way (K ≥ 3) tensors and apply
them to RTD. Main contributions of this paper are three-fold:

1) We propose two tensor norms via a novel 3d unfolding op-
eration on K-way tensors, which are orientation invariant,
thus can be exploited for the multi-orientational spectral
low-rankness.

2) The new norms are employed to formulate RTD as two

1In this paper, “tensor nuclear norms” refer to tensor extensions
of matrix nuclear norm instead of the nuclear norm induced by CP
decomposition (Yuan and Zhang 2016).



convex models, together with corresponding algorithms.
3) Error bounds of the proposed models are analyzed and

provided, which enables us to predict approximately the
scaling behavior of the estimation error.

Notations and Preliminaries
Notations. Matrices and tensors are denoted by uppercase
boldface, and calligraphy letters, respectively. Let [n] :=
{1, · · · , n}, ∀n ∈ N+. Without specification, aK-way tensor
refers to a tensor of 3 or higher ways, i.e., K ≥ 3. If the size
of a tensor is not given explicitly, then it is in Rd1×···×dK . For
a matrix M with singular values σi’s, define its nuclear norm
‖M‖∗ :=

∑
i σi and spectral norm‖M‖ := maxi σi. Given

T ∈ Rd1×···×dK , define its l0-norm ‖T‖l0 := ‖vec(T )‖0,
l1-norm‖T‖l1 := ‖vec(T )‖1, F-norm‖T‖F := ‖vec(T )‖2,
and l∞-norm‖T‖l∞ := ‖vec(T )‖∞, where vec(·) denotes
the vectorization (Kolda and Bader 2009). For notation-
al simplicity, let dK+1 = d1, D =

∏
k∈[K] dk, d\k =

D/(dkdk+1), d̃k =
√
dk+1

(√
dk +

√
d\k
)
, ∀k ∈ [K].

Given T ∈ Rd1×d2×d3 , let T(i) := T (:, :, i) denotes its ith
frontal slice. We use c, c′, c1 etc. to denote constants whose
values can vary from line to line. Other notations are intro-
duced when they first appear.

Tensor singular value decomposition
We briefly recall the tensor singular value decomposition.
Definition 1. (Kilmer et al. 2013). Given T1 ∈ Rd1×d2×d3
and T2 ∈ Rd2×d4×d3 , their t-product T = T1 ∗ T2 ∈
Rd1×d4×d3 is a tensor whose (i, j)th tube T (i, j, :) =∑d2
k=1 T1(i, k, :) • T2(k, j, :), where • is the circular con-

volution.
With notions like tensor transpose, orthogonal tensor, and

f-diagonal tensor (Kilmer et al. 2013), t-SVD can be defined.
Definition 2. (Kilmer et al. 2013). Any tensor T ∈
Rd1×d2×d3 has a tensor singular value decomposition as

T = U ∗ S ∗ V>, (1)

where U ∈ Rd1×d1×d3 ,V ∈ Rd2×d2×d3 are orthogonal ten-
sors, and S ∈ Rd1×d2×d3 is an f -diagonal tensor. The tubal
rank of T is defined as the number of non-zero tubes of S:

ranktb(T ) := #
{
i
∣∣S(i, i, :) 6= 0

}
. (2)

Definition 3. (Lu et al. 2016). Given T ∈ Rd1×d2×d3 , let
T̃ be its Fourier version2 in Cd1×d2×d3 . The tensor average
rank rankavg(·), tubal nuclear norm‖·‖? of T are defined as
the averaged rank and nuclear norm of frontal slices of T̃ :

rankavg(T ) :=
1

d3

d3∑
i=1

rank(T̃
(i)
), ‖T‖? :=

1

d3

d3∑
i=1

‖T̃(i)‖∗,

whereas tensor spectral norm‖·‖ is the largest spectral norm:

‖T‖ := max
i∈[d3]

{‖T̃(i)‖}.

2The Fourier version T̃ is obtained by performing 1D-DFT on
all tubes of T , i.e., T̃ = fft(T , [], 3) ∈ Cd1×d2×d3 in Matlab.

