

constraints for causal discovery when using a single nerual network (NN) with shared hidden layer?

Key Contributions

- To our best knowledge, this is the first work to harness a single NN model with shared hidden layers for multivariate Granger causality analysis.
- We propose a novel neural network framework to learn Granger causality by incorporating an **input-output** Jacobian regularizer in the training objective.
- Our method can not only obtain the summary Granger causality but also the full-time Granger causality.
- Extensive experiments show our method can outperform state-of-the-art baselines.

Preliminaries

Jacobian Regularizer

Definition We regularize the L_1 norm or squared **Frobienus** *norm* of the input-output Jacobian matrix:

$$\begin{split} \mathbf{J} &= \begin{bmatrix} \frac{\partial \mathbf{f}}{\partial x_{1}^{t-\tau}} \cdots \frac{\partial \mathbf{f}}{\partial x_{D}^{t-1}} \end{bmatrix} \\ &= \begin{bmatrix} \frac{\partial f_{1}}{\partial x_{1}^{t-\tau}} \cdots \frac{\partial f_{1}}{\partial x_{1}^{t-1}} \cdots \frac{\partial f_{1}}{\partial x_{D}^{t-\tau}} \cdots \frac{\partial f_{1}}{\partial x_{D}^{t-\tau}} \\ \vdots \\ \frac{\partial f_{D}}{\partial x_{1}^{t-\tau}} \cdots \frac{\partial f_{D}}{\partial x_{1}^{t-1}} \cdots \frac{\partial f_{D}}{\partial x_{D}^{t-\tau}} \cdots \frac{\partial f_{D}}{\partial x_{D}^{t-1}} \end{bmatrix}, \\ &\| \mathbf{J} \|_{1} = \sum_{i,j} \left| \frac{\partial f_{i}}{\partial x_{j}} \right| \\ &\| \mathbf{J} \|_{1} = \sum_{i,j} \left| \frac{\partial f_{i}}{\partial x_{j}} \right| \\ &\| \mathbf{J} \|_{1} = \sum_{i,j} \left| \frac{\partial f_{i}}{\partial x_{j}} \right| \\ &\| \mathbf{J} \|_{1} = \sum_{i,j} \left| \frac{\partial f_{i}}{\partial x_{j}} \right| \\ &\| \mathbf{J} \|_{1} = \sum_{i,j} \left| \frac{\partial f_{i}}{\partial x_{j}} \right| \\ &\| \mathbf{J} \|_{1} = \sum_{i,j} \left| \frac{\partial f_{i}}{\partial x_{j}} \right| \\ &\| \mathbf{J} \|_{1} = \sum_{i,j} \left| \frac{\partial f_{i}}{\partial x_{j}} \right| \\ &\| \mathbf{J} \|_{1} = \sum_{i,j} \left| \frac{\partial f_{i}}{\partial x_{j}} \right| \\ &\| \mathbf{J} \|_{1} = \sum_{i,j} \left| \frac{\partial f_{i}}{\partial x_{j}} \right| \\ &\| \mathbf{J} \|_{1} = \sum_{i,j} \left| \frac{\partial f_{i}}{\partial x_{j}} \right| \\ &\| \mathbf{J} \|_{1} = \sum_{i,j} \left| \frac{\partial f_{i}}{\partial x_{j}} \right| \\ &\| \mathbf{J} \|_{1} = \sum_{i,j} \left| \frac{\partial f_{i}}{\partial x_{j}} \right| \\ &\| \mathbf{J} \|_{1} = \sum_{i,j} \left| \frac{\partial f_{i}}{\partial x_{j}} \right| \\ &\| \mathbf{J} \|_{1} = \sum_{i,j} \left| \frac{\partial f_{i}}{\partial x_{j}} \right| \\ &\| \mathbf{J} \|_{1} = \sum_{i,j} \left| \frac{\partial f_{i}}{\partial x_{j}} \right| \\ &\| \mathbf{J} \|_{1} = \sum_{i,j} \left| \frac{\partial f_{i}}{\partial x_{j}} \right| \\ &\| \mathbf{J} \|_{1} = \sum_{i,j} \left| \frac{\partial f_{i}}{\partial x_{j}} \right| \\ &\| \mathbf{J} \|_{1} = \sum_{i,j} \left| \frac{\partial f_{i}}{\partial x_{j}} \right| \\ &\| \mathbf{J} \|_{1} = \sum_{i,j} \left| \frac{\partial f_{i}}{\partial x_{j}} \right| \\ &\| \mathbf{J} \|_{1} = \sum_{i,j} \left| \frac{\partial f_{i}}{\partial x_{j}} \right| \\ &\| \mathbf{J} \|_{1} = \sum_{i,j} \left| \frac{\partial f_{i}}{\partial x_{j}} \right| \\ &\| \mathbf{J} \|_{1} = \sum_{i,j} \left| \frac{\partial f_{i}}{\partial x_{j}} \right| \\ &\| \mathbf{J} \|_{1} = \sum_{i,j} \left| \frac{\partial f_{i}}{\partial x_{j}} \right| \\ &\| \mathbf{J} \|_{1} = \sum_{i,j} \left| \frac{\partial f_{i}}{\partial x_{j}} \right| \\ &\| \mathbf{J} \|_{1} = \sum_{i,j} \left| \frac{\partial f_{i}}{\partial x_{j}} \right| \\ &\| \mathbf{J} \|_{1} = \sum_{i,j} \left| \frac{\partial f_{i}}{\partial x_{j}} \right| \\ &\| \mathbf{J} \|_{1} = \sum_{i,j} \left| \frac{\partial f_{i}}{\partial x_{j}} \right| \\ &\| \mathbf{J} \|_{1} = \sum_{i,j} \left| \frac{\partial f_{i}}{\partial x_{j}} \right| \\ &\| \mathbf{J} \|_{1} = \sum_{i,j} \left| \frac{\partial f_{i}}{\partial x_{j}} \right| \\ &\| \mathbf{J} \|_{1} = \sum_{i,j} \left| \frac{\partial f_{i}}{\partial x_{j}} \right| \\ &\| \mathbf{J} \|_{1} = \sum_{i,j} \left| \frac{\partial f_{i}}{\partial x_{j}} \right| \\ &\| \mathbf{J} \|_{1} = \sum_{i,j} \left| \frac{\partial f_{i}}{\partial x_{j}} \right| \\ &\| \mathbf{J} \|_{1} = \sum_{i,j} \left| \frac{\partial f_{i}}{\partial x_{j}} \right| \\ &\| \frac{\partial f_{i}}{\partial x_{j}} \right$$

