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Why PU learning?

• PN learning usually requires a large amount of training data

• PU learning is useful in context where

✓ negative data are too expensive  

✓ negative data are too diverse

✓ negative data are impure
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• PU learning has been applied to applications 

✓ binary classification [Liu et al ICML02] [Li and Liu IJCAI03] [Elkan and Noto KDD08] [du Plessis NIPS14] 

✓ matrix completion [Hsieh et al ICML15] 

✓ sequential data [Li et al SDM09] [Nguyen et al IJCAI11] 



Notations

• Input & output random variables: 

• Underlying joint density:

• P marginal & N marginal:

• U marginal:

• Class-prior probability:                              assume to be known

• P data & N data:

• U data:
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to learn a function that is able to create more samples from
the approximate distribution. Lately, a large body of success-
ful deep generative models have emerged, especially gener-
ative adversarial networks (GAN) [Goodfellow et al., 2014;
Salimans et al., 2016]. GAN intends to solve the task of gen-
erative modeling by making two agents play a game against
each other. One agent named generator synthesizes fake data
from random noise; the other agent, termed as discriminator,
examines both real and fake data and determines whether it is
real or not. Both agents keep evolving over time and get better
and better at their jobs. Eventually, the generator is forced to
create synthetic data which is as realistic as possible to those
from the training dataset.

Inspired by the tremendous success and expressive power
of GAN, we tackle the binary PU classification task by re-
sorting to generative modeling, and propose our generative
positive-unlabeled (GenPU) learning framework. Building
upon GAN, our GenPU model includes an array of genera-
tors and discriminators as agents in the game. These agents
are devised to play different parts in simultaneously generat-
ing positive and negative real-like samples, and thereafter a
standard PN classifier can be trained on those synthetic sam-
ples. Given a small portion of labeled P data as seeds, GenPU
is able to capture the underlying P and N data distributions,
with the capability to create infinite diverse P and N samples.
In this way, the overfitting problem of conventional PU can be
greatly mitigated. Furthermore, our GenPU is generalizable
in the sense that it can be established by switching to dif-
ferent underlying GAN variants with distance measurements
(i.e., Wasserstein GAN [Arjovsky et al., 2017]) other than
Jensen-Shannon divergence (JSD). As long as those variants
are sophisticated to produce high-quality diverse samples, the
optimal accuracy could be achieved by training a very deep
neural networks.

Our main contribution (i) we are the first (to our knowl-
edge) to invent a totally new paradigm to effectively solve
the PU task through deep generative models; (ii) we provide
theoretical analysis to prove that, at equilibrium, our model
is capable of learning both positive and negative data distri-
butions; (iii) we experimentally show the effectiveness of the
proposed model given limited P data on both synthetic and
real-world dataset; (iv) our method can be easily extended
to solve the semi-supervised classification, and also opens a
door to new solutions of many other weakly supervised learn-
ing tasks from the aspect of generative learning.
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2 Preliminaries
2.1 Positive-Unlabeled (PU) Classification
Given as input d-dimensional random variable x 2 Rd and
scalar random variable y 2 {±1} as class label, and let
p(x, y) be the joint density, the class-conditional densities

are :

p
p

(x) = p(x|y = 1) p
n

(x) = p(x|y = �1),

while p(x) refers to as the unlabeled marginal density. The
standard PU classification task [Ward et al., 2009] consists of

a positive dataset X
p

and an unlabeled dataset X
u

with i.i.d
samples drawn from p

p

(x) and p(x), respectively :
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Due to the fact that the unlabeled data can be regarded as
a mixture of both positive and negative samples, the marginal
density turns out to be

p(x) = ⇡
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p(x|y = 1) + ⇡
n

p(x|y = �1), (1)

where ⇡
p

= p(y = 1) and ⇡
n

= 1� ⇡
p

are denoted as class-

prior probability, which is usually unknown in advance and
can be estimated from the given data [Jain et al., 2016]. The
objective of PU task is to train a classifier on X

p

and X
u

so as
to classify the new unseen pattern xnew.

In contrast to PU classification, positive-negative (PN)
classification assumes all negative samples,

X
n

= {xi
n

}nn

i=1 ⇠ p
n

(x),

are labeled, so that the classifier can be trained in an ordinary
supervised learning fashion.

2.2 Generative Adversarial Networks (GAN)
GAN, originated in [Goodfellow et al., 2014], is one of the
most recent successful generative models that is equipped
with the power of producing distributional outputs. GAN ob-
tains this capability through an adversarial competition be-
tween a generator G and a discriminator D that involves op-
timizing the following minimax objective function :

min

G

max

D

V(G,D) = min

G

max

D

Ex⇠p

x

(x) log(D(x))

+ Ez⇠p

z

(z) log(1�D(G(z))), (2)

where p
x

(x) represents true data distribution; p
z

(z) is typi-
cally a simple prior distribution (e.g., N (0, 1)) for latent code
z, while a generator distribution p

g

(x) associated with G is
induced by the transformation G(z) : z ! x.

To find the optimal solution, [Goodfellow et al., 2014] em-
ployed simultaneous stochastic gradient descent (SGD) for
alternately updating D and G. The authors argued that, given
the optimal D, minimizing G is equivalent to minimizing the
distribution distance between p

x

(x) and p
g

(x). At conver-
gence, GAN has p

x

(x) = p
g

(x).

3 Generative PU Classification
3.1 Notations
Throughout the paper, {p

p

(x), p
n

(x), p(x)} denote the pos-
itive data distribution, the negative data distribution and the
entire data distribution, respectively. {D

p

, D
u

, D
n

} are re-
ferred to as the positive, unlabeled and negative discrimina-
tors, while {G

p

, G
n

} stand for positive and negative genera-
tors, targeting to produce real-like positive and negative sam-
ples. Correspondingly, {p

gp

(x), p
gn

(x)} describe the positive
and negative distributions induced by the generator functions
G

p

(z) and G
n

(z).
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are labeled, so that the classifier can be trained in an ordinary
supervised learning fashion.

2.2 Generative Adversarial Networks (GAN)
GAN, originated in [Goodfellow et al., 2014], is one of the
most recent successful generative models that is equipped
with the power of producing distributional outputs. GAN ob-
tains this capability through an adversarial competition be-
tween a generator G and a discriminator D that involves op-
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to learn a function that is able to create more samples from
the approximate distribution. Lately, a large body of success-
ful deep generative models have emerged, especially gener-
ative adversarial networks (GAN) [Goodfellow et al., 2014;
Salimans et al., 2016]. GAN intends to solve the task of gen-
erative modeling by making two agents play a game against
each other. One agent named generator synthesizes fake data
from random noise; the other agent, termed as discriminator,
examines both real and fake data and determines whether it is
real or not. Both agents keep evolving over time and get better
and better at their jobs. Eventually, the generator is forced to
create synthetic data which is as realistic as possible to those
from the training dataset.

Inspired by the tremendous success and expressive power
of GAN, we tackle the binary PU classification task by re-
sorting to generative modeling, and propose our generative
positive-unlabeled (GenPU) learning framework. Building
upon GAN, our GenPU model includes an array of genera-
tors and discriminators as agents in the game. These agents
are devised to play different parts in simultaneously generat-
ing positive and negative real-like samples, and thereafter a
standard PN classifier can be trained on those synthetic sam-
ples. Given a small portion of labeled P data as seeds, GenPU
is able to capture the underlying P and N data distributions,
with the capability to create infinite diverse P and N samples.
In this way, the overfitting problem of conventional PU can be
greatly mitigated. Furthermore, our GenPU is generalizable
in the sense that it can be established by switching to dif-
ferent underlying GAN variants with distance measurements
(i.e., Wasserstein GAN [Arjovsky et al., 2017]) other than
Jensen-Shannon divergence (JSD). As long as those variants
are sophisticated to produce high-quality diverse samples, the
optimal accuracy could be achieved by training a very deep
neural networks.

Our main contribution (i) we are the first (to our knowl-
edge) to invent a totally new paradigm to effectively solve
the PU task through deep generative models; (ii) we provide
theoretical analysis to prove that, at equilibrium, our model
is capable of learning both positive and negative data distri-
butions; (iii) we experimentally show the effectiveness of the
proposed model given limited P data on both synthetic and
real-world dataset; (iv) our method can be easily extended
to solve the semi-supervised classification, and also opens a
door to new solutions of many other weakly supervised learn-
ing tasks from the aspect of generative learning.
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the approximate distribution. Lately, a large body of success-
ful deep generative models have emerged, especially gener-
ative adversarial networks (GAN) [Goodfellow et al., 2014;
Salimans et al., 2016]. GAN intends to solve the task of gen-
erative modeling by making two agents play a game against
each other. One agent named generator synthesizes fake data
from random noise; the other agent, termed as discriminator,
examines both real and fake data and determines whether it is
real or not. Both agents keep evolving over time and get better
and better at their jobs. Eventually, the generator is forced to
create synthetic data which is as realistic as possible to those
from the training dataset.

Inspired by the tremendous success and expressive power
of GAN, we tackle the binary PU classification task by re-
sorting to generative modeling, and propose our generative
positive-unlabeled (GenPU) learning framework. Building
upon GAN, our GenPU model includes an array of genera-
tors and discriminators as agents in the game. These agents
are devised to play different parts in simultaneously generat-
ing positive and negative real-like samples, and thereafter a
standard PN classifier can be trained on those synthetic sam-
ples. Given a small portion of labeled P data as seeds, GenPU
is able to capture the underlying P and N data distributions,
with the capability to create infinite diverse P and N samples.
In this way, the overfitting problem of conventional PU can be
greatly mitigated. Furthermore, our GenPU is generalizable
in the sense that it can be established by switching to dif-
ferent underlying GAN variants with distance measurements
(i.e., Wasserstein GAN [Arjovsky et al., 2017]) other than
Jensen-Shannon divergence (JSD). As long as those variants
are sophisticated to produce high-quality diverse samples, the
optimal accuracy could be achieved by training a very deep
neural networks.

Our main contribution (i) we are the first (to our knowl-
edge) to invent a totally new paradigm to effectively solve
the PU task through deep generative models; (ii) we provide
theoretical analysis to prove that, at equilibrium, our model
is capable of learning both positive and negative data distri-
butions; (iii) we experimentally show the effectiveness of the
proposed model given limited P data on both synthetic and
real-world dataset; (iv) our method can be easily extended
to solve the semi-supervised classification, and also opens a
door to new solutions of many other weakly supervised learn-
ing tasks from the aspect of generative learning.
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2.2 Generative Adversarial Networks (GAN)
GAN, originated in [Goodfellow et al., 2014], is one of the
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to learn a function that is able to create more samples from
the approximate distribution. Lately, a large body of success-
ful deep generative models have emerged, especially gener-
ative adversarial networks (GAN) [Goodfellow et al., 2014;
Salimans et al., 2016]. GAN intends to solve the task of gen-
erative modeling by making two agents play a game against
each other. One agent named generator synthesizes fake data
from random noise; the other agent, termed as discriminator,
examines both real and fake data and determines whether it is
real or not. Both agents keep evolving over time and get better
and better at their jobs. Eventually, the generator is forced to
create synthetic data which is as realistic as possible to those
from the training dataset.