As proved in (Lu et al. 2019), TNN is the convex envel-
op of tensor average rank in unit tensor spectral norm ball.
Thus, TNN encourages a low average rank which means low-
rankness in spectral domain according to Definition 3. It is
strictly orientation sensitive in the sense that just mode-3
fibers are chosen to perform DFT, thus only spectral low-
rankness along orientation of mode-3 can be exploited. Since
TNN is orientation sensitive and defined for 3-way tensors, it
has limited representation ability for higher-way tensors.

Orientation Invariant TNNs
To overcome the drawbacks of TNN, we first propose a new
tensor 3d-unfolding operation as follows.
Definition 4 (mode-(k, t) 3d-unfolding). For different k, t ∈
[K], the mode-(k, t) 3d-unfolding of T ∈ Rd1×···×dK is a
3-way tensor T[k,t] ∈ Rdk×(D/(dkdt))×dt obtained by the
following two steps (see Fig. 1.).

First, permute T to Z ∈ Rd′1×d′2×···×d′K whose 1st and
K th modes are respectively the kth and tth modes of T , with
the rest modes permuted circularly. Second, reshape Z to
T[k,t] ∈ Rdk×(Dd

−1
k d−1

t )×dt obeying the equation as follows
(T[k,t])i1jiK = Zi1i2···iK

where j = 1 +
∑K−1
l=2 (il − 1)Jl with Jl =

∑l−1
m=2 d

′
m.

Figure 1: Illustration of 3d-unfolding.

Intuitively, by viewing a K-way tensor T as a “(K-1)-way
array T” of size d1×d2×· · ·×dt−1×dt+1×· · · dK whose
entries are mode-t tubes, the mode-(k, t) 3d-unfolding T[k,t]
can also be analogously viewed as a “mode-k unfolding” of
T with size dk× (Dd−1k d−1t ) whose entries are mode-t tubes.
Generally, the mode t of this 3d-unfolding can be any mode
except k. In the sequel we simply set t = k + 1, such that
mode t traverses all the K orientations when k slides from
1 to K, by which some orientation invariant measures can
be defined. For simplicity, let T[k] := T[k,k+1] and call it the
mode-k 3d-unfolding3 of T .

Based on 3d-unfolding, two tensor ranks are defined.
Definition 5. The Orientation Invariant Tubal Rank (OITR)
~rt and Orientation Invariant Average Rank (OIAR)~ra of any
T ∈ Rd1×···×dK are defined as the following vectors:
~rt(T ) :=

(
ranktb(T[1]), · · · , ranktb(T[K])

)> ∈ RK ,
~ra(T ) :=

(
rankavg(T[1]), · · · , rankavg(T[K])

)> ∈ RK .
(3)

3Using circular order of modes, let dK+1 = d(K+1)modK = d1.



(a) OITNN-O‖T‖?o (b) OITNN-L‖T‖?ι

Figure 2: Illustration of two OITNNs for 3D tensors T ∈
Rd1×d2×d3 . (a): OITNN-O encourages simultaneously low
tubal rank structure in all orientations; (b): OITNN-L models
T as a mixture of three low tubal rank tensors {L(k)}.

As shown in Eq. (3), OITR serves as a complexity measure
in the original domain, whereas the OIAR measures low-
rankness in the spectral domain. They have the following
relationship with the classical Tucker rank~rTucker.
Lemma 1. It holds for any tensor T ∈ Rd1×···×dK that

~ra(T ) ≤ min{~rt(T ),~rTucker(T )}, (4)
where the partial order “≤” is defined entry-wisely.

Lemma 1 indicates that low OITR or Tucker rank results
in low OIAR. Thus, the low OIAR assumption is weaker than
the popular low Tucker rank assumption. By relaxing average
rank to its convex envelop in each orientation, we naturally
define the following norm.
Definition 6. The Overlapped Orientation Invariant Tubal
Nuclear Norm (OITNN-O) of T ∈ Rd1×···×dK is defined as:

‖T‖?o :=
∑K

k=1
wk‖T[k]‖?, (5)

where wk’s are positive weights satisfying
∑
k wk = 1.

