
2. Polynomial Tensor Pooling (PTP)

  Deep Multimodal Multilinear Fusion with  
High-order Polynomial Pooling

1. Outline
  Multimodal Learning for Recognition
• Multimodal recognition integrates features of multiple modalities 

(language, acoustic and visual) for yielding robust predictions.
• Multimodal fusion is a key step of multimodal recognition.
• Tensor-based fusion methods have achieved a great success. 

  Limitations of existing tensor fusion  
• Restrict interaction among modalities to 

be linear w.r.t. each modality
• Ignore high-order statistical information

  Our contributions
• Explicitly model nonlinear intra-modal 

and cross-modal interactions via high-order polynomial moments
• Directly model local interactions across mixed dimensions over time 
• Significantly reduce heavy computation via using tensor network

• PTP block first fuses M feature vectors using high-order moments and 
then transforms them into a joint representation.          

• Fusion via high-order moment is obtained by P-oder tensor product of 
concatenated features: 

• Transformation is performed by a weight 
tensor :

• Low-rank tensor networks is used to reduce large computation.

Ming Hou1,*, Jiajia Tang2,1,*, Jianhai Zhang2, Wanzen Kong2 and Qibin Zhao1

3. Hierarchical Polynomial Fusion Network (HPFN)
• Features of multiple modalities are rearranged into a “feature map”.
• Single-layer HPFN is constructed by a global PTP operating on a 

“receptive window” across all time steps and modalities. 

• Multi-layer HPFN is established by recursing PTP blocks layer by 
layer into a tree-structured architecture.
‣ Local temporal-modality interactions most relevant to prediction can be 

transmitted to the global level.
‣ PTP can be treated as a “fusion filter” analogous to a CNN filter. 
‣ CNN-style fusion framework with flexible design choices bring benefits. 

‣ Incorporate dense connectivity to enhance the expressive capacity 

‣ Model complexity depends on total number of PTP filters and window 
size, parameters are larger than LMF but much smaller than TFN.

1 Tensor Learning Unit, RIKEN AIP, 2 College of Computer Science, Hangzhou Dianzi University

4. Experimental Results
• Datasets and tasks:
‣ CMU-MOSI utterance level multimodal sentiment analysis with 

intensity range in [-3, 3]
‣ IEMOCAP utterance level binary classification for emotions, including 

neutral, angry, happy and sad
• Accuracy comparisons of HPFN with other methods

• Effect of fusion of one-layer HPFN with higher oder polynomial  

• Effect of fusion of HPFN 
with depth, connectivity

• Effect of fusion with and 
without the incorporation 
of temporal factors 

(a) one-layer HPFN
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(b) two-layer HPFN
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Figure 2: (a) An illustrative example of a fusion network with a single PTP block, whose receptive ‘window’
size is [8⇥ 3]. (b) An example of two-layer HPFN. For the input layer, the overlapped ‘window’ has size [4⇥ 3]
with stride step size 2 along time dimension. For the hidden layer, the ‘window’ with size [3⇥ 1] covers all the
intermediate features from the previous layer. H1-1 stands for the ‘1st’ column index of feature nodes in the ‘1st’
hidden layer.

The motivations for PTP are twofold: 1) it explicitly model high-order nonlinear intra-modal and
cross-modal interactions; 2) for multimodal time series, it can directly model local interactions within
a scanning receptive ‘window’ across both temporal and modality dimensions.

3.1 High-order polynomial tensor pooling (PTP)

The objective of a PTP block is to efficiently merge a collection of features {zm}
M

m=1 into a joint
compact representation z by exploiting the explicit interactions of high-order moments. Figure 1
depicts the flowchart of operations in a PTP block. More specifically, a set of M feature vectors
{zm}

M

m=1 are first concatenated together into a long feature vector z12···M :

zT
12···M = [1, zT

1 , zT
2 , · · · , zT

M
]. (2)

