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Experimental ResultsBackground

Motivation and Challenge  
• How to propose a new framework without designing 

separate predictive models l ike previous neural 
approaches? 

• How to design good causal representation and causal 
constraints for causal discovery when using a single nerual 
network (NN) with shared hidden layer? 

Approach

Key Contributions  
• To our best knowledge, this is the first work to harness a 

single NN model with shared hidden layers for multivariate 
Granger causality analysis. 

• We propose a novel neural network framework to learn 
Granger causality by incorporating an input-output 
Jacobian regularizer in the training objective. 

• Our method can not only obtain the summary Granger 
causality but also the full-time Granger causality. 

• Extensive experiments show our method can outperform 
state-of-the-art baselines.
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Preliminaries

Jacobian Regularizer 

Definition We regularize the  norm or squared Frobienus 
norm of the input-output Jacobian matrix:

𝑳𝟏

 norm𝑳𝟏 Frobienus norm

Construct a Time Series Forecasting Neural Network

Residual MLP-based Model

Loss Function

Incorporate Input-output Jacobian Matrix Regularizer During Training

Jacobian Regularizer-based Neural Granger Causality

𝑿𝑿𝟑𝟑
𝑿𝑿𝟐𝟐

𝑿𝑿𝟑𝟑

𝑿𝑿𝟒𝟒

𝑿𝑿𝟏𝟏

𝑿𝑿𝟒𝟒
𝑿𝑿𝟐𝟐

𝑿𝑿𝟑𝟑

𝑿𝑿𝟒𝟒

𝑿𝑿𝟏𝟏

𝑿𝑿𝟐𝟐 𝑿𝑿𝟏𝟏 𝑿𝑿𝟑𝟑 𝑿𝑿𝟒𝟒Neurons Sparsity 

Previous Methods Motivation and Our Proposed Method

b)

c) d)

𝓛𝓛Jac

a)

𝑿𝑿𝟏𝟏
𝑿𝑿𝟐𝟐

𝑿𝑿𝟑𝟑

𝑿𝑿𝟒𝟒

𝑿𝑿𝟏𝟏

Model I

𝑿𝑿𝟐𝟐
𝑿𝑿𝟐𝟐

𝑿𝑿𝟑𝟑

𝑿𝑿𝟒𝟒

𝑿𝑿𝟏𝟏

Model II

Model III Model IV

Ground Truth𝑿𝑿𝟐𝟐 𝑿𝑿𝟑𝟑 𝑿𝑿𝟒𝟒𝑿𝑿𝟏𝟏 Variable I, II, III, IV

e) Motivation

f ) Our Method

𝑿𝑿𝟐𝟐

𝑿𝑿𝟑𝟑

𝑿𝑿𝟒𝟒

𝑿𝑿𝟏𝟏

𝑿𝑿𝟐𝟐

𝑿𝑿𝟑𝟑

𝑿𝑿𝟒𝟒

𝑿𝑿𝟏𝟏

𝑿𝑿𝟐𝟐

𝑿𝑿𝟏𝟏

𝑿𝑿𝟑𝟑 𝑿𝑿𝟒𝟒

𝑿𝑿𝟐𝟐

𝑿𝑿𝟑𝟑

𝑿𝑿𝟒𝟒

𝑿𝑿𝟏𝟏

𝑿𝑿𝟐𝟐

𝑿𝑿𝟑𝟑

𝑿𝑿𝟒𝟒

𝑿𝑿𝟏𝟏

…

… … …

Arbitrary Model

Unified Model

Figure 1. Motivation and our proposed neural Granger causality method. To learn the true Granger causality, we need to estimate the
importance of a variable in helping forecast another variable. For example, let’s examine a simple scenario involving the summary causal
relationship: X4  X2  X1 ! X3 ! X4. To comprehend this relationship, current neural Granger causality methods need to
construct and train the same number of models as the dimensions of the variables to disentangle the importance of each variable and
obtain Granger causality by incorporating sparsity penalties on the first layer of each model, as illustrated in figures a)-d). However,
sparse first-layer network parameters will result in challenges in effectively modeling complex relationships between variables as well as
unsatisfied estimation accuracy of Granger causality. In addition, it will get wrong Granger causality if we use a multivariate time series
forecasting model because of the existence of a shared hidden layer, as exemplified in figure e). Instead, our method only needs to build
and train a single multivariate time series forecasting model by introducing input-output Jacobian regularizer LJac. Note that the numbers
I, II, III, and IV mean the same model architecture with independent training for different variables and we used two-layer Perceptron for
the convenience of illustration.

predicting variables and learning causal connections is mu-
tually influential; accurate predictions facilitate genuine
causal learning, and, conversely, a proficient understanding
of causal relationships enhances predictive accuracy. Fur-
thermore, these methods render RNNs (e.g., RNN, LSTM)
incapable of learning full-time Granger causality, because
in a standard RNN, different time steps of the same time
series share the same weight parameters, thus preventing
the model from capturing different Granger causality across
time steps. This limitation compromises the full realization
of neural networks’ potential in certain applications.