OITNN-O encourages a low OIAR structure, which means
low-rankness in spectral domain of all orientations. Thus in
the original domain, it models a data tensor as simultaneously
low tubal rank in all orientations (See Fig. 2(a)). It differs
from SNN (Liu et al. 2013) which only considers low Tucker
rank. As special cases, if K = 3, OITNN-O degenerates to
triple TNN (Wei et al. 2018); If K = 3, (w1, w3)→ 0, then
it approximates TNN.

Although the assumption of low OIAR is weaker than low
Tucker rank, it may still be strict for some real data tensors.
In (Tomioka and Suzuki 2013), it is observed that a latent
Schatten norm (LatentNN) induced by a mixture model is
more suitable than SNN for tensors only low rank in certain
modes. Motivated by this, we define the latent OITNN to
relax the low OIAR assumption.
Definition 7. The Latent Orientation Invariant Tubal Nucle-
ar Norm (OITNN-L) of T ∈ Rd1×···×dK is defined as

‖T‖?ι := inf∑
k L(k)=T

K∑
k=1

vk‖L(k)
[k]‖?, (6)

where vk’s are non-negative weights satisfying
∑
k vk = 1,

and L(k)
[k] is the mode-k 3d-unfolding of latent component

L(k), ∀k ∈ [K].

OITNN-L seeks K latent components {L(k)} to minimize
a weighted sum of their TNNs in each orientation. Thus, it
models T as a mixture of K low tubal rank tensors in o-
riginal domain (see Fig. 2(b)). According to Definitions 6
and 7, both OITNN-O and OITNN-L can exploit spectral
low-rankness in all orientations and are invariant to circu-
lar permutations. Since TNN has been shown to be more
powerful than the matrix nuclear norm (Zhang et al. 2014;
Lu et al. 2019), we expect that OITNN-O and OITNN-L
outperform SNN and LatentNN in some applications respec-
tively. This expectation will be verified by experiments on
real datasets in the experiment section.

We now give the dual norms of OITNN-O and OITNN-L.
Lemma 2. The dual norms of‖·‖?o and‖·‖?ι, denoted by
‖·‖∗?o and‖·‖∗?ι respectively, are given as follows:

‖T‖∗?o := inf∑
k

X (k)=T maxk

{
w−1k ‖X

(k)
[k] ‖

}
,

‖T‖∗?ι :=
∑K

k=1
v−1k ‖T[k]‖.

(7)

The dual norms play key roles in the statistical analysis of
OITNN-based RTD models.

Robust Tensor Decomposition via OITNNs
Observation model
Suppose we observe Y ∈ Rd1×···×dK by the following model

Y = L∗ + S∗ + E , (8)

where L∗ is the true low-rank tensor, S∗ stores entry-wisely
sparse corruptions, and tensor E represents dense small noise
(see Fig. 3 (Zhao et al. 2015b)). The goal of RTD is to recover
L∗ and S∗ from Y . If E=0, RTD degenerates to the TRPCA
(Lu et al. 2019); If S∗ = 0, it becomes the noisy tensor
decomposition (Tomioka and Suzuki 2013).

Figure 3: Observation model of RTD.

Incoherence conditions
First, to guarantee separability of low-rank L∗ and sparse
S∗, we suppose L∗ satisfies the non-spiky condition with
parameter α (Agarwal, Negahban, and Wainwright 2012;
Klopp, Lounici, and Tsybakov 2017):

‖L∗‖l∞ ≤ α. (9)

Second, let {L(k)∗} be any latent components obtained
while computing‖L∗‖?ι in Eq. (6). Then, the signal L∗ can
be written as

L∗ =
∑K

k=1
L(k)∗. (10)

For separability of latent tensors L(k)∗’s, an incoherence
condition with parameter β is further assumed to hold:

‖L(k)∗
[l] ‖ ≤ βd̃l, ∀l 6= k ∈ [K], (11)



where d̃l =
√
dl+1

(√
dl+

√
d\l
)
. The motivation of Eq. (11)

is to force each latent component L(k)∗ to be low tubal rank
only in mode-k 3d-unfolding, and behave like a Gaussian
random tensor4 in any mode-l 3d-unfolding (l 6= k).