Wanqi Zhou, Shuanghao Bai, Shujian Yu, Qibin Zhao, Badong Chen*

{zwq785915792, baishuanghao}@stu.xjtu.edu.cn; yusj9011@gmail.com; qibin.zhao@riken.jp; chenbd@mail.xjtu,edu.cn

Construct a Time Series Forecasting Neural Network

Residual MLP-based Model

Incorporate Input-output Jacobian Matrix Regularizer During Training

Let W be the set of parameters to be optimized for the neural network f

$\hat{oldsymbol{v}}^{\mu}$	random vector
S^{D-1}	unit sphere

random projection $n_{\rm proj}$

$$\sum_{t=\tau}^{T} (x_t - f(\mathbf{x}_{< t}))^2 + \lambda \|J(\mathbf{x}_{< t})\|_F^2$$

JRNGC_F

Extensive experiments show that our JRNGC method achieves SOTA. More details can be found in https://arxiv.org/pdf/2405.08779

Table 5. Comparative performance on CausalTime benchmark datasets. We highlight the best and the second best in bold and with underlining, respectively.

	AUROC			AUPRC		
	AQI	Traffic	Medical	AQI	Traffic	Medical
GC	$0.4538 {\pm}~0.0377$	$0.4191{\scriptstyle\pm}0.0310$	0.5737 ± 0.0338	$0.6347 {\pm}~ 0.0158$	$0.2789 {\pm} \hspace{0.05cm} 0.0018$	$0.4213 {\pm}~0.02$
SVAR	$0.6225{\pm}$ 0.0406	$0.6329 {\pm} \operatorname{0.0047}$	0.7130 ± 0.0188	$0.7903{\pm}~0.0175$	$0.5845{\pm}0.0021$	$0.6774{\pm}0.03$
N.NTS	0.5729 ± 0.0229	$0.6329 {\pm} 0.0335$	$0.5019{\pm}0.0682$	$0.7100{\pm}~0.0228$	$0.5770{\pm}0.0542$	$0.4567 {\pm} 0.01$
PCMCI	$0.5272{\pm}$ 0.0744	$\overline{0.5422 \pm 0.0737}$	$0.6991{\scriptstyle\pm}~0.0111$	$0.6734 {\pm}$ 0.0372	$0.3474{\pm}$ 0.0581	$0.5082 {\pm}$ 0.01
Rhino	0.6700 ± 0.0983	$0.6274 {\pm}$ 0.0185	$0.6520{\pm}0.0212$	$0.7593{\pm}0.0755$	$0.3772 {\pm}$ 0.0093	$0.4897 {\pm} ext{ 0.03}$
CUTS	$0.6013 {\pm} 0.0038$	$0.6238 {\pm} 0.0179$	$0.3739{\pm}0.0297$	$0.5096{\scriptstyle\pm0.0362}$	$0.1525{\pm}0.0226$	$0.1537{\pm}0.00$
CUTS+	$0.8928 {\pm} 0.0213$	$0.6175 {\pm} 0.0752$	$\textbf{0.8202} \pm \textbf{0.0173}$	$0.7983 {\pm} 0.0875$	$\textbf{0.6367} \pm \textbf{0.1197}$	$0.5481{\pm}0.13$
NGC	$0.7172{\pm}0.0076$	$0.6032{\pm}0.0056$	$0.5744{\pm}0.0096$	$0.7177 {\pm} 0.0069$	$0.3583{\pm}0.0495$	$0.4637{\pm}0.01$
NGM	$0.6728 {\pm} 0.0164$	$0.4660 {\pm} 0.0144$	$0.5551 {\pm} 0.0154$	$0.4786{\pm}0.0196$	$0.2826{\pm}0.0098$	$0.4697{\pm}0.01$
LCCM	$0.8565{\pm}0.0653$	$0.5545{\pm}0.0254$	$0.8013 {\pm} 0.0218$	0.9260 ± 0.0246	$0.5907{\pm}0.0475$	$\textbf{0.7554} \pm \textbf{0.02}$
eSRU	$0.8229{\pm}0.0317$	$0.5987 {\pm} 0.0192$	$0.7559{\pm}0.0365$	$0.7223{\pm}0.0317$	$0.4886{\pm}0.0338$	$0.7352{\pm}0.06$
SCGL	$0.4915{\pm}0.0476$	$0.5927{\pm}0.0553$	$0.5019 {\pm} 0.0224$	$0.3584{\pm}0.0281$	$0.4544{\pm}0.0315$	$\overline{0.4833}{\pm}0.01$
TCDF	$0.4148 {\pm} 0.0207$	$0.5029{\pm}0.0041$	$0.6329{\pm}0.0384$	$0.6527{\pm}0.0087$	$0.3637{\pm}0.0048$	$0.5544{\pm}0.03$