For the first issue, to develop a unified neural Granger causal-
ity framework with a multivariate time series forecasting
model, it is essential to mitigate the impact of shared hid-
den layers. In the context of a multivariate time series
forecasting model, shared hidden layers would obtain the
information from all variables and send it to each target
variable, leading to the difficulty of disentangling the im-
portance of each variable. Thus we must identify a suitable
Granger causality estimation method capable of expressing
the importance of one variable to another. For the second
issue, we need to find a global Granger causality constraint
method. To solve these issues, we propose a novel approach

termed the Jacobian Regularization-based Neural Granger
Causality (JRNGC). For a detailed view, see the right panel
in Figure 1. Firstly, the input-output Jacobian matrix can
represent the relations between variables over time and does
not purely rely on the first layer of the neural network. By
imposing a sparse constraint on it, we can explicitly set the
null hypothesis that there is no Granger causality between
certain variables. Therefore, the input-output Jacobian ma-
trix can handle the above-mentioned two major drawbacks
of NGC. Furthermore, we utilize the residual MLP neural
network, proven more capable of predicting time series (Das
et al., 2023; Zeng et al., 2023), although our framework is
adaptable to any model.

Our main contributions to this work are as follows:

• To our best knowledge, this is the first work to har-
ness a single NN model with shared hidden layers for
multivariate Granger causality analysis.

• We propose a novel neural network framework to learn
Granger causality by incorporating an input-output
Jacobian regularizer in the training objective.

• Our method can not only obtain the summary Granger

2

Jacobian Regularizer-based Neural Granger Causality

which can be efficiently computed:

kJ(x)k2F = Tr(JJT) =
X

{e}

eJJTeT

=
X

{e}


@(e · z)
@x

�2
,

(4)

where {e} denotes a constant orthonormal basis of the D-
dimensional output space. z is the output with respect to
input variables x. Tr(·) represents the trace function. Ulti-
mately, this leads to computational overhead that increases
linearly with the output dimension D.

As illustrated in (Hoffman et al., 2019), we can rewrite the
Eq. 4 and use random projection to compute the squared
Frobienus norm of the input-output Jacobian matrix effi-
ciently, which projects the high-dimensional data onto a
lower-dimensional space, thereby reducing computational
and storage costs:

kJ(x)k2F ⇡ 1

nproj

nprojX

µ=1


@ (v̂µ · z)

@x

�2
, (5)

where the random vector v̂µ is drawn from the (D � 1)-
dimensional unit sphere S

D�1, nproj is the number of ran-
dom projection. Utilizing a mini-batch size of |B| = 100,
a singular projection results in model performance nearly
indistinguishable from the exact method, while significantly
reducing computational costs by orders of magnitude.

Above all, our method can be named JRNGC-L1, JRNGC-F
according to different norm regularizers. The penalized loss
function of JRNGC-L1 can be formulated as follows:

1

D

DX

i=1

1

N � ⌧

NX

t=⌧+1

(x̂i,t � xi,t)
2 + �kJ(x)k1. (6)

The penalized loss function of JRNGC-F can be formulated
as follows:

1

D

DX

i=1

1

N � ⌧

NX

t=⌧+1

(x̂i,t � xi,t)
2 + �kJ(x)k2F, (7)

where, in both Eq. 6 and Eq. 7, the � mean the regularizer
coefficient and D is the dimension of time series and N

is the length of time. Note that, although the Jacobian
regularizer is popular in computer vision (Jakubovitz &
Giryes, 2018; Rhodes & Lee, 2021), to our best knowledge,
we are the first to use it in Granger causality learning.

3.3. Input-output Jacobian matrix as the variable’s

causal importance

In the post-hoc analysis, we employ the learned input-output
Jacobian matrix to analyze the causal relationships between

variables. The input-output Jacobian matrix can obtain the
variable’s causal importance through Ji,j,↵ = @xj

@x(t�↵)
i

. It
allows us to obtain the variable’s lag importance, i.e., the
full-time Granger causal graph.