Proposed RTD models
Using the proposed tensor norms and the l1-norm to encour-
age multi-orientational spectral low-rankness and sparsity
respectively, we propose the following two models for RTD:
Model I: RTD-OITNN-O

min
L,S

l(L,S) + λo‖L‖?o + µo‖S‖l1 ,

s.t. ‖L‖l∞ ≤ α.
(12)

Model II: RTD-OITNN-L

min
{L(k)},S

l(
∑

k
L(k),S) + λι

∑
k
vk‖L(k)

[k]‖? + µι‖S‖l1

s.t. ‖
∑

k
L(k)‖l∞ ≤ α, ‖L

(l)
[k]‖ ≤ βd̃k, ∀l 6= k,

(13)
where λo, µo, λι, µι denote regularization parameters, square
loss l(L,S) =‖Y − L − S‖2F/2 is the data fitting term. Model
I explicitly uses OITNN-O as the regularizer of L, whereas
Model II implicitly adopts OITNN-L with incoherent latent
components {L(k)}.

Statistical Performance
We analyze statistical performance of the proposed models.
Let (L̂o, Ŝo) and ({L̂(k)}, Ŝι) be any solution to Problem (12)
and Problems (13), respectively. We establish both determin-
istic and non-asymptotic bounds on the estimation errors, i.e.,
Eo,Eι,Eιcom (defined in Table 1), of the low-rank component
L∗ and the sparse component S∗ in their sum.

Table 1: List of some notations
Error of (L∗,S∗) by Model I Eo =‖L̂o − L∗‖2F +‖Ŝo − S∗‖2F
OITR of true tensor L∗ ~ro = (ro

1, · · · , r
o
K), ro

k = ranktb(L∗[k])
Error of (L∗,S∗) by Model II Eι =‖

∑
k L̂

(k) − L∗‖2F +‖Ŝ − S∗‖2F
Error of ({L(k)∗},S∗) Eιcom =

∑
k
‖L̂(k) − L(k)∗‖2F +‖Ŝι − S∗‖2F

Tubal rank of componentL(k)∗ ~rι = (rι1, · · · , r
ι
k), r

ι
k = ranktb(L(k)∗

[k]
)

Sparsity of corruption S∗ s =‖S∗‖l0

Deterministic bounds
When E in the observation model (8) represents any noise, we
bound the estimation error in the following theorems where
the dual norms in Lemma 2 are used.

Theorem 1. If λo ≥ 2‖E‖∗?o and µo ≥ 2(‖E‖l∞ + 2α) in
Problem (12), then any solution (L̂o, Ŝo) satisfies:

Eo ≤ c1λ2o
(∑

k
wk
√
ro
k

)2
+ c2µ

2
os.

4Note that a random d1 × d2 × d3 tensor with i.i.d. standard
Gaussian entries has full tubal rank with high probability and its
tensor spectral norm scales as O

(√
d3(
√
d1 +

√
d2)
)

(see Lemma
8 in the supplementary material).

Theorem 1 indicates that once parameters (λo, µo) exceed
certain quantities of the noise E , estimation error of Model
I can be upper bounded linear by the OITR of L∗ and the
sparsity of S∗.
Theorem 2. If λι ≥ 2maxk{‖E‖∗?ι + v−1k (K − 1)βd̃k} and
µι ≥ 2(‖E‖l∞ + 2α) in Problem (13), then it holds that:

Eιcom ≤ c3λ2ι
∑

k
v2kr

ι
k + c4µ

2
ι s,

Eι ≤ c3λ2ι min
k
v2kr

o
k + c4µ

2
ι s.