Inspired by the tremendous success and expressive power
of GAN, we tackle the binary PU classification task by re-
sorting to generative modeling, and propose our generative
positive-unlabeled (GenPU) learning framework. Building
upon GAN, our GenPU model includes an array of genera-
tors and discriminators as agents in the game. These agents
are devised to play different parts in simultaneously generat-
ing positive and negative real-like samples, and thereafter a
standard PN classifier can be trained on those synthetic sam-
ples. Given a small portion of labeled P data as seeds, GenPU
is able to capture the underlying P and N data distributions,
with the capability to create infinite diverse P and N samples.
In this way, the overfitting problem of conventional PU can be
greatly mitigated. Furthermore, our GenPU is generalizable
in the sense that it can be established by switching to dif-
ferent underlying GAN variants with distance measurements
(i.e., Wasserstein GAN [Arjovsky et al., 2017]) other than
Jensen-Shannon divergence (JSD). As long as those variants
are sophisticated to produce high-quality diverse samples, the
optimal accuracy could be achieved by training a very deep
neural networks.

Our main contribution (i) we are the first (to our knowl-
edge) to invent a totally new paradigm to effectively solve
the PU task through deep generative models; (ii) we provide
theoretical analysis to prove that, at equilibrium, our model
is capable of learning both positive and negative data distri-
butions; (iii) we experimentally show the effectiveness of the
proposed model given limited P data on both synthetic and
real-world dataset; (iv) our method can be easily extended
to solve the semi-supervised classification, and also opens a
door to new solutions of many other weakly supervised learn-
ing tasks from the aspect of generative learning.
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to learn a function that is able to create more samples from
the approximate distribution. Lately, a large body of success-
ful deep generative models have emerged, especially gener-
ative adversarial networks (GAN) [Goodfellow et al., 2014;
Salimans et al., 2016]. GAN intends to solve the task of gen-
erative modeling by making two agents play a game against
each other. One agent named generator synthesizes fake data
from random noise; the other agent, termed as discriminator,
examines both real and fake data and determines whether it is
real or not. Both agents keep evolving over time and get better
and better at their jobs. Eventually, the generator is forced to
create synthetic data which is as realistic as possible to those
from the training dataset.

Inspired by the tremendous success and expressive power
of GAN, we tackle the binary PU classification task by re-
sorting to generative modeling, and propose our generative
positive-unlabeled (GenPU) learning framework. Building
upon GAN, our GenPU model includes an array of genera-
tors and discriminators as agents in the game. These agents
are devised to play different parts in simultaneously generat-
ing positive and negative real-like samples, and thereafter a
standard PN classifier can be trained on those synthetic sam-
ples. Given a small portion of labeled P data as seeds, GenPU
is able to capture the underlying P and N data distributions,
with the capability to create infinite diverse P and N samples.
In this way, the overfitting problem of conventional PU can be
greatly mitigated. Furthermore, our GenPU is generalizable
in the sense that it can be established by switching to dif-
ferent underlying GAN variants with distance measurements
(i.e., Wasserstein GAN [Arjovsky et al., 2017]) other than
Jensen-Shannon divergence (JSD). As long as those variants
are sophisticated to produce high-quality diverse samples, the
optimal accuracy could be achieved by training a very deep
neural networks.

Our main contribution (i) we are the first (to our knowl-
edge) to invent a totally new paradigm to effectively solve
the PU task through deep generative models; (ii) we provide
theoretical analysis to prove that, at equilibrium, our model
is capable of learning both positive and negative data distri-
butions; (iii) we experimentally show the effectiveness of the
proposed model given limited P data on both synthetic and
real-world dataset; (iv) our method can be easily extended
to solve the semi-supervised classification, and also opens a
door to new solutions of many other weakly supervised learn-
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ative adversarial networks (GAN) [Goodfellow et al., 2014;
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each other. One agent named generator synthesizes fake data
from random noise; the other agent, termed as discriminator,
examines both real and fake data and determines whether it is
real or not. Both agents keep evolving over time and get better
and better at their jobs. Eventually, the generator is forced to
create synthetic data which is as realistic as possible to those
from the training dataset.

Inspired by the tremendous success and expressive power
of GAN, we tackle the binary PU classification task by re-
sorting to generative modeling, and propose our generative
positive-unlabeled (GenPU) learning framework. Building
upon GAN, our GenPU model includes an array of genera-
tors and discriminators as agents in the game. These agents
are devised to play different parts in simultaneously generat-
ing positive and negative real-like samples, and thereafter a
standard PN classifier can be trained on those synthetic sam-
ples. Given a small portion of labeled P data as seeds, GenPU
is able to capture the underlying P and N data distributions,
with the capability to create infinite diverse P and N samples.
In this way, the overfitting problem of conventional PU can be
greatly mitigated. Furthermore, our GenPU is generalizable
in the sense that it can be established by switching to dif-
ferent underlying GAN variants with distance measurements
(i.e., Wasserstein GAN [Arjovsky et al., 2017]) other than
Jensen-Shannon divergence (JSD). As long as those variants
are sophisticated to produce high-quality diverse samples, the
optimal accuracy could be achieved by training a very deep
neural networks.

Our main contribution (i) we are the first (to our knowl-
edge) to invent a totally new paradigm to effectively solve
the PU task through deep generative models; (ii) we provide
theoretical analysis to prove that, at equilibrium, our model
is capable of learning both positive and negative data distri-
butions; (iii) we experimentally show the effectiveness of the
proposed model given limited P data on both synthetic and
real-world dataset; (iv) our method can be easily extended
to solve the semi-supervised classification, and also opens a
door to new solutions of many other weakly supervised learn-
ing tasks from the aspect of generative learning.
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2 Preliminaries
2.1 Positive-Unlabeled (PU) Classification
Given as input d-dimensional random variable x 2 Rd and
scalar random variable y 2 {±1} as class label, and let
p(x, y) be the joint density, the class-conditional densities

are :
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(x) = p(x|y = �1),

while p(x) refers to as the unlabeled marginal density. The
standard PU classification task [Ward et al., 2009] consists of

a positive dataset X
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and an unlabeled dataset X
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with i.i.d
samples drawn from p
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(x) and p(x), respectively :
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Due to the fact that the unlabeled data can be regarded as
a mixture of both positive and negative samples, the marginal
density turns out to be
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p(x|y = �1), (1)

where ⇡
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= p(y = 1) and ⇡
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are denoted as class-

prior probability, which is usually unknown in advance and
can be estimated from the given data [Jain et al., 2016]. The
objective of PU task is to train a classifier on X

p

and X
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so as
to classify the new unseen pattern xnew.

In contrast to PU classification, positive-negative (PN)
classification assumes all negative samples,

X
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(x),

are labeled, so that the classifier can be trained in an ordinary
supervised learning fashion.

2.2 Generative Adversarial Networks (GAN)
GAN, originated in [Goodfellow et al., 2014], is one of the
most recent successful generative models that is equipped
with the power of producing distributional outputs. GAN ob-
tains this capability through an adversarial competition be-
tween a generator G and a discriminator D that involves op-
timizing the following minimax objective function :
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where p
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(x) represents true data distribution; p
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(z) is typi-
cally a simple prior distribution (e.g., N (0, 1)) for latent code
z, while a generator distribution p

g

(x) associated with G is
induced by the transformation G(z) : z ! x.

To find the optimal solution, [Goodfellow et al., 2014] em-
ployed simultaneous stochastic gradient descent (SGD) for
alternately updating D and G. The authors argued that, given
the optimal D, minimizing G is equivalent to minimizing the
distribution distance between p

x

(x) and p
g

(x). At conver-
gence, GAN has p

x

(x) = p
g

(x).

3 Generative PU Classification
3.1 Notations
Throughout the paper, {p
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(x), p
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(x), p(x)} denote the pos-
itive data distribution, the negative data distribution and the
entire data distribution, respectively. {D
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, D
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, D
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} are re-
ferred to as the positive, unlabeled and negative discrimina-
tors, while {G

p

, G
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} stand for positive and negative genera-
tors, targeting to produce real-like positive and negative sam-
ples. Correspondingly, {p
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(x), p
gn

(x)} describe the positive
and negative distributions induced by the generator functions
G
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(z) and G
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• Unbiased risk estimator for PU (UPU) [du Plessis et.al ICML15] 

✓ UPU is an unbiased & consistent estimator

✓ UPU is nice for training linear-in-parameter 

✓ UPU seriously overfit to training deep neural networks 

• Non-negative risk estimator for PU (NNPU) [Kiryo et.al NIPS17] 

✓ NNPU overcomes overfitting to some extent 

✓ NNPU is consistent but biased estimator 

✓ NNPU has a bias in                                  performance might not be good for 

small P data                                 

to learn a function that is able to create more samples from
the approximate distribution. Lately, a large body of success-
ful deep generative models have emerged, especially gener-
ative adversarial networks (GAN) [Goodfellow et al., 2014;
Salimans et al., 2016]. GAN intends to solve the task of gen-
erative modeling by making two agents play a game against
each other. One agent named generator synthesizes fake data
from random noise; the other agent, termed as discriminator,
examines both real and fake data and determines whether it is
real or not. Both agents keep evolving over time and get better
and better at their jobs. Eventually, the generator is forced to
create synthetic data which is as realistic as possible to those
from the training dataset.

Inspired by the tremendous success and expressive power
of GAN, we tackle the binary PU classification task by re-
sorting to generative modeling, and propose our generative
positive-unlabeled (GenPU) learning framework. Building
upon GAN, our GenPU model includes an array of genera-
tors and discriminators as agents in the game. These agents
are devised to play different parts in simultaneously generat-
ing positive and negative real-like samples, and thereafter a
standard PN classifier can be trained on those synthetic sam-
ples. Given a small portion of labeled P data as seeds, GenPU
is able to capture the underlying P and N data distributions,
with the capability to create infinite diverse P and N samples.
In this way, the overfitting problem of conventional PU can be
greatly mitigated. Furthermore, our GenPU is generalizable
in the sense that it can be established by switching to dif-
ferent underlying GAN variants with distance measurements
(i.e., Wasserstein GAN [Arjovsky et al., 2017]) other than
Jensen-Shannon divergence (JSD). As long as those variants
are sophisticated to produce high-quality diverse samples, the
optimal accuracy could be achieved by training a very deep
neural networks.

Our main contribution (i) we are the first (to our knowl-
edge) to invent a totally new paradigm to effectively solve
the PU task through deep generative models; (ii) we provide
theoretical analysis to prove that, at equilibrium, our model
is capable of learning both positive and negative data distri-
butions; (iii) we experimentally show the effectiveness of the
proposed model given limited P data on both synthetic and
real-world dataset; (iv) our method can be easily extended
to solve the semi-supervised classification, and also opens a
door to new solutions of many other weakly supervised learn-
ing tasks from the aspect of generative learning.
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2 Preliminaries
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p

and X
u

so as
to classify the new unseen pattern xnew.