4. Experiments

In this section, we demonstrate the performance of the
proposed methods, i.e., JRNGC-L1, JRNGC-F on five
widely used benchmarks: the VAR model, the Lorenz-96
model, fMRI data, the DREAM-3 dataset and CausalTime
(Cheng et al., 2024b). We perform comparative experiments
with competitive methods, including GC (Granger, 1969),
PCMCI (Runge et al., 2019), cMLP (Tank et al., 2021),
cLSTM (Tank et al., 2021), NAVAR (MLP) (Bussmann
et al., 2021), NAVAR (LSTM) (Bussmann et al., 2021),
SRU, eSRU(Khanna & Tan, 2020), TCDF (Nauta et al.,
2019), JGC (Suryadi et al., 2023) and CR-VAE (Li et al.,
2023), Scalable Causal Graph Learning (SCGL, (Xu et al.,
2019)), CUTS (Cheng et al., 2023), CUTS+ (Cheng et al.,
2024a), NTS-NOTEARS (abbreviated as N.NTS, (Sun et al.,
2023)), Rhino (Gong et al., 2023), and Latent Convergent
Cross Mapping (LCCM, (Brouwer et al., 2021)), as well
as Neural Graphical Model (NGM, (Bellot et al., 2022)).
Additionally, our summary hyperparameters of experiments
for all models and other additional experiments are detailed
in the appendix.

4.1. Metrics

We employ two standard metrics: the area under the receiver
operating characteristic curve (AUROC) and the area under
the precision-recall curve (AUPRC). A value of 0.5 or lower
in AUROC indicates poor performance. In scenarios with
sparse causal relationships, AUPRC becomes a more reli-
able indicator of the model’s ability to detect causal edges.
This is due to its emphasis on correctly identifying positive
instances, a critical aspect when the number of actual causal
relationships is limited.

4.2. Experiment results and analysis

In this section, we demonstrate the effectiveness of our
proposed method in inferring Granger causality between
variables, i.e., the summary Granger causality, and the full-
time Granger causality. Specifically, we use the term “with
no lag” to express Granger causality between variables,
and “with lag” to express full-time Granger causality. Our
results show that our proposed method is capable of learning
summary Granger causality and full-time Granger causality
with high AUROC and AUPRC scores on both synthetic
and open-real benchmark datasets.

VAR model. For this model, we simulated up to T = 600
observations with the maximum true time lag ⌧ 2 {3, 5},
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Table 5. Comparative performance on CausalTime benchmark datasets. We highlight the best and the second best in bold and with
underlining, respectively.

Methods AUROC AUPRC

AQI Traffic Medical AQI Traffic Medical

GC 0.4538± 0.0377 0.4191± 0.0310 0.5737± 0.0338 0.6347± 0.0158 0.2789± 0.0018 0.4213± 0.0281
SVAR 0.6225± 0.0406 0.6329± 0.0047 0.7130± 0.0188 0.7903± 0.0175 0.5845± 0.0021 0.6774± 0.0358
N.NTS 0.5729± 0.0229 0.6329± 0.0335 0.5019± 0.0682 0.7100± 0.0228 0.5770± 0.0542 0.4567± 0.0162
PCMCI 0.5272± 0.0744 0.5422± 0.0737 0.6991± 0.0111 0.6734± 0.0372 0.3474± 0.0581 0.5082± 0.0177
Rhino 0.6700± 0.0983 0.6274± 0.0185 0.6520± 0.0212 0.7593± 0.0755 0.3772± 0.0093 0.4897± 0.0321
CUTS 0.6013±0.0038 0.6238±0.0179 0.3739±0.0297 0.5096±0.0362 0.1525±0.0226 0.1537±0.0039
CUTS+ 0.8928±0.0213 0.6175±0.0752 0.8202 ±0.0173 0.7983±0.0875 0.6367 ±0.1197 0.5481±0.1349
NGC 0.7172±0.0076 0.6032±0.0056 0.5744±0.0096 0.7177±0.0069 0.3583±0.0495 0.4637±0.0121
NGM 0.6728±0.0164 0.4660±0.0144 0.5551±0.0154 0.4786±0.0196 0.2826±0.0098 0.4697±0.0166
LCCM 0.8565±0.0653 0.5545±0.0254 0.8013±0.0218 0.9260 ±0.0246 0.5907±0.0475 0.7554 ±0.0235