Theorem 2 shows that when (λι, µι) exceed some thresh-
olds in terms of E , estimation error Eιcom involving the latent
components {L(k)} is upper bounded by the “latent tubal
ranks rιk” of L∗ and the sparsity of S∗, whereas the error Eι
for (L∗,S∗) is bounded by the “minimal” OITR of L∗ and
the sparsity of S∗.

Non-asymptotic bounds
For a typical setting where the noise tensor E represents the
tensor of i.i.d. N (0, σ2) entries, we have the following two
theorems.
Theorem 3. If parameters λo = 2σK−2

∑
k(d̃k/wk) and

µo = 8σ
√
logD + 16α in Problem (12), then with high

probability it holds that

Eo ≤ c1σ
2

K4

(∑
k

d̃k
wk

)2(∑
k

wk
√
ro
k

)2
+ c2(σ

2 logD + α2)s.

Theorem 4. If parameters λι = cσmaxk{d̃k/vk} and
µι = 8σ

√
logD + 16Kα in Problem (13), then with high

probability it holds that:

Eιcom ≤ c5σ2
(
max
k
{ d̃k
vk
}
)2∑

k

v2kr
ι
k + c6(σ

2 logD + α2)s,

Eι ≤ c5σ2
(
max
k
{ d̃k
vk
}
)2

min
k
v2kr

o
k + c6(σ

2 logD + α2)s.

To understand Theorems 3 and 4 intuitively, we have the
following remark whose correctness is verified in the experi-
ment section.
Remark 1. Given aK-way cubical tensorL∗ ∈ Rd×d×···×d,
suppose its OITR is (ro

1, · · · , ro
K). Letting parameters wk =

vk = 1/K,∀k ∈ [K], then we have the following bounds on
the entry-wise estimation error with high probability:

Eo

D
- σ2(ro + s logD), and

Eι

D
- σ2(rι + s logD),

(14)
where ro =

(
K−1

∑
k

√
ro
k/d
)2

and rι = mink{rιk/d} act
as the “averaged” and “minimal” OITR complexities of the
signal L∗, respectively, and s = s/D is the sparse ratio of
the corruption S∗.

As discussed in Remark 1, OITNN-L tends to find the
orientation with lowest tubal rank, whereas OITNN-O con-
siders the tubal rank in all orientations. The upper bounds in
Theorems 1-4 are consistent with the intuition that RTD for
complex L∗ (with higher OITR) and denser S∗ is harder. We
give the following remark on the identifiability issue in our
analysis.



Remark 2. In the noiseless setting (i.e., E = 0), the proposed
error bounds do not vanish, which means our analysis cannot
guarantee exact recovery. This is because the incoherence
conditions in our analysis are less strict than the ones defined
in terms of singular vectors (Huang et al. 2015; Lu et al.
2019) which intrinsically ensure separability between low-
rank and sparse components.

Optimization Algorithms
We develop two algorithms to solve Model I and Model II
respectively. By adding auxiliary variables to Problem (12),
we obtain

min
L,S,T ,K,{Kk}

l(L,S) + λo

∑
k

wk‖Kk‖? + µo‖T‖l1 + δl∞α (K)

s.t. Kk = L[k],∀k; T = S;K = L,

where δl∞α (K) is the indicator function of tensor l∞-norm
ball whose value is 0 if‖K‖l∞ ≤ α, and +∞ otherwise.

Adding auxiliary variables to Problem (13) 5 also yields

min
S,T ,K,

{L(k)},{Kk}

l(
∑

k
L(k),S)+λι

∑
k
vk‖Kk‖?+µo‖T‖l1 +δ

l∞
α (K)

s.t. Kk = L(k)

[k] ,∀k; T = S;K =
∑

k
L(k).