JRNGC-F (ours)	$\textbf{0.9279} \pm \textbf{0.0011}$	$\textbf{0.7294} \pm \textbf{0.0046}$	$0.7540 {\pm} 0.0040$	$0.7828 {\pm} 0.0020$	$0.5940{\pm}0.0067$	$0.7261{\pm}0.00$
90 -			80 -			
90 -			80 -	•		
85 -	•		70			
80 -						
80 -						
80 - 75 -		 ✓ cMLP ▲ cLSTM ■ NAVAR(MLP) 	A DBC 60			cMLP cLSTM NAVAR(MLP)
80 - 75 - 70 -		 ✓ cMLP ▲ cLSTM ■ NAVAR(MLP) ◆ NAVAR(LSTM) 	ADBRO O A D A A A A A A A A			cMLP cLSTM NAVAR(MLP) NAVAR(LSTM)
80 - 75 - 70 -		 ✓ cMLP ▲ cLSTM ■ NAVAR(MLP) ♦ NAVAR(LSTN ● JGC) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1			cMLP cLSTM NAVAR(MLP) NAVAR(LSTM) JGC
80 - 75 - 70 -		 ✓ cMLP ▲ cLSTM ■ NAVAR(MLP) ◆ NAVAR(LSTN ● JGC ◆ CR-VAE) M) 40			cMLP cLSTM NAVAR(MLP) NAVAR(LSTM) JGC CR-VAE
80 75 70 65		 CMLP CLSTM NAVAR(MLP) NAVAR(LSTN JGC CR-VAE JRNGC_L11(0)) (M) (Durs)			cMLP cLSTM NAVAR(MLP) NAVAR(LSTM) JGC CR-VAE JRNGC_L1(O
80 - 75 - 70 - 65 -		 ✓ cMLP ▲ cLSTM ■ NAVAR(MLP) ◆ NAVAR(LSTN ● JGC ◆ CR-VAE ★ JRNGC_L1(C) ★ JRNGC_F(O)) (M) Durs) 30 -			cMLP cLSTM NAVAR(MLP) NAVAR(LSTM JGC CR-VAE JRNGC_L1(O JRNGC_F(Out
80 75 70 65 0 2	4 6 8	 CMLP CLSTM NAVAR(MLP) NAVAR(LSTN JGC CR-VAE JRNGC_L1(O JRNGC_F(O) 10 12 14) (1) Durs) urs) O O O O O O O O O O O O O O O O O O O			cMLP cLSTM NAVAR(MLP) NAVAR(LSTM) JGC CR-VAE JRNGC_L1(Ou JRNGC_F(Ou
80 75 70 65 0 2 Number o	4 6 8 f Tunable I	 CMLP CLSTM NAVAR(MLP) NAVAR(LSTN JGC CR-VAE JRNGC_L1(C) JRNGC_F(O) 10 12 14 Parameters 	Ours) (M) Nu	2 4 mber of Tu		cMLP cLSTM NAVAR(MLP) NAVAR(LSTM) JGC CR-VAE JRNGC_L1(Ou JRNGC_F(Our 12 14
80 75 70 65 0 2 Number o	4 6 8 f Tunable I	 cMLP cLSTM NAVAR(MLP) NAVAR(LSTN JGC CR-VAE JRNGC_L1(0) JRNGC_F(0) 	Oracle of the second	2 4 mber of Tu	6 8 10 Inable Para	cMLP cLSTM NAVAR(MLP) NAVAR(LSTM) JGC CR-VAE JRNGC_L1(Ou JRNGC_F(Oun 12 14
80 75 70 65 0 2 Number o	4 6 8 f Tunable I	 cMLP cLSTM NAVAR(MLP) NAVAR(LSTN JGC CR-VAE JRNGC_L1(0) JRNGC_F(0) 	Oracle of the second	2 4 mber of Tu	6 8 10 nable Para	cMLP cLSTM NAVAR(ML NAVAR(LST JGC CR-VAE JRNGC_L1 JRNGC_F(12 1
80 75 70 65 0 2 Number o	4 6 8 f Tunable I	 cMLP cLSTM NAVAR(MLP) NAVAR(LSTN JGC CR-VAE JRNGC_L1(0) JRNGC_F(0) 10 12 14 Parameters) (M) (M) (M) (M) (M) (N)	2 4 mber of Tu	6 8 10 inable Para	cMLP cLSTM NAVAR(MLP) NAVAR(LSTM JGC CR-VAE JRNGC_L1(O JRNGC_F(Ou 12 14
80 75 70 65 0 2 Number o	4 6 8 f Tunable I	 cMLP cLSTM NAVAR(MLP) NAVAR(LSTN JGC CR-VAE JRNGC_L1(0) JRNGC_F(0) 	(M) 000000000000000000000000000000000000	2 4 mber of Tu	6 8 10 Inable Para	cMLP cLSTM NAVAR(MLP) NAVAR(LSTM JGC CR-VAE JRNGC_L1(O JRNGC_F(Ou 12 14
$ \begin{array}{c} 80 \\ 75 \\ 70 \\ 65 \\ 0 \\ 2 \\ Number of the C $	A 6 8 f Tunable F	 cMLP cLSTM NAVAR(MLP) NAVAR(LSTN JGC CR-VAE JRNGC_L1(C) JRNGC_F(O) 	$(\mathbf{M}) \mathbf{N} \mathbf{u}$	2 4 mber of Tu	6 8 10 nable Para	cMLP cLSTM NAVAR(MLP) NAVAR(LSTM JGC CR-VAE JRNGC_L1(O JRNGC_F(Out 12 14

Experimental Results