eSRU 0.8229±0.0317 0.5987±0.0192 0.7559±0.0365 0.7223±0.0317 0.4886±0.0338 0.7352±0.0600
SCGL 0.4915±0.0476 0.5927±0.0553 0.5019±0.0224 0.3584±0.0281 0.4544±0.0315 0.4833±0.0185
TCDF 0.4148±0.0207 0.5029±0.0041 0.6329±0.0384 0.6527±0.0087 0.3637±0.0048 0.5544±0.0313
JRNGC-F (ours) 0.9279 ±0.0011 0.7294 ±0.0046 0.7540±0.0040 0.7828±0.0020 0.5940±0.0067 0.7261±0.0016

Table 6. Evaluation of the impact of Residual MLP Layer Depth and Jacobian regularizer. JR-F denotes F-norm Jacobian regularizer.

JR-F Residual Layer VAR100 fMRI Lorenz-96

AUROC AUPRC AUROC AUPRC AUROC AUPRC

⇥ 0 0.969±0.003 0.667±0.023 0.764±0.000 0.266±0.000 0.813±0.018 0.571±0.033
X 0 0.997±0.001 0.950±0.006 0.898±0.001 0.749±0.003 0.875±0.010 0.692±0.036
⇥ 1 0.936±0.009 0.501±0.032 0.729±0.027 0.175±0.023 0.954±0.021 0.772±0.061
X 1 0.993±0.002 0.894±0.014 0.836±0.018 0.448±0.013 0.995±0.003 0.959±0.021
⇥ 5 0.957±0.005 0.606±0.032 0.766±0.026 0.227±0.015 0.995±0.004 0.959±0.025
X 5 0.966±0.008 0.688±0.047 0.748±0.032 0.329±0.013 0.999±0.001 0.989±0.009

4.3. Ablation studies

In this section, we conduct ablation studies to investigate
the individual contributions of various components of our
methodology to the overall performance. These experiments
are designed to identify the critical factors that drive the
efficacy of our residual MLP model equipped with Jacobian
regularization. By selectively disabling certain features, we
aim to provide insights into the essential elements of our
approach and their impact on learning outcomes. This helps
in understanding the robustness and sensitivity of our model
under different configurations.

In the first experiment, we conducted model ablations us-
ing three datasets: VAR100, fMRI, and Lorenz-96. We
evaluated the impact of omitting the input-output Jacobian
regularizer and varying the number of residual network
layers on the performance of the algorithm. The results
are detailed in Table 6. The Jacobian matrix regularizer
proved highly beneficial for capturing Granger causality.
The advantage of adding residual layers was marginal for
the linear VAR100 dataset but particularly advantageous for
the nonlinear Lorenz-96 dataset. These findings confirm
the versatility and efficacy of our approach across different
scenarios and underscore the importance of tailoring the

Figure 3. Performance comparisons on a 100-dimensional VAR
dataset: AUROC, AUPRC, and the number of tunable parameters.

model to the specific characteristics of each dataset.

In the second experiment, we compare the impact of em-
ploying sparsity constraints versus Directed Acyclic Graph
(DAG) constraints on the input-output Jacobian matrix using
the VAR(100, 5, 10) and DREAM4 dataset (Marbach et al.,
2009). Table 7 indicates that our approach is robust to the
choice of ground-truth structure and performs better than
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3. Method

Given a D-dimensional multivariate time series x =
{x1, x2, . . . .xD}, as shown in Figure 1, our model can be
summarized as follows:

1. With the past information of each time series xt�⌧ :t�1
1:D

as input, we forecast their future xt
1:D by a multivari-

ate time series forecasting model. In this work, we
leverage a residual MLP network.

2. In the training phase, we train the model with mean
squared error loss along with the input-output Jaco-
bian matrix regularizer, which facilitates the model’s
learning of both Granger causality and forecasting.

3. In the post-hoc analysis phase, we use the learned input-
output Jacobian matrix to analyze the summary and
full-time Granger causality between time series.

In the following part, we will provide detailed descriptions
of the proposed model, regularizer term, and post-hoc anal-
ysis method. Before that, it is crucial to emphasize that we
leverage the residual MLP network for its advantages in
forecasting time series (Das et al., 2023; Zeng et al., 2023);
however, our proposed framework is versatile and can be
applied to alternative models, such as LSTM (see the Ex-
periments section). With this approach, we can also achieve
full-time Granger causality.