Then we continue solving Model I and Model II by
ADMM presented in Algorithm 1 and Algorithm 2 re-
spectively, where all the sub-problems can be solved in
closed forms6. In each single iteration of Algorithms 1
and 2, the main cost comes from updating the low tubal
rank components which involves FFT, IFFT and d3 SVD-
s of d1 × d2 matrices for tensors of size d1 × d2 × d3.
Hence Algorithms 1 and 2 have per-iteration complexity
O
(
KD logD + D

∑
kmin(dk, d

−1
k d−1k+1D

)
, which is the

same order as ADMM-based algorithms for SNN (Gu, Gui,
and Han 2014) and LatentNN (Tomioka and Suzuki 2013).
The convergence of Algorithms 1 and 2 naturally holds since
Problems (12) and (13) can be reformulated as the standard
form of the two-block ADMM framework (Boyd et al. 2011).

Experiments
Correctness of the proposed error bounds
To validate the correctness of Theorem 3 and Theorem 4, we
conduct simulations to check whether the proposed upper
bounds in Eq. (14) can predict the scaling behavior of the
estimation error.

Generation of L∗. We generate the low-rank tensor L∗ ∈
Rd1×···×dK in the following manner. Given K random in-
tegers pk < dk,∀k ∈ [K], we first generate a standard
Gaussian tensor (i.e. tensors with i.i.d. N (0, 1) entries)

5The constraints on tensor spectral norm in Problem (13) are
removed to get rid of K(K − 1) auxiliary variables in decoupling
the constraints, and K(K − 1) projections on tensor spectral norm
ball, which is rather space and time-consuming.

6Due to space limitation, the description of Algorithms 1 and 2
are shown in the supplementary material. Matlab implementations
can be found in https://qibinzhao.github.io

G0 ∈ Rp1×···×pK . Then, we repeat the recursive opera-
tion Gk = F−1k (Uk ∗ Fk

(
Gk−1

)
), ∀k ∈ [K − 1], where

Uk ∈ Rdk×pk×pk+1 are also standard Gaussian tensors
and Gk ∈ Rn1×···×nk×pk+1×···×pK . We further generate
GK = F−1K (UK ∗FK

(
GK−1

)
) with standard Gaussian tensor

UK ∈ RdK×pK×d1 . Finally, we let L∗ = GK/‖GK‖l∞ .

(a) Eo vs ro with s = 0.1 (b) Eo vs s with ro = 0.4478

(c) Eι vs rι with s = 0.1 (d) Eι vs s with rι = 0.275

Figure 4: The element-wise estimation errors versus the rank
complexity and sparse ratio for tensors in R40×40×40.

We form the sparse corruption tensor S∗ by choosing
its support uniformly at random according to (Lu et al.
2019). We generate the noise tensor E with entries draw-
ing i.i.d. from N (0, σ2) with σ = c‖L∗‖F/

√
D to keep a

constant signal noise ratio. For simplicity, we consider cu-
bical tensors, i.e., d1 = · · · = dK = d. We test tensors of
size 40× 40× 40. We randomly choose pk ∈ {2, 3, · · · , 10}
to generate L∗. We generate the corruption tensor S∗ with
sparsity s = sD where s ∈ {0.02 : 0.02 : 0.3} and form the
noise tensor E with noise level c = 0.1. We run the proposed
Algorithm 1 and Algorithm 2 and then compute the estima-
tion errors Eo/D and Eι/D for 500 random choices of pk’s.
We computed the OITR (ro

1, · · · , ro
K) of L∗, since it is not

equal to (p1, · · · , pK) in general. We then compute ro and
rι in Eq. (14). We will check whether the errors Eo/D and
Eι/D scale like a1ro + b1s and a2rι+ b2s, respectively, with
some constants a1, a2, b1, b2.

Fig. 4 shows the results of Eo/D versus ro and s, and
Eι/D versus rι and s by keeping other variables fixed. From
Fig. 4, we can see that the errors Eo/D and Eι/D have ap-
proximately linear scaling behavior with respect to ro and s,
and rι and s, respectively. Thus, it can be said that the pro-
posed bounds can approximately predict the scaling behavior
of the estimation error.