In contrast to PU classification, positive-negative (PN)
classification assumes all negative samples,
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are labeled, so that the classifier can be trained in an ordinary
supervised learning fashion.

2.2 Generative Adversarial Networks (GAN)
GAN, originated in [Goodfellow et al., 2014], is one of the
most recent successful generative models that is equipped
with the power of producing distributional outputs. GAN ob-
tains this capability through an adversarial competition be-
tween a generator G and a discriminator D that involves op-
timizing the following minimax objective function :
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where p
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(x) represents true data distribution; p
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(z) is typi-
cally a simple prior distribution (e.g., N (0, 1)) for latent code
z, while a generator distribution p

g

(x) associated with G is
induced by the transformation G(z) : z ! x.

To find the optimal solution, [Goodfellow et al., 2014] em-
ployed simultaneous stochastic gradient descent (SGD) for
alternately updating D and G. The authors argued that, given
the optimal D, minimizing G is equivalent to minimizing the
distribution distance between p

x

(x) and p

g

(x). At conver-
gence, GAN has p

x

(x) = p

g

(x).

3 Generative PU Classification
3.1 Notations
Throughout the paper, {p
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(x), p(x)} denote the pos-
itive data distribution, the negative data distribution and the
entire data distribution, respectively. {D
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, D
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} are re-
ferred to as the positive, unlabeled and negative discrimina-
tors, while {G
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} stand for positive and negative genera-
tors, targeting to produce real-like positive and negative sam-
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Backgournd

Generative Adverbial Nets (GAN) [Goodfellow et al, 2014]

I The minimax objective function:

min
G

max
D

V(G ,D) = min
G

max
D

E
x⇠p

x

(x) log(D(x))

+ E
z⇠p

z

(z) log(1� D(G (z)))

I binary classifier D(x) : x ! [±1]
I transformation function G (z) : z ! x
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• The minimax objective function of GAN [Goodfellow et.al NIPS14] 

✓ binary classifier 

✓ transformation function 

to learn a function that is able to create more samples from
the approximate distribution. Lately, a large body of success-
ful deep generative models have emerged, especially gener-
ative adversarial networks (GAN) [Goodfellow et al., 2014;
Salimans et al., 2016]. GAN intends to solve the task of gen-
erative modeling by making two agents play a game against
each other. One agent named generator synthesizes fake data
from random noise; the other agent, termed as discriminator,
examines both real and fake data and determines whether it is
real or not. Both agents keep evolving over time and get better
and better at their jobs. Eventually, the generator is forced to
create synthetic data which is as realistic as possible to those
from the training dataset.

Inspired by the tremendous success and expressive power
of GAN, we tackle the binary PU classification task by re-
sorting to generative modeling, and propose our generative
positive-unlabeled (GenPU) learning framework. Building
upon GAN, our GenPU model includes an array of genera-
tors and discriminators as agents in the game. These agents
are devised to play different parts in simultaneously generat-
ing positive and negative real-like samples, and thereafter a
standard PN classifier can be trained on those synthetic sam-
ples. Given a small portion of labeled P data as seeds, GenPU
is able to capture the underlying P and N data distributions,
with the capability to create infinite diverse P and N samples.
In this way, the overfitting problem of conventional PU can be
greatly mitigated. Furthermore, our GenPU is generalizable
in the sense that it can be established by switching to dif-
ferent underlying GAN variants with distance measurements
(i.e., Wasserstein GAN [Arjovsky et al., 2017]) other than
Jensen-Shannon divergence (JSD). As long as those variants
are sophisticated to produce high-quality diverse samples, the
optimal accuracy could be achieved by training a very deep
neural networks.

Our main contribution (i) we are the first (to our knowl-
edge) to invent a totally new paradigm to effectively solve
the PU task through deep generative models; (ii) we provide
theoretical analysis to prove that, at equilibrium, our model
is capable of learning both positive and negative data distri-
butions; (iii) we experimentally show the effectiveness of the
proposed model given limited P data on both synthetic and
real-world dataset; (iv) our method can be easily extended
to solve the semi-supervised classification, and also opens a
door to new solutions of many other weakly supervised learn-
ing tasks from the aspect of generative learning.

x 2 Rd and y 2 {±1}

bias is in O(exp(� 1
1/n

p

+1/n
u

))

2 Preliminaries
2.1 Positive-Unlabeled (PU) Classification
Given as input d-dimensional random variable x 2 Rd and
scalar random variable y 2 {±1} as class label, and let
p(x, y) be the joint density, the class-conditional densities

are :
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(x) = p(x|y = 1) p
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(x) = p(x|y = �1),

while p(x) refers to as the unlabeled marginal density. The
standard PU classification task [Ward et al., 2009] consists of

a positive dataset X
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with i.i.d
samples drawn from p
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(x) and p(x), respectively :
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Due to the fact that the unlabeled data can be regarded as
a mixture of both positive and negative samples, the marginal
density turns out to be
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p(x|y = �1), (1)

where ⇡
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are denoted as class-

prior probability, which is usually unknown in advance and
can be estimated from the given data [Jain et al., 2016]. The
objective of PU task is to train a classifier on X
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and X
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so as
to classify the new unseen pattern xnew.

In contrast to PU classification, positive-negative (PN)
classification assumes all negative samples,

X
n
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(x),

are labeled, so that the classifier can be trained in an ordinary
supervised learning fashion.

2.2 Generative Adversarial Networks (GAN)
GAN, originated in [Goodfellow et al., 2014], is one of the
most recent successful generative models that is equipped
with the power of producing distributional outputs. GAN ob-
tains this capability through an adversarial competition be-
tween a generator G and a discriminator D that involves op-
timizing the following minimax objective function :

min
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max

D

V(G,D) = min
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(x) log(D(x))
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(z) log(1�D(G(z))), (2)

where p
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(x) represents true data distribution; p
z

(z) is typi-
cally a simple prior distribution (e.g., N (0, 1)) for latent code
z, while a generator distribution p

g

(x) associated with G is
induced by the transformation G(z) : z ! x.

To find the optimal solution, [Goodfellow et al., 2014] em-
ployed simultaneous stochastic gradient descent (SGD) for
alternately updating D and G. The authors argued that, given
the optimal D, minimizing G is equivalent to minimizing the
distribution distance between p

x

(x) and p

g

(x). At conver-
gence, GAN has p

x

(x) = p

g

(x).

3 Generative PU Classification
3.1 Notations
Throughout the paper, {p

p
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(x), p(x)} denote the pos-
itive data distribution, the negative data distribution and the
entire data distribution, respectively. {D
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, D
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} are re-
ferred to as the positive, unlabeled and negative discrimina-
tors, while {G
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, G
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} stand for positive and negative genera-
tors, targeting to produce real-like positive and negative sam-
ples. Correspondingly, {p

gp
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gn

(x)} describe the positive
and negative distributions induced by the generator functions
G
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to learn a function that is able to create more samples from
the approximate distribution. Lately, a large body of success-
ful deep generative models have emerged, especially gener-
ative adversarial networks (GAN) [Goodfellow et al., 2014;
Salimans et al., 2016]. GAN intends to solve the task of gen-
erative modeling by making two agents play a game against
each other. One agent named generator synthesizes fake data
from random noise; the other agent, termed as discriminator,
examines both real and fake data and determines whether it is
real or not. Both agents keep evolving over time and get better
and better at their jobs. Eventually, the generator is forced to
create synthetic data which is as realistic as possible to those
from the training dataset.

Inspired by the tremendous success and expressive power
of GAN, we tackle the binary PU classification task by re-
sorting to generative modeling, and propose our generative
positive-unlabeled (GenPU) learning framework. Building
upon GAN, our GenPU model includes an array of genera-
tors and discriminators as agents in the game. These agents
are devised to play different parts in simultaneously generat-
ing positive and negative real-like samples, and thereafter a
standard PN classifier can be trained on those synthetic sam-
ples. Given a small portion of labeled P data as seeds, GenPU
is able to capture the underlying P and N data distributions,
with the capability to create infinite diverse P and N samples.
In this way, the overfitting problem of conventional PU can be
greatly mitigated. Furthermore, our GenPU is generalizable
in the sense that it can be established by switching to dif-
ferent underlying GAN variants with distance measurements
(i.e., Wasserstein GAN [Arjovsky et al., 2017]) other than
Jensen-Shannon divergence (JSD). As long as those variants
are sophisticated to produce high-quality diverse samples, the
optimal accuracy could be achieved by training a very deep
neural networks.

Our main contribution (i) we are the first (to our knowl-
edge) to invent a totally new paradigm to effectively solve
the PU task through deep generative models; (ii) we provide
theoretical analysis to prove that, at equilibrium, our model
is capable of learning both positive and negative data distri-
butions; (iii) we experimentally show the effectiveness of the
proposed model given limited P data on both synthetic and
real-world dataset; (iv) our method can be easily extended
to solve the semi-supervised classification, and also opens a
door to new solutions of many other weakly supervised learn-
ing tasks from the aspect of generative learning.
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2 Preliminaries
2.1 Positive-Unlabeled (PU) Classification
Given as input d-dimensional random variable x 2 Rd and
scalar random variable y 2 {±1} as class label, and let
p(x, y) be the joint density, the class-conditional densities

are :
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(x) = p(x|y = 1) p
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(x) = p(x|y = �1),

while p(x) refers to as the unlabeled marginal density. The
standard PU classification task [Ward et al., 2009] consists of

a positive dataset X
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and an unlabeled dataset X
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with i.i.d
samples drawn from p
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(x) and p(x), respectively :
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Due to the fact that the unlabeled data can be regarded as
a mixture of both positive and negative samples, the marginal
density turns out to be
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where ⇡
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are denoted as class-

prior probability, which is usually unknown in advance and
can be estimated from the given data [Jain et al., 2016]. The
objective of PU task is to train a classifier on X
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and X
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so as
to classify the new unseen pattern xnew.

In contrast to PU classification, positive-negative (PN)
classification assumes all negative samples,
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(x),

are labeled, so that the classifier can be trained in an ordinary
supervised learning fashion.

2.2 Generative Adversarial Networks (GAN)
GAN, originated in [Goodfellow et al., 2014], is one of the
most recent successful generative models that is equipped
with the power of producing distributional outputs. GAN ob-
tains this capability through an adversarial competition be-
tween a generator G and a discriminator D that involves op-
timizing the following minimax objective function :

min
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V(G,D) = min
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where p
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(x) represents true data distribution; p
z

(z) is typi-
cally a simple prior distribution (e.g., N (0, 1)) for latent code
z, while a generator distribution p
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(x) associated with G is
induced by the transformation G(z) : z ! x.