3.1. Residual MLP-based time series forecasting model

Granger causality relies on prediction as a fundamental
component. It always uses the time series forecasting model
to discover the Granger causality. A good predictive model
with high performance, free from overfitting, and resilient
to noise, can facilitate Granger causality learning. Due to
the success of residual MLP-based models in time series
analysis (Das et al., 2023; Zeng et al., 2023), which are
employed in state-of-the-art (SOTA) methods for predicting
time series, we utilize a simple MLP-based model to learn
Granger causality. Our model includes an input layer and
an individual output layer, along with a varying number of
robust residual MLP layers that seamlessly join together to
create a unified framework for analyzing multivariate time
series data, which can be formulated as follows:

x̂t
1:D = FC2(ResidualBlock(FC1(x

t�⌧ :t�1
1:D ))), (2)

where FC1 and FC2 represent fully-connected layers.
ResidualBlock is composed of n residual MLP layers, as
shown in the Figure 2. Since this architecture does not have
any self-attention, recurrent, or convolutional mechanisms,
it allows our model to benefit from the simplicity and speed
of linear models while still being able to handle non-linear
dependencies.

FC
Weight Norm

FC
ReLU Dropout Layer 

Norm

Identity

ReLU

Figure 2. The framework of the Residual MLP layer in this work.
FC represents the fully connected layer.

3.2. Input-output Jacobian regularizer as a Granger

causality constraint

It is necessary to incorporate the null hypothesis that the
variable xi is not the Granger causality of xj as a Granger
causality constraint within the model. Conventionally, this
is accomplished by applying L1 or L2 norm regularizer to
weights of the first layer (Tank et al., 2021; Suryadi et al.,
2023). This regularizer approach contributes to learning
the Granger causal connections between variables in the
case of univariate time series prediction, where the weight
can be expressed as a direct relationship from one vari-
able to another. However, this principle encounters three
challenges. Firstly, imposing a penalty on the first layer
may hinder the neural network from adequately learning the
time series. Secondly, the weights of the first layer prevent
RNNs, LSTMs, and other recurrent networks from learn-
ing full-time Granger causality. Thirdly, if one wishes to
alter the current framework for learning Granger causality
in multivariate multi-model settings, it becomes necessary
to abandon this approach. In contrast, the input-output Ja-
cobian matrix allows us to find the relationships between
variables, including their interactions, self-importance, and
dependencies over time. The definition of the Jacobian
matrix is as follows:

J =
h

@f
@xt�⌧

1

· · · @f
@xt�1

D

i

=

2

664

@f1
@xt�⌧

1

· · · @f1
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where the fi represents the i-th predictive function for i�th
variable.

To detect the lags where Granger causal effects exist, we
enforce the sparsity of the input-output Jacobian matrix.
Nevertheless, the complexity of computing the L1 norm of a
Jacobian matrix of size (D,D⌧) is O(g(D, ⌧)), and g(D, ⌧)
represents the specific time and resource requirements of
the algorithm. It will cost lots of computing time when the
D is high, which can be seen in Table 12.

Instead, we regularize the squared Frobienus norm of the
input-output Jacobian matrix as (Hoffman et al., 2019),
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3. Method

Given a D-dimensional multivariate time series x =
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full-time Granger causality between time series.
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ReLU Dropout Layer 
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Identity
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Figure 2. The framework of the Residual MLP layer in this work.
FC represents the fully connected layer.

3.2. Input-output Jacobian regularizer as a Granger

causality constraint

It is necessary to incorporate the null hypothesis that the
variable xi is not the Granger causality of xj as a Granger
causality constraint within the model. Conventionally, this
is accomplished by applying L1 or L2 norm regularizer to
weights of the first layer (Tank et al., 2021; Suryadi et al.,
2023). This regularizer approach contributes to learning
the Granger causal connections between variables in the
case of univariate time series prediction, where the weight
can be expressed as a direct relationship from one vari-
able to another. However, this principle encounters three
challenges. Firstly, imposing a penalty on the first layer
may hinder the neural network from adequately learning the
time series. Secondly, the weights of the first layer prevent
RNNs, LSTMs, and other recurrent networks from learn-
ing full-time Granger causality. Thirdly, if one wishes to
alter the current framework for learning Granger causality
in multivariate multi-model settings, it becomes necessary
to abandon this approach. In contrast, the input-output Ja-
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where the fi represents the i-th predictive function for i�th
variable.