Then, a degree of P polynomial feature tensor Z
P is formulated using a P -order tensor product of

the concatenated feature vector z12···M as

Z
P = z12···M ⌦1 z12···M ⌦2 · · · ⌦P z12···M , (3)

where {⌦p}
P

p=1 are the tensor product operators. Notice Z
P is capable of representing all possible

polynomial expansions up to order P due to the incorporation of the constant term ‘1’ in (2). The
effect of P polynomial interaction between features is completely measured by the pooling weight

tensor W = [W1
, ..., W

h
, ..., W

H ] as:

zh =
X

i1,i2,··· ,iP

W
h

i1i2···iP · Z
P

i1i2···iP , (4)

where zh indicates the h-th element of the H-dimensional fused vector z, while ip indices the
high-order terms in p-th mode. Unfortunately, the number of parameters of W

h in (4) grows
exponentially with the polynomial order P . To tackle this issue, we adopt the low-rank TNs to
efficiently approximate the W

h. Suppose W
h admits a rank-R CP format, then (4) becomes

zh =
X

i1,i2,··· ,iP

(
RX

r=1

a
h

r

PY

p=1

wh(p)
r;ip

)(
PY

p=1

z12···M ;ip) =
RX

r=1

a
h

r

PY

p=1

IX

ip

wh(p)
r;ip

z12···M ;ip . (5)

Since the explicitly constructed feature tensor is super symmetric, it then makes sense to assume
wh

r
= wh(p)

r for all p 2 [P ]. Hence, the {{a
h

r
, wh

r
}

R

r=1}
H

h=1 are the collection of fusion parameters to
estimate. If W

h admits a TR format, then the following formula can be derived from (4) as

zh =
X

i1,i2,··· ,iP

(
X

r1,r2,··· ,rP

PY

p=1

G
h(p)
rp;ip;rp+1

)(
PY

p=1

z12···M ;ip)

=
X

r1,r2,··· ,rP

PY

p=1

IX

ip

G
h(p)
rp;ip;rp+1

z12···M ;ip =
X

r1,r2,··· ,rP

PY

p=1

G̃h(p)
rp;rp+1

= Trace(
PY

p=1

G̃h(p)), (6)
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(a) one-layer HPFN
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(b) two-layer HPFN
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Figure 3: An example of a three-layer HPFN.

where the 3rd-order core tensors {{G
h(p)

}
P

p=1}
H

h=1 are the fusion parameters. {rp}
P

p=1 are defined
as TR-ranks with rP+1 = r1. It is also reasonable to assume a shared G

h = G
h(p) for all p 2 [P ]. In

this manner, the fusion computations can be efficiently carried out along each dimension implicitly,
thus avoiding the curse of dimensionality on both feature and weight tensors.

3.2 Hierarchical polynomial fusion network (HPFN)

Having introduced our basic pooling block, we move on to present the general framework for fusing
multimodal data. Generally, if we rearrange multimodal time series as a ‘2D feature map’, the
patterns of correlations may manifest themselves in a receptive ‘window’ covering a local mixture of
temporal-modality features across both dimensions. Then, interactions can be gauged by associating
a single PTP block to that local ‘window’. Using a hierarchical architecture, the local temporal-
modality patterns of correlations can be recursively integrated via stacking PTPs in multiple layers.
At the end, significant correlations are identified and transmitted to the global scale.

Figure 2 (a) shows a simple one-layer fusion network, with a single PTP operating on one receptive
‘window’ that covers features across all 8 time steps and 3 modalities. This way, PTP makes it
feasible to capture the high-order nonlinear interactions among the total 24 mixed features within
the ‘window’. We observe a PTP naturally characterizes local correlations if it is linked to a small
receptive ‘window’. And several PTP blocks can be placed on the local ‘windows’ of mixed features
at distinct locations in a ‘2D feature map’. It is then straightforward to distribute the fusion process
into a number of layers by attaching PTP blocks to small ‘windows’ at each layer. In fact, the fused
node in higher layer corresponds to a larger effect receptive ‘window’ of features at the lower layer.
As a result, more expressive local and global correlations can be efficiently modelled with a great
flexibility. The proposed framework is termed as hierarchical polynomial fusion network (HPFN).

Figure 3 displays an instance of three-layer HPFN. At the first hidden layer, each PTP attempts to
model local interactions in a ‘window’ of 2 time steps and 2 modalities. For instance, the audio and
video features spanning time T1 and T2 are merged into the resulting hidden node H1-1 at time T2;
likewise, the hidden node H1-3 at time T2 is outputted by fusing audio and text features of T1 and T2.
The second hidden layer is fed with intermediate features of the previous layer. At the output layer,
the final feature is obtained by employing PTP on the intermediate features of 3 modalities in second
hidden layer for the time T4 and T8.