To find the optimal solution, [Goodfellow et al., 2014] em-
ployed simultaneous stochastic gradient descent (SGD) for
alternately updating D and G. The authors argued that, given
the optimal D, minimizing G is equivalent to minimizing the
distribution distance between p
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(x) and p

g

(x). At conver-
gence, GAN has p
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3 Generative PU Classification
3.1 Notations
Throughout the paper, {p
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(x), p(x)} denote the pos-
itive data distribution, the negative data distribution and the
entire data distribution, respectively. {D
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to learn a function that is able to create more samples from
the approximate distribution. Lately, a large body of success-
ful deep generative models have emerged, especially gener-
ative adversarial networks (GAN) [Goodfellow et al., 2014;
Salimans et al., 2016]. GAN intends to solve the task of gen-
erative modeling by making two agents play a game against
each other. One agent named generator synthesizes fake data
from random noise; the other agent, termed as discriminator,
examines both real and fake data and determines whether it is
real or not. Both agents keep evolving over time and get better
and better at their jobs. Eventually, the generator is forced to
create synthetic data which is as realistic as possible to those
from the training dataset.

Inspired by the tremendous success and expressive power
of GAN, we tackle the binary PU classification task by re-
sorting to generative modeling, and propose our generative
positive-unlabeled (GenPU) learning framework. Building
upon GAN, our GenPU model includes an array of genera-
tors and discriminators as agents in the game. These agents
are devised to play different parts in simultaneously generat-
ing positive and negative real-like samples, and thereafter a
standard PN classifier can be trained on those synthetic sam-
ples. Given a small portion of labeled P data as seeds, GenPU
is able to capture the underlying P and N data distributions,
with the capability to create infinite diverse P and N samples.
In this way, the overfitting problem of conventional PU can be
greatly mitigated. Furthermore, our GenPU is generalizable
in the sense that it can be established by switching to dif-
ferent underlying GAN variants with distance measurements
(i.e., Wasserstein GAN [Arjovsky et al., 2017]) other than
Jensen-Shannon divergence (JSD). As long as those variants
are sophisticated to produce high-quality diverse samples, the
optimal accuracy could be achieved by training a very deep
neural networks.

Our main contribution (i) we are the first (to our knowl-
edge) to invent a totally new paradigm to effectively solve
the PU task through deep generative models; (ii) we provide
theoretical analysis to prove that, at equilibrium, our model
is capable of learning both positive and negative data distri-
butions; (iii) we experimentally show the effectiveness of the
proposed model given limited P data on both synthetic and
real-world dataset; (iv) our method can be easily extended
to solve the semi-supervised classification, and also opens a
door to new solutions of many other weakly supervised learn-
ing tasks from the aspect of generative learning.

x 2 Rd and y 2 {±1}

bias is in O(exp(� 1
1/n

p

+1/n
u

))

D(x) : x ! [±1]

transformation function G(z) : z ! x

2 Preliminaries
2.1 Positive-Unlabeled (PU) Classification
Given as input d-dimensional random variable x 2 Rd and
scalar random variable y 2 {±1} as class label, and let
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are labeled, so that the classifier can be trained in an ordinary
supervised learning fashion.

2.2 Generative Adversarial Networks (GAN)
GAN, originated in [Goodfellow et al., 2014], is one of the
most recent successful generative models that is equipped
with the power of producing distributional outputs. GAN ob-
tains this capability through an adversarial competition be-
tween a generator G and a discriminator D that involves op-
timizing the following minimax objective function :
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where p
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(x) represents true data distribution; p
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(z) is typi-
cally a simple prior distribution (e.g., N (0, 1)) for latent code
z, while a generator distribution p

g

(x) associated with G is
induced by the transformation G(z) : z ! x.

To find the optimal solution, [Goodfellow et al., 2014] em-
ployed simultaneous stochastic gradient descent (SGD) for
alternately updating D and G. The authors argued that, given
the optimal D, minimizing G is equivalent to minimizing the
distribution distance between p

x

(x) and p

g

(x). At conver-
gence, GAN has p
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(x) = p
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(x).

3 Generative PU Classification
3.1 Notations
Throughout the paper, {p
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itive data distribution, the negative data distribution and the
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} are re-
ferred to as the positive, unlabeled and negative discrimina-
tors, while {G
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, G
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} stand for positive and negative genera-
tors, targeting to produce real-like positive and negative sam-
ples. Correspondingly, {p

gp

(x), p
gn

(x)} describe the positive
and negative distributions induced by the generator functions
G
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(z) and G
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to learn a function that is able to create more samples from
the approximate distribution. Lately, a large body of success-
ful deep generative models have emerged, especially gener-
ative adversarial networks (GAN) [Goodfellow et al., 2014;
Salimans et al., 2016]. GAN intends to solve the task of gen-
erative modeling by making two agents play a game against
each other. One agent named generator synthesizes fake data
from random noise; the other agent, termed as discriminator,
examines both real and fake data and determines whether it is
real or not. Both agents keep evolving over time and get better
and better at their jobs. Eventually, the generator is forced to
create synthetic data which is as realistic as possible to those
from the training dataset.

Inspired by the tremendous success and expressive power
of GAN, we tackle the binary PU classification task by re-
sorting to generative modeling, and propose our generative
positive-unlabeled (GenPU) learning framework. Building
upon GAN, our GenPU model includes an array of genera-
tors and discriminators as agents in the game. These agents
are devised to play different parts in simultaneously generat-
ing positive and negative real-like samples, and thereafter a
standard PN classifier can be trained on those synthetic sam-
ples. Given a small portion of labeled P data as seeds, GenPU
is able to capture the underlying P and N data distributions,
with the capability to create infinite diverse P and N samples.
In this way, the overfitting problem of conventional PU can be
greatly mitigated. Furthermore, our GenPU is generalizable
in the sense that it can be established by switching to dif-
ferent underlying GAN variants with distance measurements
(i.e., Wasserstein GAN [Arjovsky et al., 2017]) other than
Jensen-Shannon divergence (JSD). As long as those variants
are sophisticated to produce high-quality diverse samples, the
optimal accuracy could be achieved by training a very deep
neural networks.

Our main contribution (i) we are the first (to our knowl-
edge) to invent a totally new paradigm to effectively solve
the PU task through deep generative models; (ii) we provide
theoretical analysis to prove that, at equilibrium, our model
is capable of learning both positive and negative data distri-
butions; (iii) we experimentally show the effectiveness of the
proposed model given limited P data on both synthetic and
real-world dataset; (iv) our method can be easily extended
to solve the semi-supervised classification, and also opens a
door to new solutions of many other weakly supervised learn-
ing tasks from the aspect of generative learning.
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Figure 1: Our GenPU framework. Dp receives as inputs the real
positive examples from Xp and the synthetic positive examples from
Gp; Dn receives as inputs the real positive examples from Xp and
the synthetic negative examples from Gn; Du receives as inputs real
unlabeled examples from Xu, synthetic positive examples from Gp

as well as synthetic negative examples from Gn at the same time.
Associated with different loss functions, Gp and Gn are designated
to generate positive and negative examples, respectively.

3.2 Proposed GenPU Model
We build our GenPU model upon GAN by leveraging its po-
tentiality in producing realistic data, with the goal of iden-
tification of both positive and negative distributions from P
and U data. Then, a decision boundary can be made by train-
ing standard PN classifier on the generated samples. Figure 1
illustrates the architecture of the proposed framework.

In brief, GenPU framework is an analogy to a minimax
game comprising of two generators {G

p

, G

n

} and three dis-
criminators {D
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, D
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, D

n

}. Guided by the adversarial super-
vision of {D
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, D

u

, D

n

}, {G
p

, G

n

} are tasked with synthe-
sizing positive and negative samples that are indistinguish-
able with the real ones drawn from {p

p

(x), p
n

(x)}, respec-
tively. As being their competitive opponents, {D

p

, D

u

, D

n

}
are devised to play distinct roles in instructing the learning
process of {G

p

, G

n

}.
More formally, the overall GenPU objective function can

be decomposed, in views of G
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and G
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, as follows :
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whose weights �
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In contrast to the ‘zero-sum’ loss applied elsewhere, the op-
timization of GAN
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Such modification makes GAN

G

n

,D

n

different from the stan-
dard GAN, and this is reflected by the second term of (7).

Intuitively, (5)-(6) indicate G

p

, co-supervised under both
D

p

and D

u

, endeavours to minimize the distance between
the induced distribution p

gp

(x) and positive data distribution
p

p

(x), while striving to stay around within the whole data
distribution p(x). In fact, G

p

tries to deceive both discrimi-
nators by simultaneously maximizing D

p

’s and D

u

’s outputs
on fake positive samples. As a result, the loss terms in (5) and
(6) jointly guide p

gp

(x) gradually moves towards and finally
settles to p

p

(x) of p(x).
Equations (8)-(11) suggest G

n

, when facing both D

u

and
D

n

, struggles to make the induced p

gn

(x) stay away from
p

p

(x), and also makes its effort to force p

gn

(x) to lie within
p(x). To achieve this, the objective in (11) favors G

n

to pro-
duce negative examples; this in turn helps D

n

to maximize
the objective in (10) to separate positive training samples
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Figure 1: Our GenPU framework. Dp receives as inputs the real
positive examples from Xp and the synthetic positive examples from
Gp; Dn receives as inputs the real positive examples from Xp and
the synthetic negative examples from Gn; Du receives as inputs real
unlabeled examples from Xu, synthetic positive examples from Gp

as well as synthetic negative examples from Gn at the same time.
Associated with different loss functions, Gp and Gn are designated
to generate positive and negative examples, respectively.

3.2 Proposed GenPU Model
We build our GenPU model upon GAN by leveraging its po-
tentiality in producing realistic data, with the goal of iden-
tification of both positive and negative distributions from P
and U data. Then, a decision boundary can be made by train-
ing standard PN classifier on the generated samples. Figure 1
illustrates the architecture of the proposed framework.

In brief, GenPU framework is an analogy to a minimax
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} and three dis-
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, D

u
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}. Guided by the adversarial super-
vision of {D
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}, {G
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, G
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} are tasked with synthe-
sizing positive and negative samples that are indistinguish-
able with the real ones drawn from {p
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(x), p
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(x)}, respec-
tively. As being their competitive opponents, {D
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, D

u

, D

n

}
are devised to play distinct roles in instructing the learning
process of {G

p

, G

n

}.
More formally, the overall GenPU objective function can
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, as follows :
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Figure 1: Our GenPU framework. Dp receives as inputs the real
positive examples from Xp and the synthetic positive examples from
Gp; Dn receives as inputs the real positive examples from Xp and
the synthetic negative examples from Gn; Du receives as inputs real
unlabeled examples from Xu, synthetic positive examples from Gp

as well as synthetic negative examples from Gn at the same time.
Associated with different loss functions, Gp and Gn are designated
to generate positive and negative examples, respectively.

3.2 Proposed GenPU Model
We build our GenPU model upon GAN by leveraging its po-
tentiality in producing realistic data, with the goal of iden-
tification of both positive and negative distributions from P
and U data. Then, a decision boundary can be made by train-
ing standard PN classifier on the generated samples. Figure 1
illustrates the architecture of the proposed framework.
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Such modification makes GAN
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different from the stan-
dard GAN, and this is reflected by the second term of (7).