To detect the lags where Granger causal effects exist, we
enforce the sparsity of the input-output Jacobian matrix.
Nevertheless, the complexity of computing the L1 norm of a
Jacobian matrix of size (D,D⌧) is O(g(D, ⌧)), and g(D, ⌧)
represents the specific time and resource requirements of
the algorithm. It will cost lots of computing time when the
D is high, which can be seen in Table 12.

Instead, we regularize the squared Frobienus norm of the
input-output Jacobian matrix as (Hoffman et al., 2019),
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which can be efficiently computed:
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where {e} denotes a constant orthonormal basis of the D-
dimensional output space. z is the output with respect to
input variables x. Tr(·) represents the trace function. Ulti-
mately, this leads to computational overhead that increases
linearly with the output dimension D.

As illustrated in (Hoffman et al., 2019), we can rewrite the
Eq. 4 and use random projection to compute the squared
Frobienus norm of the input-output Jacobian matrix effi-
ciently, which projects the high-dimensional data onto a
lower-dimensional space, thereby reducing computational
and storage costs:

kJ(x)k2F ⇡ 1

nproj

nprojX

µ=1


@ (v̂µ · z)

@x

�2
, (5)

where the random vector v̂µ is drawn from the (D � 1)-
dimensional unit sphere S

D�1, nproj is the number of ran-
dom projection. Utilizing a mini-batch size of |B| = 100,
a singular projection results in model performance nearly
indistinguishable from the exact method, while significantly
reducing computational costs by orders of magnitude.

Above all, our method can be named JRNGC-L1, JRNGC-F
according to different norm regularizers. The penalized loss
function of JRNGC-L1 can be formulated as follows:
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The penalized loss function of JRNGC-F can be formulated
as follows:
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where, in both Eq. 6 and Eq. 7, the � mean the regularizer
coefficient and D is the dimension of time series and N

is the length of time. Note that, although the Jacobian
regularizer is popular in computer vision (Jakubovitz &
Giryes, 2018; Rhodes & Lee, 2021), to our best knowledge,
we are the first to use it in Granger causality learning.

3.3. Input-output Jacobian matrix as the variable’s

causal importance

In the post-hoc analysis, we employ the learned input-output
Jacobian matrix to analyze the causal relationships between

variables. The input-output Jacobian matrix can obtain the
variable’s causal importance through Ji,j,↵ = @xj

@x(t�↵)
i

. It
allows us to obtain the variable’s lag importance, i.e., the
full-time Granger causal graph.

4. Experiments

In this section, we demonstrate the performance of the
proposed methods, i.e., JRNGC-L1, JRNGC-F on five
widely used benchmarks: the VAR model, the Lorenz-96
model, fMRI data, the DREAM-3 dataset and CausalTime
(Cheng et al., 2024b). We perform comparative experiments
with competitive methods, including GC (Granger, 1969),
PCMCI (Runge et al., 2019), cMLP (Tank et al., 2021),
cLSTM (Tank et al., 2021), NAVAR (MLP) (Bussmann
et al., 2021), NAVAR (LSTM) (Bussmann et al., 2021),
SRU, eSRU(Khanna & Tan, 2020), TCDF (Nauta et al.,
2019), JGC (Suryadi et al., 2023) and CR-VAE (Li et al.,
2023), Scalable Causal Graph Learning (SCGL, (Xu et al.,
2019)), CUTS (Cheng et al., 2023), CUTS+ (Cheng et al.,
2024a), NTS-NOTEARS (abbreviated as N.NTS, (Sun et al.,
2023)), Rhino (Gong et al., 2023), and Latent Convergent
Cross Mapping (LCCM, (Brouwer et al., 2021)), as well
as Neural Graphical Model (NGM, (Bellot et al., 2022)).
Additionally, our summary hyperparameters of experiments
for all models and other additional experiments are detailed
in the appendix.

4.1. Metrics

We employ two standard metrics: the area under the receiver
operating characteristic curve (AUROC) and the area under
the precision-recall curve (AUPRC). A value of 0.5 or lower
in AUROC indicates poor performance. In scenarios with
sparse causal relationships, AUPRC becomes a more reli-
able indicator of the model’s ability to detect causal edges.
This is due to its emphasis on correctly identifying positive
instances, a critical aspect when the number of actual causal
relationships is limited.