Effectiveness of the proposed OITNNs
We evaluate effectiveness of the proposed norms in compari-
son with other nuclear norm-based models on real datasets.
The competitor norms include SNN (Liu et al. 2013), La-
tentNN (Tomioka and Suzuki 2013), SqNN (Mu et al. 2014),



TNN (Zhang and Aeron 2017), twist TNN (t-TNN) (Hu et al.
2017) and matrix nuclear norm (NN) (Candès and Tao 2010).
We first conduct RTD on color images and color videos, and
then carry out color image inpainting to further demonstrate
the power of the proposed norms. RTD models based on the
aforementioned norms are formulated by replacing OITNN-
O in Problem (12) and the corresponding optimization prob-
lems are solved by ADMM via our own implementations
in Matlab. We use the Peak Signal Noise Ratio (PSNR) to
measure the recovery quality.

Robust image recovery In this experiment, nine color im-
ages of size 256× 256× 3 are tested (see Fig. 5(a)). Given a
color imageM∈ Rd1×d2×3, we randomly pick the support
of S∗ with probability s and add i.i.d. Gaussian noise with
standard deviation σ = cσ0, where σ0 = ‖M‖F/

√
3d1d2.

We test two cases with (s, c) = (0.05, 0.1) and (0.15, 0.15).
Given a color image and a corruption level, we test 10 times
and report the averaged PSNR.

Parameters for OITNN-O are set as w1 : w2 : w3 = a1 :
1 : a1, with a1 ∈ [0.1, 0.5], and OITNN-L v1 : v2 : v3 = 1 :
a2 : 1 with a2 ∈ [0.025, 0.055]. The weight parameters α of
SNN are chosen to satisfy α1 : α2 : α3 = 1 : 1 : 0.01 as sug-
gested in (Liu et al. 2013). The “sparse/low-rank” parameter
ratio µ/λ of NN is 1/

√
d2 (Candès et al. 2011), and 1/

√
3d2

for SqNN, TNN and t-TNN. We tune the “sparse/low-rank”
parameter ratio for OITNN-O and OITNN-L. Other parame-
ters of the algorithms are manually tuned.

(a) Nine test images.

(b) (s, c) = (0.05, 0.1) (c) (s, c) = (0.15, 0.15)

Figure 5: Test images and quantitative comparison of RTD
models based on different norms on color images.

For quantitative comparison, PSNR values on the nine im-
ages are reported in Fig. 5(b)-(c). An visual example is shown
in Row 1 of Fig. 7 for qualitative evaluation. As illustrated
in Fig. 7, the proposed norms obtain higher visual quality
than the competitor norms. According to Figs. 5 and 7, the
proposed OITNN-O and OITNN-L have better performance
in most cases on color images.

Robust video recovery The performance comparison is
carried out on the widely used seven YUV videos7: akiyo,

7The videos are available from https://sites.google.com/site/
subudhibadri/fewhelpfuldownloads.

bridge-far, carphone, claire, coastguard, container and fore-
man. Due to computational limitation, we use the first 32
frames of each video, resulting in seven 144× 176× 3× 32
tensors. We conduct robust video recovery against sparse cor-
ruptions and Gaussian noise with (s, c) = (0.15, 0.15) and
(0.2, 0.2). NN is tested for matrices of size (144·172·3)×32;
SqNN is tested for matrices of size (144 · 32) × (176 · 3);
TNN and t-TNN are tested on 3 (the channel number) ten-
sors of size (144 × 176 × 32). The “sparse/low-rank” pa-
rameter ratio of NN, SqNN, TNN and t-TNN are set by
the suggestion of RPCA and TRPCA (Candès et al. 2011;
Lu et al. 2019). We tune other parameters for better perfor-
mances in most cases. The PSNR values are reported in Fig. 6.
It can be seen that the proposed OITNNs-based models have
better performances thanks to their flexibility in exploiting
the multi-orientation correlations in color videos.

(a) (s, c) = (0.15, 0.15) (b) (s, c) = (0.2, 0.2)

Figure 6: Quantitative comparison on seven color videos.