Intuitively, (5)-(6) indicate G
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, co-supervised under both
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and D
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, endeavours to minimize the distance between
the induced distribution p

gp

(x) and positive data distribution
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(x), while striving to stay around within the whole data
distribution p(x). In fact, G
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tries to deceive both discrimi-
nators by simultaneously maximizing D

p

’s and D

u

’s outputs
on fake positive samples. As a result, the loss terms in (5) and
(6) jointly guide p
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(x) gradually moves towards and finally
settles to p
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(x) of p(x).
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n

, when facing both D

u

and
D

n

, struggles to make the induced p
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(x) stay away from
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(x), and also makes its effort to force p
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to maximize
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Figure 1: Our GenPU framework. Dp receives as inputs the real
positive examples from Xp and the synthetic positive examples from
Gp; Dn receives as inputs the real positive examples from Xp and
the synthetic negative examples from Gn; Du receives as inputs real
unlabeled examples from Xu, synthetic positive examples from Gp

as well as synthetic negative examples from Gn at the same time.
Associated with different loss functions, Gp and Gn are designated
to generate positive and negative examples, respectively.

3.2 Proposed GenPU Model
We build our GenPU model upon GAN by leveraging its po-
tentiality in producing realistic data, with the goal of iden-
tification of both positive and negative distributions from P
and U data. Then, a decision boundary can be made by train-
ing standard PN classifier on the generated samples. Figure 1
illustrates the architecture of the proposed framework.
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are devised to play distinct roles in instructing the learning
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Figure 1: Our GenPU framework. Dp receives as inputs the real
positive examples from Xp and the synthetic positive examples from
Gp; Dn receives as inputs the real positive examples from Xp and
the synthetic negative examples from Gn; Du receives as inputs real
unlabeled examples from Xu, synthetic positive examples from Gp

as well as synthetic negative examples from Gn at the same time.
Associated with different loss functions, Gp and Gn are designated
to generate positive and negative examples, respectively.

3.2 Proposed GenPU Model
We build our GenPU model upon GAN by leveraging its po-
tentiality in producing realistic data, with the goal of iden-
tification of both positive and negative distributions from P
and U data. Then, a decision boundary can be made by train-
ing standard PN classifier on the generated samples. Figure 1
illustrates the architecture of the proposed framework.
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Figure 1: Our GenPU framework. Dp receives as inputs the real
positive examples from Xp and the synthetic positive examples from
Gp; Dn receives as inputs the real positive examples from Xp and
the synthetic negative examples from Gn; Du receives as inputs real
unlabeled examples from Xu, synthetic positive examples from Gp

as well as synthetic negative examples from Gn at the same time.
Associated with different loss functions, Gp and Gn are designated
to generate positive and negative examples, respectively.

3.2 Proposed GenPU Model
We build our GenPU model upon GAN by leveraging its po-
tentiality in producing realistic data, with the goal of iden-
tification of both positive and negative distributions from P
and U data. Then, a decision boundary can be made by train-
ing standard PN classifier on the generated samples. Figure 1
illustrates the architecture of the proposed framework.
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Such modification makes GAN
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dard GAN, and this is reflected by the second term of (7).

Intuitively, (5)-(6) indicate G
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, co-supervised under both
D
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and D
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, endeavours to minimize the distance between
the induced distribution p
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(x) and positive data distribution
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(x), while striving to stay around within the whole data
distribution p(x). In fact, G
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tries to deceive both discrimi-
nators by simultaneously maximizing D
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’s and D

u

’s outputs
on fake positive samples. As a result, the loss terms in (5) and
(6) jointly guide p
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(x) gradually moves towards and finally
settles to p
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Figure 1: Our GenPU framework. Dp receives as inputs the real
positive examples from Xp and the synthetic positive examples from
Gp; Dn receives as inputs the real positive examples from Xp and
the synthetic negative examples from Gn; Du receives as inputs real
unlabeled examples from Xu, synthetic positive examples from Gp

as well as synthetic negative examples from Gn at the same time.
Associated with different loss functions, Gp and Gn are designated
to generate positive and negative examples, respectively.

3.2 Proposed GenPU Model
We build our GenPU model upon GAN by leveraging its po-
tentiality in producing realistic data, with the goal of iden-
tification of both positive and negative distributions from P
and U data. Then, a decision boundary can be made by train-
ing standard PN classifier on the generated samples. Figure 1
illustrates the architecture of the proposed framework.

In brief, GenPU framework is an analogy to a minimax
game comprising of two generators {G

p

, G

n

} and three dis-
criminators {D

p

, D

u

, D

n

}. Guided by the adversarial super-
vision of {D

p

, D

u

, D

n

}, {G
p

, G

n

} are tasked with synthe-
sizing positive and negative samples that are indistinguish-
able with the real ones drawn from {p

p

(x), p
n

(x)}, respec-
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Figure 1: Our GenPU framework. Dp receives as inputs the real
positive examples from Xp and the synthetic positive examples from
Gp; Dn receives as inputs the real positive examples from Xp and
the synthetic negative examples from Gn; Du receives as inputs real
unlabeled examples from Xu, synthetic positive examples from Gp

as well as synthetic negative examples from Gn at the same time.
Associated with different loss functions, Gp and Gn are designated
to generate positive and negative examples, respectively.

3.2 Proposed GenPU Model
We build our GenPU model upon GAN by leveraging its po-
tentiality in producing realistic data, with the goal of iden-
tification of both positive and negative distributions from P
and U data. Then, a decision boundary can be made by train-
ing standard PN classifier on the generated samples. Figure 1
illustrates the architecture of the proposed framework.
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3.2 Proposed GenPU Model
We build our GenPU model upon GAN by leveraging its po-
tentiality in producing realistic data, with the goal of iden-
tification of both positive and negative distributions from P
and U data. Then, a decision boundary can be made by train-
ing standard PN classifier on the generated samples. Figure 1
illustrates the architecture of the proposed framework.
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3.2 Proposed GenPU Model
We build our GenPU model upon GAN by leveraging its po-
tentiality in producing realistic data, with the goal of iden-
tification of both positive and negative distributions from P
and U data. Then, a decision boundary can be made by train-
ing standard PN classifier on the generated samples. Figure 1
illustrates the architecture of the proposed framework.
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Such modification makes GAN

G

n

,D

n

different from the stan-
dard GAN, and this is reflected by the second term of (7).

Intuitively, (5)-(6) indicate G

p

, co-supervised under both
D

p

and D

u

, endeavours to minimize the distance between
the induced distribution p

gp

(x) and positive data distribution
p

p

(x), while striving to stay around within the whole data
distribution p(x). In fact, G

p

tries to deceive both discrimi-
nators by simultaneously maximizing D

p

’s and D

u

’s outputs
on fake positive samples. As a result, the loss terms in (5) and
(6) jointly guide p

gp

(x) gradually moves towards and finally
settles to p

p

(x) of p(x).
Equations (8)-(11) suggest G

n

, when facing both D

u

and
D

n

, struggles to make the induced p

gn

(x) stay away from
p

p

(x), and also makes its effort to force p

gn

(x) to lie within
p(x). To achieve this, the objective in (11) favors G

n

to pro-
duce negative examples; this in turn helps D

n

to maximize
the objective in (10) to separate positive training samples
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Figure 1: Our GenPU framework. Dp receives as inputs the real
positive examples from Xp and the synthetic positive examples from
Gp; Dn receives as inputs the real positive examples from Xp and
the synthetic negative examples from Gn; Du receives as inputs real
unlabeled examples from Xu, synthetic positive examples from Gp

as well as synthetic negative examples from Gn at the same time.
Associated with different loss functions, Gp and Gn are designated
to generate positive and negative examples, respectively.

3.2 Proposed GenPU Model
We build our GenPU model upon GAN by leveraging its po-
tentiality in producing realistic data, with the goal of iden-
tification of both positive and negative distributions from P
and U data. Then, a decision boundary can be made by train-
ing standard PN classifier on the generated samples. Figure 1
illustrates the architecture of the proposed framework.

In brief, GenPU framework is an analogy to a minimax
game comprising of two generators {G
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criminators {D
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}. Guided by the adversarial super-
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}, {G
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, G

n

} are tasked with synthe-
sizing positive and negative samples that are indistinguish-
able with the real ones drawn from {p
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(x)}, respec-
tively. As being their competitive opponents, {D

p

, D
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n
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are devised to play distinct roles in instructing the learning
process of {G
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, G
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More formally, the overall GenPU objective function can
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Such modification makes GAN
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different from the stan-
dard GAN, and this is reflected by the second term of (7).
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D
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and D

u

, endeavours to minimize the distance between
the induced distribution p

gp

(x) and positive data distribution
p

p

(x), while striving to stay around within the whole data
distribution p(x). In fact, G

p

tries to deceive both discrimi-
nators by simultaneously maximizing D

p

’s and D

u

’s outputs
on fake positive samples. As a result, the loss terms in (5) and
(6) jointly guide p

gp

(x) gradually moves towards and finally
settles to p

p

(x) of p(x).
Equations (8)-(11) suggest G
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, when facing both D

u

and
D

n

, struggles to make the induced p

gn

(x) stay away from
p
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(x), and also makes its effort to force p
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(x) to lie within
p(x). To achieve this, the objective in (11) favors G
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to pro-
duce negative examples; this in turn helps D
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to maximize
the objective in (10) to separate positive training samples
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Figure 1: Our GenPU framework. Dp receives as inputs the real
positive examples from Xp and the synthetic positive examples from
Gp; Dn receives as inputs the real positive examples from Xp and
the synthetic negative examples from Gn; Du receives as inputs real
unlabeled examples from Xu, synthetic positive examples from Gp

as well as synthetic negative examples from Gn at the same time.
Associated with different loss functions, Gp and Gn are designated
to generate positive and negative examples, respectively.

3.2 Proposed GenPU Model
We build our GenPU model upon GAN by leveraging its po-
tentiality in producing realistic data, with the goal of iden-
tification of both positive and negative distributions from P
and U data. Then, a decision boundary can be made by train-
ing standard PN classifier on the generated samples. Figure 1
illustrates the architecture of the proposed framework.
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} and three dis-
criminators {D
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}. Guided by the adversarial super-
vision of {D
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, D
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}, {G
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, G

n

} are tasked with synthe-
sizing positive and negative samples that are indistinguish-
able with the real ones drawn from {p
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(x), p
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(x)}, respec-
tively. As being their competitive opponents, {D
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, D

u
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n
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are devised to play distinct roles in instructing the learning
process of {G
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}.
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’s outputs
on fake positive samples. As a result, the loss terms in (5) and
(6) jointly guide p
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Figure 1: Our GenPU framework. Dp receives as inputs the real
positive examples from Xp and the synthetic positive examples from
Gp; Dn receives as inputs the real positive examples from Xp and
the synthetic negative examples from Gn; Du receives as inputs real
unlabeled examples from Xu, synthetic positive examples from Gp

as well as synthetic negative examples from Gn at the same time.
Associated with different loss functions, Gp and Gn are designated
to generate positive and negative examples, respectively.