4.2. Experiment results and analysis

In this section, we demonstrate the effectiveness of our
proposed method in inferring Granger causality between
variables, i.e., the summary Granger causality, and the full-
time Granger causality. Specifically, we use the term “with
no lag” to express Granger causality between variables,
and “with lag” to express full-time Granger causality. Our
results show that our proposed method is capable of learning
summary Granger causality and full-time Granger causality
with high AUROC and AUPRC scores on both synthetic
and open-real benchmark datasets.

VAR model. For this model, we simulated up to T = 600
observations with the maximum true time lag ⌧ 2 {3, 5},
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where {e} denotes a constant orthonormal basis of the D-
dimensional output space. z is the output with respect to
input variables x. Tr(·) represents the trace function. Ulti-
mately, this leads to computational overhead that increases
linearly with the output dimension D.

As illustrated in (Hoffman et al., 2019), we can rewrite the
Eq. 4 and use random projection to compute the squared
Frobienus norm of the input-output Jacobian matrix effi-
ciently, which projects the high-dimensional data onto a
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and storage costs:
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where the random vector v̂µ is drawn from the (D � 1)-
dimensional unit sphere S

D�1, nproj is the number of ran-
dom projection. Utilizing a mini-batch size of |B| = 100,
a singular projection results in model performance nearly
indistinguishable from the exact method, while significantly
reducing computational costs by orders of magnitude.

Above all, our method can be named JRNGC-L1, JRNGC-F
according to different norm regularizers. The penalized loss
function of JRNGC-L1 can be formulated as follows:
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where, in both Eq. 6 and Eq. 7, the � mean the regularizer
coefficient and D is the dimension of time series and N

is the length of time. Note that, although the Jacobian
regularizer is popular in computer vision (Jakubovitz &
Giryes, 2018; Rhodes & Lee, 2021), to our best knowledge,
we are the first to use it in Granger causality learning.

3.3. Input-output Jacobian matrix as the variable’s

causal importance

In the post-hoc analysis, we employ the learned input-output
Jacobian matrix to analyze the causal relationships between

variables. The input-output Jacobian matrix can obtain the
variable’s causal importance through Ji,j,↵ = @xj

@x(t�↵)
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. It
allows us to obtain the variable’s lag importance, i.e., the
full-time Granger causal graph.

4. Experiments

In this section, we demonstrate the performance of the
proposed methods, i.e., JRNGC-L1, JRNGC-F on five
widely used benchmarks: the VAR model, the Lorenz-96
model, fMRI data, the DREAM-3 dataset and CausalTime
(Cheng et al., 2024b). We perform comparative experiments
with competitive methods, including GC (Granger, 1969),
PCMCI (Runge et al., 2019), cMLP (Tank et al., 2021),
cLSTM (Tank et al., 2021), NAVAR (MLP) (Bussmann
et al., 2021), NAVAR (LSTM) (Bussmann et al., 2021),
SRU, eSRU(Khanna & Tan, 2020), TCDF (Nauta et al.,
2019), JGC (Suryadi et al., 2023) and CR-VAE (Li et al.,
2023), Scalable Causal Graph Learning (SCGL, (Xu et al.,
2019)), CUTS (Cheng et al., 2023), CUTS+ (Cheng et al.,
2024a), NTS-NOTEARS (abbreviated as N.NTS, (Sun et al.,
2023)), Rhino (Gong et al., 2023), and Latent Convergent
Cross Mapping (LCCM, (Brouwer et al., 2021)), as well
as Neural Graphical Model (NGM, (Bellot et al., 2022)).
Additionally, our summary hyperparameters of experiments
for all models and other additional experiments are detailed
in the appendix.

4.1. Metrics

We employ two standard metrics: the area under the receiver
operating characteristic curve (AUROC) and the area under
the precision-recall curve (AUPRC). A value of 0.5 or lower
in AUROC indicates poor performance. In scenarios with
sparse causal relationships, AUPRC becomes a more reli-
able indicator of the model’s ability to detect causal edges.
This is due to its emphasis on correctly identifying positive
instances, a critical aspect when the number of actual causal
relationships is limited.

4.2. Experiment results and analysis

In this section, we demonstrate the effectiveness of our
proposed method in inferring Granger causality between
variables, i.e., the summary Granger causality, and the full-
time Granger causality. Specifically, we use the term “with
no lag” to express Granger causality between variables,
and “with lag” to express full-time Granger causality. Our
results show that our proposed method is capable of learning
summary Granger causality and full-time Granger causality
with high AUROC and AUPRC scores on both synthetic
and open-real benchmark datasets.