Due to the flexibility of our HPFN, various choices for the architecture design are possible. In
principle, adding more intermediate layers leads to more complicated and higher-order interactions
within a much larger effective receptive ‘window’. More complex interactions can also be modelled
by allowing the ‘windows’ to be overlapped. Figure 2 (b) demonstrates an architecture of two-layer
HPFN where the fusing ‘windows’ of [4 ⇥ 3] are overlapped at a stride size of 2 along the time
dimension. More variations can be realized by making an analogy of our PTP to a convolution filter.
Just like CNN, a PTP operator can viewed as a ‘fusion filter’. In this way, our HPFN may also
borrow some similar benefits from the architecture of regular CNN. More precisely, at each layer the
PTP ‘fusion filter’ could be shared when the scanning ‘window’ slides along the time dimension, so
as to catch the important patterns of correlations repeated in time series. Furthermore, associating
several PTP ‘fusion filters’ with one ‘window’ at the same time is able to capture multiple patterns of
correlations existing in that ‘window’.

The empirical success of densely connected networks (DenseNets) [11] serves another inspiration to
extend HPFN architecture. The incorporation of dense connectivity enhances the expressive capacity
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Figure 4: An example of densely connected fourth-layer HPFN with growth rate k = 1.

of the fusion model. Adding dense inter-connections could be beneficial in dealing with sequential
signals. Specifically, dense connectivity is realizable via the direct inclusion of the features from
previous layers into the current layer. The number of previous layers k 2 N involved in connections
is defined as the growth rate. Figure 4 depicts an instance of dense HPFN with growth rate k = 1.

3.3 Connections to convolutional arithmetic circuits

It is interesting to observe that equation (5) suggests PTP actually conducts a combined operations of
convolution, pooling and linear transformation. This is quite analogous to convolutional arithmetic
circuits (ConvACs) [5] which can be seen as special variants of CNNs. Rather than the rectifier
activation and average/max pooling, ConACs are equipped with linear activation and product pooling
layers. The authors of [5] analyze the expressivity capacity of the deep ConACs by deriving their
equivalence with the hierarchical tucker decomposition (HTD) [9]. It has been proved that deep
ConvACs enjoy a greater expressive power than the regular rectifier based CNNs [5]. In fact, a single
PTP block corresponds to a shallow ConvAC if the CP format is utilized, and further corresponds to
a deep ConAC if the HTD is adopted for the pooling weight tensor. The major difference between
ConAC and PTP is that, the product pooling of the standard ConAC is conducted over the locations
of features, whereas the product pooling of PTP is over the polynomial orders of concatenated
features. Stacking PTP blocks into multiple layers is essentially equivalent to employing multiple
HTDs in a recursive manner, resulting in a correspondence of our HPFN to a even deeper ConAC. As
a consequence, more flexible higher-order local and global intercorrelations can be explicitly and
implicitly captured by HPFN, whose great expressive power can be implied by the connection of
HPFN to a very deep ConAC.

3.4 Model complexity

This section compares the model complexity of HPFN with two other tensor based models: TFN
[27] and LMF [17]. As for PTP, exploiting the symmetry property of the feature tensor, the number
of parameters in weight tensor is independent of order P , and linearly scales with the concatenated
mixed features in ‘windows’. For L-layer HPFN, the amount of parameters is linearly related to the
total number of PTP ‘windows’

P
L

l=1 Nl, where Nl is the number of ‘windows’ at layer l 2 [L]. In
practice, Nl is usually small and decreasing along layers, e.g. N1 > N2 > · · · > NL. Adopting the
sharing strategy along the time dimension makes Nl even smaller. In principle, as referred in Table 1,
the parameter of HPFN is larger than or comparable to LMF, but significantly less than that of TFN.

Table 1: Model complexity comparisons of TFN, LMF and our HPFN. Iy is the output feature length. M is
the number of modalities. R is the tensor rank. For PTP and HPFN, [ T , S ] is the local ‘window’ size with
S  M . It,m is the dimension of features from modality m at time t.