3.2 Proposed GenPU Model
We build our GenPU model upon GAN by leveraging its po-
tentiality in producing realistic data, with the goal of iden-
tification of both positive and negative distributions from P
and U data. Then, a decision boundary can be made by train-
ing standard PN classifier on the generated samples. Figure 1
illustrates the architecture of the proposed framework.

In brief, GenPU framework is an analogy to a minimax
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criminators {D
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, D

u
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}, {G
p
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} are tasked with synthe-
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tively. As being their competitive opponents, {D
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are devised to play distinct roles in instructing the learning
process of {G
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on fake positive samples. As a result, the loss terms in (5) and
(6) jointly guide p
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Figure 1: Our GenPU framework. Dp receives as inputs the real
positive examples from Xp and the synthetic positive examples from
Gp; Dn receives as inputs the real positive examples from Xp and
the synthetic negative examples from Gn; Du receives as inputs real
unlabeled examples from Xu, synthetic positive examples from Gp

as well as synthetic negative examples from Gn at the same time.
Associated with different loss functions, Gp and Gn are designated
to generate positive and negative examples, respectively.

3.2 Proposed GenPU Model
We build our GenPU model upon GAN by leveraging its po-
tentiality in producing realistic data, with the goal of iden-
tification of both positive and negative distributions from P
and U data. Then, a decision boundary can be made by train-
ing standard PN classifier on the generated samples. Figure 1
illustrates the architecture of the proposed framework.
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Figure 1: Our GenPU framework. Dp receives as inputs the real
positive examples from Xp and the synthetic positive examples from
Gp; Dn receives as inputs the real positive examples from Xp and
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3.2 Proposed GenPU Model
We build our GenPU model upon GAN by leveraging its po-
tentiality in producing realistic data, with the goal of iden-
tification of both positive and negative distributions from P
and U data. Then, a decision boundary can be made by train-
ing standard PN classifier on the generated samples. Figure 1
illustrates the architecture of the proposed framework.
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Figure 1: Our GenPU framework. Dp receives as inputs the real
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3.2 Proposed GenPU Model
We build our GenPU model upon GAN by leveraging its po-
tentiality in producing realistic data, with the goal of iden-
tification of both positive and negative distributions from P
and U data. Then, a decision boundary can be made by train-
ing standard PN classifier on the generated samples. Figure 1
illustrates the architecture of the proposed framework.
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Figure 1: Our GenPU framework. Dp receives as inputs the real
positive examples from Xp and the synthetic positive examples from
Gp; Dn receives as inputs the real positive examples from Xp and
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as well as synthetic negative examples from Gn at the same time.
Associated with different loss functions, Gp and Gn are designated
to generate positive and negative examples, respectively.

3.2 Proposed GenPU Model
We build our GenPU model upon GAN by leveraging its po-
tentiality in producing realistic data, with the goal of iden-
tification of both positive and negative distributions from P
and U data. Then, a decision boundary can be made by train-
ing standard PN classifier on the generated samples. Figure 1
illustrates the architecture of the proposed framework.
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(6) jointly guide p
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Figure 1: Our GenPU framework. Dp receives as inputs the real
positive examples from Xp and the synthetic positive examples from
Gp; Dn receives as inputs the real positive examples from Xp and
the synthetic negative examples from Gn; Du receives as inputs real
unlabeled examples from Xu, synthetic positive examples from Gp

as well as synthetic negative examples from Gn at the same time.
Associated with different loss functions, Gp and Gn are designated
to generate positive and negative examples, respectively.

3.2 Proposed GenPU Model
We build our GenPU model upon GAN by leveraging its po-
tentiality in producing realistic data, with the goal of iden-
tification of both positive and negative distributions from P
and U data. Then, a decision boundary can be made by train-
ing standard PN classifier on the generated samples. Figure 1
illustrates the architecture of the proposed framework.
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Figure 1: Our GenPU framework. Dp receives as inputs the real
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3.2 Proposed GenPU Model
We build our GenPU model upon GAN by leveraging its po-
tentiality in producing realistic data, with the goal of iden-
tification of both positive and negative distributions from P
and U data. Then, a decision boundary can be made by train-
ing standard PN classifier on the generated samples. Figure 1
illustrates the architecture of the proposed framework.
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Figure 1: Our GenPU framework. Dp receives as inputs the real
positive examples from Xp and the synthetic positive examples from
Gp; Dn receives as inputs the real positive examples from Xp and
the synthetic negative examples from Gn; Du receives as inputs real
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as well as synthetic negative examples from Gn at the same time.
Associated with different loss functions, Gp and Gn are designated
to generate positive and negative examples, respectively.

3.2 Proposed GenPU Model
We build our GenPU model upon GAN by leveraging its po-
tentiality in producing realistic data, with the goal of iden-
tification of both positive and negative distributions from P
and U data. Then, a decision boundary can be made by train-
ing standard PN classifier on the generated samples. Figure 1
illustrates the architecture of the proposed framework.
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Such modification makes GAN

G

n

,D

n

different from the stan-
dard GAN, and this is reflected by the second term of (7).

Intuitively, (5)-(6) indicate G

p

, co-supervised under both
D

p

and D

u

, endeavours to minimize the distance between
the induced distribution p

gp

(x) and positive data distribution
p

p

(x), while striving to stay around within the whole data
distribution p(x). In fact, G

p

tries to deceive both discrimi-
nators by simultaneously maximizing D

p

’s and D

u

’s outputs
on fake positive samples. As a result, the loss terms in (5) and
(6) jointly guide p

gp

(x) gradually moves towards and finally
settles to p

p

(x) of p(x).
Equations (8)-(11) suggest G
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, when facing both D

u

and
D

n

, struggles to make the induced p

gn

(x) stay away from
p
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(x), and also makes its effort to force p

gn

(x) to lie within
p(x). To achieve this, the objective in (11) favors G

n

to pro-
duce negative examples; this in turn helps D
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to maximize
the objective in (10) to separate positive training samples
from fake negative samples rather than confusing D
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. Notice
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Figure 1: Our GenPU framework. Dp receives as inputs the real
positive examples from Xp and the synthetic positive examples from
Gp; Dn receives as inputs the real positive examples from Xp and
the synthetic negative examples from Gn; Du receives as inputs real
unlabeled examples from Xu, synthetic positive examples from Gp

as well as synthetic negative examples from Gn at the same time.
Associated with different loss functions, Gp and Gn are designated
to generate positive and negative examples, respectively.

3.2 Proposed GenPU Model
We build our GenPU model upon GAN by leveraging its po-
tentiality in producing realistic data, with the goal of iden-
tification of both positive and negative distributions from P
and U data. Then, a decision boundary can be made by train-
ing standard PN classifier on the generated samples. Figure 1
illustrates the architecture of the proposed framework.

In brief, GenPU framework is an analogy to a minimax
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vision of {D

p

, D

u

, D

n

}, {G
p
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tively. As being their competitive opponents, {D
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, D
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are devised to play distinct roles in instructing the learning
process of {G
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Such modification makes GAN
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dard GAN, and this is reflected by the second term of (7).

Intuitively, (5)-(6) indicate G
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, co-supervised under both
D
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and D

u

, endeavours to minimize the distance between
the induced distribution p

gp

(x) and positive data distribution
p
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(x), while striving to stay around within the whole data
distribution p(x). In fact, G

p

tries to deceive both discrimi-
nators by simultaneously maximizing D

p

’s and D

u

’s outputs
on fake positive samples. As a result, the loss terms in (5) and
(6) jointly guide p
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(x) gradually moves towards and finally
settles to p
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(x) of p(x).
Equations (8)-(11) suggest G
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, when facing both D
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and
D
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, struggles to make the induced p
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(x) stay away from
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(x), and also makes its effort to force p
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(x) to lie within
p(x). To achieve this, the objective in (11) favors G
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to pro-
duce negative examples; this in turn helps D
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to maximize
the objective in (10) to separate positive training samples
from fake negative samples rather than confusing D
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. Notice
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Figure 1: Our GenPU framework. Dp receives as inputs the real
positive examples from Xp and the synthetic positive examples from
Gp; Dn receives as inputs the real positive examples from Xp and
the synthetic negative examples from Gn; Du receives as inputs real
unlabeled examples from Xu, synthetic positive examples from Gp

as well as synthetic negative examples from Gn at the same time.
Associated with different loss functions, Gp and Gn are designated
to generate positive and negative examples, respectively.

3.2 Proposed GenPU Model
We build our GenPU model upon GAN by leveraging its po-
tentiality in producing realistic data, with the goal of iden-
tification of both positive and negative distributions from P
and U data. Then, a decision boundary can be made by train-
ing standard PN classifier on the generated samples. Figure 1
illustrates the architecture of the proposed framework.
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} are tasked with synthe-
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able with the real ones drawn from {p
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(x)}, respec-
tively. As being their competitive opponents, {D
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are devised to play distinct roles in instructing the learning
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’s outputs
on fake positive samples. As a result, the loss terms in (5) and
(6) jointly guide p
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Figure 1: Our GenPU framework. Dp receives as inputs the real
positive examples from Xp and the synthetic positive examples from
Gp; Dn receives as inputs the real positive examples from Xp and
the synthetic negative examples from Gn; Du receives as inputs real
unlabeled examples from Xu, synthetic positive examples from Gp

as well as synthetic negative examples from Gn at the same time.
Associated with different loss functions, Gp and Gn are designated
to generate positive and negative examples, respectively.

3.2 Proposed GenPU Model
We build our GenPU model upon GAN by leveraging its po-
tentiality in producing realistic data, with the goal of iden-
tification of both positive and negative distributions from P
and U data. Then, a decision boundary can be made by train-
ing standard PN classifier on the generated samples. Figure 1
illustrates the architecture of the proposed framework.
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Figure 1: Our GenPU framework. Dp receives as inputs the real
positive examples from Xp and the synthetic positive examples from
Gp; Dn receives as inputs the real positive examples from Xp and
the synthetic negative examples from Gn; Du receives as inputs real
unlabeled examples from Xu, synthetic positive examples from Gp

as well as synthetic negative examples from Gn at the same time.
Associated with different loss functions, Gp and Gn are designated
to generate positive and negative examples, respectively.

3.2 Proposed GenPU Model
We build our GenPU model upon GAN by leveraging its po-
tentiality in producing realistic data, with the goal of iden-
tification of both positive and negative distributions from P
and U data. Then, a decision boundary can be made by train-
ing standard PN classifier on the generated samples. Figure 1
illustrates the architecture of the proposed framework.
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Figure 1: Our GenPU framework. Dp receives as inputs the real
positive examples from Xp and the synthetic positive examples from
Gp; Dn receives as inputs the real positive examples from Xp and
the synthetic negative examples from Gn; Du receives as inputs real
unlabeled examples from Xu, synthetic positive examples from Gp

as well as synthetic negative examples from Gn at the same time.
Associated with different loss functions, Gp and Gn are designated
to generate positive and negative examples, respectively.