VAR model. For this model, we simulated up to T = 600
observations with the maximum true time lag ⌧ 2 {3, 5},
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where {e} denotes a constant orthonormal basis of the D-
dimensional output space. z is the output with respect to
input variables x. Tr(·) represents the trace function. Ulti-
mately, this leads to computational overhead that increases
linearly with the output dimension D.

As illustrated in (Hoffman et al., 2019), we can rewrite the
Eq. 4 and use random projection to compute the squared
Frobienus norm of the input-output Jacobian matrix effi-
ciently, which projects the high-dimensional data onto a
lower-dimensional space, thereby reducing computational
and storage costs:
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where the random vector v̂µ is drawn from the (D � 1)-
dimensional unit sphere S

D�1, nproj is the number of ran-
dom projection. Utilizing a mini-batch size of |B| = 100,
a singular projection results in model performance nearly
indistinguishable from the exact method, while significantly
reducing computational costs by orders of magnitude.

Above all, our method can be named JRNGC-L1, JRNGC-F
according to different norm regularizers. The penalized loss
function of JRNGC-L1 can be formulated as follows:
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where, in both Eq. 6 and Eq. 7, the � mean the regularizer
coefficient and D is the dimension of time series and N

is the length of time. Note that, although the Jacobian
regularizer is popular in computer vision (Jakubovitz &
Giryes, 2018; Rhodes & Lee, 2021), to our best knowledge,
we are the first to use it in Granger causality learning.

3.3. Input-output Jacobian matrix as the variable’s

causal importance

In the post-hoc analysis, we employ the learned input-output
Jacobian matrix to analyze the causal relationships between

variables. The input-output Jacobian matrix can obtain the
variable’s causal importance through Ji,j,↵ = @xj
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. It
allows us to obtain the variable’s lag importance, i.e., the
full-time Granger causal graph.

4. Experiments

In this section, we demonstrate the performance of the
proposed methods, i.e., JRNGC-L1, JRNGC-F on five
widely used benchmarks: the VAR model, the Lorenz-96
model, fMRI data, the DREAM-3 dataset and CausalTime
(Cheng et al., 2024b). We perform comparative experiments
with competitive methods, including GC (Granger, 1969),
PCMCI (Runge et al., 2019), cMLP (Tank et al., 2021),
cLSTM (Tank et al., 2021), NAVAR (MLP) (Bussmann
et al., 2021), NAVAR (LSTM) (Bussmann et al., 2021),
SRU, eSRU(Khanna & Tan, 2020), TCDF (Nauta et al.,
2019), JGC (Suryadi et al., 2023) and CR-VAE (Li et al.,
2023), Scalable Causal Graph Learning (SCGL, (Xu et al.,
2019)), CUTS (Cheng et al., 2023), CUTS+ (Cheng et al.,
2024a), NTS-NOTEARS (abbreviated as N.NTS, (Sun et al.,
2023)), Rhino (Gong et al., 2023), and Latent Convergent
Cross Mapping (LCCM, (Brouwer et al., 2021)), as well
as Neural Graphical Model (NGM, (Bellot et al., 2022)).
Additionally, our summary hyperparameters of experiments
for all models and other additional experiments are detailed
in the appendix.

4.1. Metrics

We employ two standard metrics: the area under the receiver
operating characteristic curve (AUROC) and the area under
the precision-recall curve (AUPRC). A value of 0.5 or lower
in AUROC indicates poor performance. In scenarios with
sparse causal relationships, AUPRC becomes a more reli-
able indicator of the model’s ability to detect causal edges.
This is due to its emphasis on correctly identifying positive
instances, a critical aspect when the number of actual causal
relationships is limited.

4.2. Experiment results and analysis

In this section, we demonstrate the effectiveness of our
proposed method in inferring Granger causality between
variables, i.e., the summary Granger causality, and the full-
time Granger causality. Specifically, we use the term “with
no lag” to express Granger causality between variables,
and “with lag” to express full-time Granger causality. Our
results show that our proposed method is capable of learning
summary Granger causality and full-time Granger causality
with high AUROC and AUPRC scores on both synthetic
and open-real benchmark datasets.

VAR model. For this model, we simulated up to T = 600
observations with the maximum true time lag ⌧ 2 {3, 5},
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where {e} denotes a constant orthonormal basis of the D-
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