Model TFN [non-temporal] LMF [non-temporal] PTP [temporal] HPFN (L layers) [temporal]
Param. O(Iy

Q
M

m=1 Im) O(IyR(
P

M

m=1 Im)) O(IyR(
P

T

t=1

P
S

m=1 It,m)) O(IyR(
P

L

l=1 Nl)(
P

T

t=1

P
S

m=1 It,m))

4 Related work

There exist two major lines of multimodal fusion research: non-temporal models summarize the
observations of each unimodal by averaging the features along the temporal dimension. These models
have found their utility in the early work of multimodal sentiment analysis [18, 31]. Recently, tensor
fusion network (TFN) [27] exploits tensor product to model non-temporal unimodal, bimodal and

5

Table 3: Results for sentiment analysis on CMU-MOSI and emotion recognition on IEMOCAP.

Models CMU-MOSI IEMOCAP
MAE Corr Acc-2 F1 Acc-7 F1-Happy F1-Sad F1-Angry F1-Neutral

SVM [6] 1.864 0.057 50.2 50.1 17.5 81.5 78.8 82.4 64.9
DF [20] 1.143 0.518 72.3 72.1 26.8 81.0 81.2 65.4 44.0

BC-LSTM [23] 1.079 0.581 73.9 73.9 28.7 81.7 81.7 84.2 64.1
MV-LSTM [24] 1.019 0.601 73.9 74.0 33.2 81.3 74.0 84.3 66.7

MARN [29] 0.968 0.625 77.1 77.0 34.7 83.6 81.2 84.2 65.9
MFN [28] 0.965 0.632 77.4 77.3 34.1 84.0 82.1 83.7 69.2
TFN [27] 0.970 0.633 73.9 73.4 32.1 83.6 82.8 84.2 65.4
LMF [17] 0.912 0.668 76.4 75.7 32.8 85.8 85.9 89.0 71.7

HPFN, P=[4] (audio) 1.404 0.223 57.3 57.4 19.0 79.4 81.8 84.9 63.6
HPFN, P=[4] (video) 1.409 0.221 57.0 57.1 20.6 83.2 73.2 72.3 58.5
HPFN, P=[4] (text) 0.975 0.634 76.4 76.4 35.1 85.3 83.0 85.6 70.8

HPFN, P=[4] 0.965 0.650 77.5 77.4 36.0 85.7 86.4 88.3 72.1
HPFN, P=[8] 0.968 0.648 77.2 77.2 36.9 85.7 86.5 87.9 71.8

HPFN-L2, P=[2, 2] 0.945 0.672 77.5 77.4 36.7 86.2 86.6 88.8 72.5

Implementation details. Following LMF [17], we use CP format as the ‘workhorse’ low-rank TN
in our experiments for weight compression in PTP. The candidate CP ranks are {1, 4, 8, 16}. Other
TNs variants will be investigated in future work. Since HPFN involves high-order moments when
calculating element-wise multiplication, the values of intermediate features may vary drastically and
hence lead to unstable predictions. To make the model numerically more stable, similar to [8], we
could optionally apply power normalization (element-wise signed squared root) or l2 normalization.

5.2 Experimental results

Performance comparison with state-of-the-art models. We first compare with the baselines and
the cutting-edge models on the tasks of sentiment analysis and emotion recognition. The bottom rows
in Table 3 record the performance of our model. We see that ours (on multimodal data) outperform
the competitors in most of the metrics. Particularly, on the sentiment task, our HPFN at 8th order
exceeds the previous best MARN on the ‘Acc-7’ by a margin of 2.2%. The overall best results are
achieved by HPFN-L2, which implies the superior expressive power and efficacy of the hierarchical
fusion structures. It is also interesting to notice that, even fed with unimodal input (text), our HPFN of
order 4 obtains much better ‘Acc-7’ (35.1) and ‘F1-Neutral’ (70.8) precisions than almost all other
methods, indicating the benefits brought by modelling high-order interactions.
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Figure 5: Results of the effect of orders of polynomial interactions on IEMOCAP and CMU-MOSI.

Effect of the order of polynomial fusion. As high-order moments play a critical role in our fusion
strategy, we are interested to examine how distinct orders affect the predictive performance. For
simplicity, we directly apply HPFN with power normalization to the non-temporal multimodal features
(via averaging out the time dimension). The order P varies from 1 to 10. In Figure 5, HPFN is able
to achieve fairly good accuracies w.r.t. the tested orders. In particular, we can see HPFN maximizes
predictions at the order 4 for the case of CMU-MOSI. For IEMOCAP, we observe the relatively
higher performance peak at the orders of 3 and 4 in the ‘neutral’ and ‘angry’ emotions. As for the
rest emotions, the desirable orders range 5 from 8. These observations signify the necessity and
effectiveness of exploring high-order interactions in fusing multimodal features.