3.2 Proposed GenPU Model
We build our GenPU model upon GAN by leveraging its po-
tentiality in producing realistic data, with the goal of iden-
tification of both positive and negative distributions from P
and U data. Then, a decision boundary can be made by train-
ing standard PN classifier on the generated samples. Figure 1
illustrates the architecture of the proposed framework.
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Figure 1: Our GenPU framework. Dp receives as inputs the real
positive examples from Xp and the synthetic positive examples from
Gp; Dn receives as inputs the real positive examples from Xp and
the synthetic negative examples from Gn; Du receives as inputs real
unlabeled examples from Xu, synthetic positive examples from Gp

as well as synthetic negative examples from Gn at the same time.
Associated with different loss functions, Gp and Gn are designated
to generate positive and negative examples, respectively.

3.2 Proposed GenPU Model
We build our GenPU model upon GAN by leveraging its po-
tentiality in producing realistic data, with the goal of iden-
tification of both positive and negative distributions from P
and U data. Then, a decision boundary can be made by train-
ing standard PN classifier on the generated samples. Figure 1
illustrates the architecture of the proposed framework.
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Figure 1: Our GenPU framework. Dp receives as inputs the real
positive examples from Xp and the synthetic positive examples from
Gp; Dn receives as inputs the real positive examples from Xp and
the synthetic negative examples from Gn; Du receives as inputs real
unlabeled examples from Xu, synthetic positive examples from Gp

as well as synthetic negative examples from Gn at the same time.
Associated with different loss functions, Gp and Gn are designated
to generate positive and negative examples, respectively.

3.2 Proposed GenPU Model
We build our GenPU model upon GAN by leveraging its po-
tentiality in producing realistic data, with the goal of iden-
tification of both positive and negative distributions from P
and U data. Then, a decision boundary can be made by train-
ing standard PN classifier on the generated samples. Figure 1
illustrates the architecture of the proposed framework.
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Such modification makes GAN
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different from the stan-
dard GAN, and this is reflected by the second term of (7).
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and D
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, endeavours to minimize the distance between
the induced distribution p
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(x) and positive data distribution
p
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(x), while striving to stay around within the whole data
distribution p(x). In fact, G

p

tries to deceive both discrimi-
nators by simultaneously maximizing D

p

’s and D

u

’s outputs
on fake positive samples. As a result, the loss terms in (5) and
(6) jointly guide p
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(x) gradually moves towards and finally
settles to p
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(x) of p(x).
Equations (8)-(11) suggest G
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, when facing both D
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and
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(x) stay away from
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(x), and also makes its effort to force p
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(x) to lie within
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to maximize
the objective in (10) to separate positive training samples
from fake negative samples rather than confusing D

n

. Notice

D

p

D

u

D

n

G

p

X
p

X
p

X
u

G

n

positive

generator

negative

generator

positive

discriminator

negative

discriminator

unlabelled

discriminator

Figure 1: Our GenPU framework. Dp receives as inputs the real
positive examples from Xp and the synthetic positive examples from
Gp; Dn receives as inputs the real positive examples from Xp and
the synthetic negative examples from Gn; Du receives as inputs real
unlabeled examples from Xu, synthetic positive examples from Gp

as well as synthetic negative examples from Gn at the same time.
Associated with different loss functions, Gp and Gn are designated
to generate positive and negative examples, respectively.

3.2 Proposed GenPU Model
We build our GenPU model upon GAN by leveraging its po-
tentiality in producing realistic data, with the goal of iden-
tification of both positive and negative distributions from P
and U data. Then, a decision boundary can be made by train-
ing standard PN classifier on the generated samples. Figure 1
illustrates the architecture of the proposed framework.
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Figure 1: Our GenPU framework. Dp receives as inputs the real
positive examples from Xp and the synthetic positive examples from
Gp; Dn receives as inputs the real positive examples from Xp and
the synthetic negative examples from Gn; Du receives as inputs real
unlabeled examples from Xu, synthetic positive examples from Gp

as well as synthetic negative examples from Gn at the same time.
Associated with different loss functions, Gp and Gn are designated
to generate positive and negative examples, respectively.

3.2 Proposed GenPU Model
We build our GenPU model upon GAN by leveraging its po-
tentiality in producing realistic data, with the goal of iden-
tification of both positive and negative distributions from P
and U data. Then, a decision boundary can be made by train-
ing standard PN classifier on the generated samples. Figure 1
illustrates the architecture of the proposed framework.
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Figure 1: Our GenPU framework. Dp receives as inputs the real
positive examples from Xp and the synthetic positive examples from
Gp; Dn receives as inputs the real positive examples from Xp and
the synthetic negative examples from Gn; Du receives as inputs real
unlabeled examples from Xu, synthetic positive examples from Gp

as well as synthetic negative examples from Gn at the same time.
Associated with different loss functions, Gp and Gn are designated
to generate positive and negative examples, respectively.

3.2 Proposed GenPU Model
We build our GenPU model upon GAN by leveraging its po-
tentiality in producing realistic data, with the goal of iden-
tification of both positive and negative distributions from P
and U data. Then, a decision boundary can be made by train-
ing standard PN classifier on the generated samples. Figure 1
illustrates the architecture of the proposed framework.
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then plugging D

?

n
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Such modification makes GAN

G

n

,D

n

different from the stan-
dard GAN, and this is reflected by the second term of (7).

Intuitively, (5)-(6) indicate G

p

, co-supervised under both
D

p

and D

u

, endeavours to minimize the distance between
the induced distribution p

gp

(x) and positive data distribution
p

p

(x), while striving to stay around within the whole data
distribution p(x). In fact, G

p

tries to deceive both discrimi-
nators by simultaneously maximizing D

p

’s and D

u

’s outputs
on fake positive samples. As a result, the loss terms in (5) and
(6) jointly guide p

gp

(x) gradually moves towards and finally
settles to p

p

(x) of p(x).
Equations (8)-(11) suggest G

n

, when facing both D

u

and
D

n

, struggles to make the induced p

gn

(x) stay away from
p

p

(x), and also makes its effort to force p

gn

(x) to lie within
p(x). To achieve this, the objective in (11) favors G

n

to pro-
duce negative examples; this in turn helps D

n

to maximize
the objective in (10) to separate positive training samples
from fake negative samples rather than confusing D

n

. Notice
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Figure 1: Our GenPU framework. Dp receives as inputs the real
positive examples from Xp and the synthetic positive examples from
Gp; Dn receives as inputs the real positive examples from Xp and
the synthetic negative examples from Gn; Du receives as inputs real
unlabeled examples from Xu, synthetic positive examples from Gp

as well as synthetic negative examples from Gn at the same time.
Associated with different loss functions, Gp and Gn are designated
to generate positive and negative examples, respectively.

3.2 Proposed GenPU Model
We build our GenPU model upon GAN by leveraging its po-
tentiality in producing realistic data, with the goal of iden-
tification of both positive and negative distributions from P
and U data. Then, a decision boundary can be made by train-
ing standard PN classifier on the generated samples. Figure 1
illustrates the architecture of the proposed framework.
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’s outputs
on fake positive samples. As a result, the loss terms in (5) and
(6) jointly guide p
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(x) gradually moves towards and finally
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, when facing both D
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to maximize
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optimization problem with the overall objective function obtains its optimal 

solution if 
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with the objective value of

that, in the value function (11), G
n

is designed to minimize
D

n

’s output instead of maximizing it when feeding D

n

with
fake negative samples. Consequently, D

n

will send uniformly
negative feedback to G

n

. In this way, the gradient informa-
tion derived from negative feedback decreases p

gn

(x) where
the positive data region p

p

(x) is large. In the meantime, the
gradient signals from D

u

increase p
gn

(x) outside the positive
region but still restricting p

gn

(x) in the true data distribution
p(x). This crucial effect will eventually push p

gn

(x) away
from p

p

(x) but towards p
n

(x).

3.3 Theoretical Analysis

Theoretically, suppose all the {G
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, G

n

} and {D
p

, D

u

, D

n

}
have enough capacity. Then the following results show that,
at Nash equilibrium point of (3), the minimal JSD between
the distributions induced by {G
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, G

n

} and the data distribu-
tions {p
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(x), p
n

(x)} are achieved, respectively, i.e., p
gp

(x) =
p
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(x) and p

gn

(x) = p

n

(x). Meanwhile, the JSD between
the distribution induced by G

n

and data distribution p

p

(x) is
maximized, i.e., p

gn

(x) almost never overlaps with p
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(x).
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Combining the intermediate terms associated with �

u

using
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3.4 Connection to Semi-Supervised Classification
The goal of semi-supervised classification is to learn a classi-
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and X
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, a partially labeled neg-
ative set X
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is also available, with samples drawn from nega-
tive data distribution p
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In fact, the very same architecture of GenPU can be applied

to the semi-supervised classification task by just adapting the
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is designed to minimize
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p(x). This crucial effect will eventually push p

gn

(x) away
from p

p

(x) but towards p
n

(x).

3.3 Theoretical Analysis

Theoretically, suppose all the {G
p

, G

n

} and {D
p

, D

u

, D

n

}
have enough capacity. Then the following results show that,
at Nash equilibrium point of (3), the minimal JSD between
the distributions induced by {G

p

, G

n

} and the data distribu-
tions {p

p

(x), p
n

(x)} are achieved, respectively, i.e., p
gp

(x) =
p

p

(x) and p

gn

(x) = p

n

(x). Meanwhile, the JSD between
the distribution induced by G

n

and data distribution p

p

(x) is
maximized, i.e., p

gn

(x) almost never overlaps with p

p

(x).

Proposition 1. Given fixed generators G

p

, G

n

and known

class prior ⇡

p

, the optimal discriminators D

p

, D

u

and D

n

for the objective in equation (3) have the following forms :
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Proof. Assume that all the discriminators D

p

, D
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and D

n

can be optimized in functional space. Differentiating the ob-
jective V(G,D) in (3) w.r.t. D

p

, D
u

and D

n

and equating the
functional derivatives to zero, we can obtain the optimal D?

p
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and D
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as described above.

Theorem 2. Suppose the data distribution p(x) in the stan-
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(x), where p
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, the minimax optimization prob-
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Proof. Substituting the optimal D?
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and D
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into (3), the
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text, besides training sets X
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and X
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, a partially labeled neg-
ative set X

n

is also available, with samples drawn from nega-
tive data distribution p

n

(x).
In fact, the very same architecture of GenPU can be applied

to the semi-supervised classification task by just adapting the

that, in the value function (11), G
n

is designed to minimize
D

n

’s output instead of maximizing it when feeding D

n

with
fake negative samples. Consequently, D

n

will send uniformly
negative feedback to G

n

. In this way, the gradient informa-
tion derived from negative feedback decreases p

gn

(x) where
the positive data region p

p

(x) is large. In the meantime, the
gradient signals from D

u

increase p
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(x) outside the positive
region but still restricting p

gn

(x) in the true data distribution
p(x). This crucial effect will eventually push p

gn

(x) away
from p

p

(x) but towards p
n

(x).