Robust recovery of UGV data Experiments on a dataset 8

for unmanned ground vehicle (UGV) are also conducted. This
dataset contains a sequence of gray camera images and point
cloud data acquired from a Velodyne HDL-64E LiDAR. A
scenario containing 32 frames (Frame Nos. 65-96) is selected.
The camera data is resized to a tensor of size 128 × 256 ×
32, and the point cloud data is formatted into two tensors
(distance data tensor and intensity data tensor) sized 64 ×
436 × 32. We conduct RTD against sparse corruptions and
Gaussian noise with (s, c) = (0.15, 0.15) and (0.3, 0.2). The
parameters are tuned for better performances in most cases.
The PSNR values are reported in Table 2. We can see that the
proposed norms perform better on UGV data.

Table 2: The quantitative comparison on the dataset for UGV.
Norms

(s, c) = (0.15, 0.15) (s, c) = (0.3, 0.2)
Camera Distance Intensity Camera Distance Intensity

NN 23.12 24.49 21.61 21.43 23.41 20.91
SNN 24.29 25.32 22.21 22.55 24.49 21.56
TNN 25.54 25.86 22.88 23.36 25.08 22.08

t-TNN 25.19 25.92 23.13 23.22 25.37 22.35
SqNN 23.45 24.71 21.86 21.75 23.77 21.38

LatentNN 23.61 24.67 21.97 21.89 23.79 21.45
OITNN-O 26.12 25.97 23.31 24.08 25.42 22.41
OITNN-L 25.79 26.35 23.28 23.87 25.79 22.45

8Scenario B and Scenario B-additional dataset from http://www.
mrt.kit.edu/z/publ/download/velodynetracking/dataset.html



(a) Observation (b) OITNN-O (c) OITNN-L (d) TNN (e) SNN (f) LatentNN

Figure 7: Visual performances of the proposed OITNN-O and OITNN-L compared with tightly related TNN, SNN and LatentNN.
Row 1: robust image recovery with corruption ratio s = 0.05 and noise level c = 0.1. Row 2: image inpainting with 90% random
missing entries. Row 3: image inpainting with missing columns and rows (total missing ratio 85%).

Color image inpainting To further show the effectiveness
of the proposed OITNNs, we also apply them to the classical
image inpainting problem. Specifically, we consider two set-
tings of missing patterns on the nine test images in Fig. 5(a).
In Setting I, 90% of the entries are missing randomly, where-
as in Setting II some rows are first missing and columns of
the rest rows are then randomly sampled with a total missing
ratio of 85%. Note that Setting II is very challenging since
all the three matricizations of an input image suffer from
missing columns which can hardly be recovered by matrix
low-rankness in original domain.

For qualitative comparison, inpainting examples in Setting
I and Setting II are shown in Row 2 and Row 3 of Fig. 7,
respectively. The quantitative comparison in PSNR is pre-
sented in Fig. 8. Thank to their ability in exploiting multi-
orientational low-rankness in spectral domain, the proposed
OITNNs outperform the competitors in most cases, especial-
ly when the missing pattern conflicts with low-rankness in
original domain (like Setting II).

(a) Setting I (b) Setting II

Figure 8: Quantitative comparison in image inpainting.

Conclusions
Two new tensor norms for general K-way (K ≥ 3) ten-
sors are first defined to exploit the low-rankness in spectral
domain for all orientations. We then adopt them to robust
tensor recovery and rigorously establish upper bounds on
the estimation error. Correctness of the error bounds is veri-
fied through simulation study. Experiments on real datasets
demonstrate the effectiveness of the proposed norms. A main
drawback of the proposed models is that we cannot auto-
matically determine the optimal tuning parameters, and it is
interesting to develop a suitable tool for parameter tuning
(like (Zhao et al. 2015b)) as future work. Future research
directions also include developing fast algorithms for the
proposed models using techniques like (Wang et al. 2019;
Wang, Jin, and Tang 2020).
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