Effect of the depth and dense connectivity. In this part, we investigate the impact of various
architecture designs, i.e., depth and dense connectivity, on the predictive performance. To focus on
the change of the depth, we apply architectures to non-temporal multimodal features. For the depth
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5

Tensor Fused Multimodal Representation

Bimodal and trimodal representation [Zadeh et.al 17] [Liu et.al 18]
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Figure 4: An example of densely connected fourth-layer HPFN with growth rate k = 1.

of the fusion model. Adding dense inter-connections could be beneficial in dealing with sequential
signals. Specifically, dense connectivity is realizable via the direct inclusion of the features from
previous layers into the current layer. The number of previous layers k 2 N involved in connections
is defined as the growth rate. Figure 4 depicts an instance of dense HPFN with growth rate k = 1.

3.3 Connections to convolutional arithmetic circuits

It is interesting to observe that equation (5) suggests PTP actually conducts a combined operations of
convolution, pooling and linear transformation. This is quite analogous to convolutional arithmetic
circuits (ConvACs) [5] which can be seen as special variants of CNNs. Rather than the rectifier
activation and average/max pooling, ConACs are equipped with linear activation and product pooling
layers. The authors of [5] analyze the expressivity capacity of the deep ConACs by deriving their
equivalence with the hierarchical tucker decomposition (HTD) [9]. It has been proved that deep
ConvACs enjoy a greater expressive power than the regular rectifier based CNNs [5]. In fact, a single
PTP block corresponds to a shallow ConvAC if the CP format is utilized, and further corresponds to
a deep ConAC if the HTD is adopted for the pooling weight tensor. The major difference between
ConAC and PTP is that, the product pooling of the standard ConAC is conducted over the locations
of features, whereas the product pooling of PTP is over the polynomial orders of concatenated
features. Stacking PTP blocks into multiple layers is essentially equivalent to employing multiple
HTDs in a recursive manner, resulting in a correspondence of our HPFN to a even deeper ConAC. As
a consequence, more flexible higher-order local and global intercorrelations can be explicitly and
implicitly captured by HPFN, whose great expressive power can be implied by the connection of
HPFN to a very deep ConAC.

3.4 Model complexity

This section compares the model complexity of HPFN with two other tensor based models: TFN
[27] and LMF [17]. As for PTP, exploiting the symmetry property of the feature tensor, the number
of parameters in weight tensor is independent of order P , and linearly scales with the concatenated
mixed features in ‘windows’. For L-layer HPFN, the amount of parameters is linearly related to the
total number of PTP ‘windows’

P
L

l=1 Nl, where Nl is the number of ‘windows’ at layer l 2 [L]. In
practice, Nl is usually small and decreasing along layers, e.g. N1 > N2 > · · · > NL. Adopting the
sharing strategy along the time dimension makes Nl even smaller. In principle, as referred in Table 1,
the parameter of HPFN is larger than or comparable to LMF, but significantly less than that of TFN.

Table 1: Model complexity comparisons of TFN, LMF and our HPFN. Iy is the output feature length. M is
the number of modalities. R is the tensor rank. For PTP and HPFN, [ T , S ] is the local ‘window’ size with
S  M . It,m is the dimension of features from modality m at time t.

Model TFN [non-temporal] LMF [non-temporal] PTP [temporal] HPFN (L layers) [temporal]
Param. O(Iy

Q
M

m=1 Im) O(IyR(
P

M

m=1 Im)) O(IyR(
P

T

t=1

P
S

m=1 It,m)) O(IyR(
P

L

l=1 Nl)(
P

T

t=1

P
S

m=1 It,m))

4 Related work

There exist two major lines of multimodal fusion research: non-temporal models summarize the
observations of each unimodal by averaging the features along the temporal dimension. These models
have found their utility in the early work of multimodal sentiment analysis [18, 31]. Recently, tensor
fusion network (TFN) [27] exploits tensor product to model non-temporal unimodal, bimodal and
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