3.3 Theoretical Analysis

Theoretically, suppose all the {G
p

, G

n

} and {D
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, D

u

, D
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have enough capacity. Then the following results show that,
at Nash equilibrium point of (3), the minimal JSD between
the distributions induced by {G
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, G
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} and the data distribu-
tions {p
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(x), p
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(x)} are achieved, respectively, i.e., p
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(x) =
p
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(x) and p

gn

(x) = p
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(x). Meanwhile, the JSD between
the distribution induced by G

n

and data distribution p
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(x) is
maximized, i.e., p

gn

(x) almost never overlaps with p
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(x).

Proposition 1. Given fixed generators G
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, G
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and known

class prior ⇡
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, the optimal discriminators D

p

, D
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and D

n

for the objective in equation (3) have the following forms :
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Proof. Assume that all the discriminators D

p

, D
u

and D

n

can be optimized in functional space. Differentiating the ob-
jective V(G,D) in (3) w.r.t. D

p

, D
u

and D

n

and equating the
functional derivatives to zero, we can obtain the optimal D?

p

,
D

?

u

and D

?

n

as described above.

Theorem 2. Suppose the data distribution p(x) in the stan-

dard PU learning setting takes form of p(x) = ⇡
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(x) +

⇡
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(x), where p
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(x) and p
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(x) are well-separated. Given

the optimal D
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and D
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, the minimax optimization prob-

lem with the objective function in (3) obtains its optimal so-

lution if

p
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(x) = p
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(x) and p
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(x) = p

n

(x), (12)

with the objective value of �(⇡
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) log(4).

Proof. Substituting the optimal D?
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, D?
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and D
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n

into (3), the

objective can be rewritten as follows :
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Combining the intermediate terms associated with �
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using
the fact ⇡
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= 1, we reorganize (13) and arrive at
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which peaks its minimum if
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(x) = p
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(x), (15)

⇡
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(x) + ⇡
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p
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(x) = p(x) (16)

and for almost every x except for those in a zero measure set

p
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(x) > 0 ) p

gn

(x) = 0, p

gn

(x) > 0 ) p
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(x) = 0. (17)

The solution to G = {G
p

, G

n

} must jointly satisfy the condi-
tions described in (15)-(17), which implies (12) and leads to
the minimum objective value of �(⇡

p

�

p

+ �
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) log(4).

The theorem reveals that approaching to Nash equilibrium
is equivalent to jointly minimizing JSD(p k⇡

p
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gp
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p

gn

)

and JSD(p
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k p
gp

) and maximizing JSD(p

p

k p
gn

) at the same
time, thus exactly capturing p

p

and p

n

.

3.4 Connection to Semi-Supervised Classification
The goal of semi-supervised classification is to learn a classi-
fier from positive, negative and unlabeled data. In such con-
text, besides training sets X

p

and X
u

, a partially labeled neg-
ative set X

n

is also available, with samples drawn from nega-
tive data distribution p

n

(x).
In fact, the very same architecture of GenPU can be applied

to the semi-supervised classification task by just adapting the

that, in the value function (11), G
n

is designed to minimize
D

n

’s output instead of maximizing it when feeding D

n

with
fake negative samples. Consequently, D

n

will send uniformly
negative feedback to G

n

. In this way, the gradient informa-
tion derived from negative feedback decreases p

gn

(x) where
the positive data region p

p

(x) is large. In the meantime, the
gradient signals from D

u

increase p
gn

(x) outside the positive
region but still restricting p

gn

(x) in the true data distribution
p(x). This crucial effect will eventually push p

gn

(x) away
from p

p

(x) but towards p
n

(x).

3.3 Theoretical Analysis

Theoretically, suppose all the {G
p

, G

n

} and {D
p

, D

u

, D

n

}
have enough capacity. Then the following results show that,
at Nash equilibrium point of (3), the minimal JSD between
the distributions induced by {G

p

, G

n

} and the data distribu-
tions {p

p

(x), p
n

(x)} are achieved, respectively, i.e., p
gp

(x) =
p

p

(x) and p

gn

(x) = p

n

(x). Meanwhile, the JSD between
the distribution induced by G

n

and data distribution p

p

(x) is
maximized, i.e., p

gn

(x) almost never overlaps with p

p

(x).

Proposition 1. Given fixed generators G

p

, G

n

and known

class prior ⇡

p

, the optimal discriminators D

p

, D

u

and D

n

for the objective in equation (3) have the following forms :
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Proof. Assume that all the discriminators D

p

, D
u

and D

n

can be optimized in functional space. Differentiating the ob-
jective V(G,D) in (3) w.r.t. D

p

, D
u

and D

n

and equating the
functional derivatives to zero, we can obtain the optimal D?

p

,
D

?

u

and D

?

n

as described above.

Theorem 2. Suppose the data distribution p(x) in the stan-

dard PU learning setting takes form of p(x) = ⇡

p

p

p

(x) +

⇡

n

p

n

(x), where p

p

(x) and p

n

(x) are well-separated. Given

the optimal D
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, D

?

u

and D
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n

, the minimax optimization prob-

lem with the objective function in (3) obtains its optimal so-

lution if

p

gp

(x) = p
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(x) and p

gn

(x) = p

n

(x), (12)

with the objective value of �(⇡

p

�
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+ �
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) log(4).

Proof. Substituting the optimal D?

p

, D?

u

and D
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n

into (3), the

objective can be rewritten as follows :
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Combining the intermediate terms associated with �
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using
the fact ⇡

p
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= 1, we reorganize (13) and arrive at
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which peaks its minimum if
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(x), (15)
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and for almost every x except for those in a zero measure set
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(x) = 0, p
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(x) > 0 ) p
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The solution to G = {G
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} must jointly satisfy the condi-
tions described in (15)-(17), which implies (12) and leads to
the minimum objective value of �(⇡
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The theorem reveals that approaching to Nash equilibrium
is equivalent to jointly minimizing JSD(p k⇡
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and JSD(p
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) and maximizing JSD(p
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) at the same
time, thus exactly capturing p
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and p

n

.

3.4 Connection to Semi-Supervised Classification
The goal of semi-supervised classification is to learn a classi-
fier from positive, negative and unlabeled data. In such con-
text, besides training sets X

p

and X
u

, a partially labeled neg-
ative set X

n

is also available, with samples drawn from nega-
tive data distribution p

n

(x).
In fact, the very same architecture of GenPU can be applied

to the semi-supervised classification task by just adapting the

that, in the value function (11), G
n

is designed to minimize
D

n

’s output instead of maximizing it when feeding D

n

with
fake negative samples. Consequently, D

n

will send uniformly
negative feedback to G

n

. In this way, the gradient informa-
tion derived from negative feedback decreases p

gn

(x) where
the positive data region p
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(x) is large. In the meantime, the
gradient signals from D

u

increase p
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(x) outside the positive
region but still restricting p

gn

(x) in the true data distribution
p(x). This crucial effect will eventually push p

gn

(x) away
from p

p

(x) but towards p
n

(x).

3.3 Theoretical Analysis

Theoretically, suppose all the {G
p

, G

n

} and {D
p

, D

u

, D

n

}
have enough capacity. Then the following results show that,
at Nash equilibrium point of (3), the minimal JSD between
the distributions induced by {G
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, G
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} and the data distribu-
tions {p
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(x), p
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(x)} are achieved, respectively, i.e., p
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(x) =
p
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(x) and p
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(x) = p
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(x). Meanwhile, the JSD between
the distribution induced by G

n

and data distribution p
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(x) is
maximized, i.e., p

gn

(x) almost never overlaps with p
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(x).

Proposition 1. Given fixed generators G
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, G
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and known

class prior ⇡
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, the optimal discriminators D
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, D
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and D

n

for the objective in equation (3) have the following forms :
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Proof. Assume that all the discriminators D
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, D
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and D

n

can be optimized in functional space. Differentiating the ob-
jective V(G,D) in (3) w.r.t. D

p

, D
u

and D

n

and equating the
functional derivatives to zero, we can obtain the optimal D?
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,
D
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and D
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as described above.

Theorem 2. Suppose the data distribution p(x) in the stan-

dard PU learning setting takes form of p(x) = ⇡
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(x), where p
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(x) and p
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(x) are well-separated. Given

the optimal D
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and D
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, the minimax optimization prob-

lem with the objective function in (3) obtains its optimal so-
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Combining the intermediate terms associated with �
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using
the fact ⇡

p

+ ⇡

n

= 1, we reorganize (13) and arrive at
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3.4 Connection to Semi-Supervised Classification
The goal of semi-supervised classification is to learn a classi-
fier from positive, negative and unlabeled data. In such con-
text, besides training sets X

p

and X
u

, a partially labeled neg-
ative set X

n

is also available, with samples drawn from nega-
tive data distribution p

n

(x).
In fact, the very same architecture of GenPU can be applied

to the semi-supervised classification task by just adapting the
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text, besides training sets X
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is also available, with samples drawn from nega-
tive data distribution p

n

(x).
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Outline

• Background

• Generative PU learning

• Experimental results
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Simulation Result

• Evolution of positive and negative samples produced by GenPU through time 

with 500 labeled P data and 9500 U data

• Adopt MLP as underlying GAN component 
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MNIST Result
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• The best accuracy with positively labeled data from 100 to 1

Generative PU Learning

MNIST Result

MNIST ‘3’ vs. ‘5’ ‘8’ vs. ‘3’
N

l

: N
u

Oracle PN UPU NNPU GenPU Oracle PN UPU NNPU GenPU
100 : 9900 .993 .914 .969 .983 .994 .932 .974 .982

50 : 9950 .993 .854 .966 .982 .994 .873 .965 .979

10 : 9990 .993 .711 .866 .980 .994 .733 .907 .978

5 : 9995 .993 .660 .843 .979 .994 .684 .840 .976

1 : 9999 .993 .557 .563 .976 .994 .550 .573 .972

Table: The accuracy comparison for N
p

2 {100, 50, 10, 5, 1}.
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CelebA Result

• Data dimensionality is 64 x 64 x 3 = 12288

• Experiment on 20000 male and 20000 female faces 

• Randomly select 2000 male faces as labeled P data, leave rest 38000 as U data 

• Adapt the improved WGAN [Gulrajani et al., 2017]  as the underlying GANs

• Achieve better accuracy of 87.9 than 86.8 of NNPU and 62.5 of UPU
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Conclusion

• Attacking PU task from generative model perspective using ensemble of 

GANs is novel and promising.

• Performance depends on the underlying GAN realization, and GenPU inherits 

the weakness of GAN, e.g., mode collapsing, mode oscillation.

• Applying GenPU to high-dimensional data is not easy, network architecture to 

be carefully designed.
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Thank You!


