
tnGPS: Discovering Unknown Tensor Network Structure Search
Algorithms via Large Language Models (LLMs)
Junhua Zeng1* {jh.zenggdut@gmail.com}, Chao Li2* {chao.li@riken.jp}, Zhun Sun3 {zhun.sun@tohoku.ac.jp}, Qibin Zhao2

{qibin.zhao@riken.jp}, and Guoxu Zhou1,4 {gx.zhou@gdut.edu.cn}
*Equal contribution 1Guangdong University of Technology, China; 2RIKEN-AIP, Japan; 3Tencent Inc., China; 4Key Laboratory of Intelligent Detection
and the Internet of Things in Manufacturing, China.

Vision and Contributions

When TN-SS Meets LLMs

How Human Experts Conduct Innovative Research

Numerical Evidence

Concluding Remarks

A tensor network (TN) is a mathematical representation of a large,
complex object that can be decomposed into simpler, interconnected parts.

Emergent geometry
In the framework of holography, there is a very sugges-
tive connection between entanglement, TNs and quan-
tum gravity: it looks like the MERA is a lattice realization
of a space with some geometry, in which the curvature
is somehow linked to entanglement. The observation
implies that space- time geometry may emerge from
the underlying structure of entanglement in complex
quantum states. An instance that has been studied in some
detail is the possible relation between MERA and the
AdS/CFT or gauge/gravity duality162. This connection
between TNs and quantum gravity was originally noticed
in REF.15, and later investigated in other studies163–166.
More specifically, for a scale- invariant MERA, the
tensors in the bulk can be understood as a discretized
AdS geometry, whereas the indices at the boundary
correspond to the local Hilbert spaces obtained after a
discretization of a CFT (FIG. 4). The connection can be
made more formal by taking the continuum MERA41
and evaluating the metric of the resulting smooth space
in the bulk, with the curvature of the geometry being
linked to the density of disentanglers164,165. Currently,
the connection is intriguing and has motivated a lot
of research, especially from the string theory com-
munity. In particular, there have also been claims that
MERA does not correspond to an AdS geometry, but
rather to a de Sitter geometry167. In recent work, how-
ever, it was shown that MERA is neither AdS nor de
Sitter, but rather a lightcone geometry168. Although
this connection is certainly suggestive and remarkable,

the role played by TNs in the quantization of gravity
remains unclear.

Artificial intelligence
In this section, I will comment on the recent observation
that neural networks (such as those used in deep learn-
ing) are in fact particular cases of TNs, and on the use of
MPS to improve some methods of artificial intelligence.
Additionally, I will outline the result that syntactic rela-
tions in language have a TN structure that is inherited
by probabilistic language models.

Machine learning
Several promising connections between TNs and
machine learning have been put forward. In REF.16, it was
shown that deep learning architectures can be under-
stood using the language of quantum entanglement.
To name a couple of examples, convolutional networks
correspond to specific cases of TTNs, and recurrent neu-
ral networks correspond to MPS. More generically, the
whole machinery of quantum information and entan-
glement theory can be applied to understand neural
networks in new ways. One must, however, be careful,
since in general neural networks are characterized by
nonlinear functions, whereas TNs are linear and there-
fore obey the superposition principle. In REF.169, it was
shown that there is an equivalence between restricted
Boltzmann machines (a simple type of neural network)
and TN states. Boltzmann machines were also shown
to be connected to some classes of TN states in arbitrary
dimensions170. In REFS171–174, MPS and TTNs were used
for supervised and unsuper vised learning tasks of clas-
sifying images. Finally, in REF.175, it was discussed how
quantum circuits based on MPS and TTNs could be
used to implement machine- learning tasks in near-term
quantum devices, and REF.176 explored how probabilistic
graphical models motivate the concept of generalized
TNs, in which information from a tensor can be copied
and reused in other parts of the network, thus allowing
for new types of variational wavefunctions.

Language models
From the perspective of computational linguistics,
probabilistic language models used for speech and text
recog nition were found to have a TN structure. This is a
consequence of the fact that Chomsky’s MERGE operation
can be understood as a physical coarse- graining of infor-
mation177. Such probabilistic models usually have the
form of a TTN or even an MPS, for example, loop-free
TNs. In turn, this matches the empirical observation that
convolutional neural networks are quite good at language
processing. In connection with the results mentioned
in the previous section, it is clear that this is indeed so
because such neural networks are TTNs, which encode
the renormalization group structure of language found in
REF.177, and are therefore naturally well-suited for the task.

Further topics
There are many other interesting results related to TN
states and methods, and I cannot attempt to summarize
all of them here. Nevertheless, here I outline a few that I
believe are particularly relevant.

Boltzmann machine
A specific type of neural
network in which the target is
to reproduce some Gibbs
thermal probabilities.

MERGE
Linguistic operation introduced
by Noam Chomsky, which
picks up two entities (for
example, noun and adjective)
and produces a new one
from the two (for instance,
noun phrase).

L

Ω L

Fig. 4 | 1D MERA. The entanglement entropy of a block of length L for a multiscale
entanglement renormalization ansatz (MERA) is upper- bounded as χ Ω≤ × ∂S logL L, with

Ω∂ L the boundary of region ΩL in the tensor network (that is, the number of links crossed
by the blue dashed line) and χ the bond dimension. It is easy to realize that Ω∂ =O L(log)L ,
and therefore one has that SL = O(log L) for the 1D MERA. This calculation matches the
behaviour from conformal field theories (CFTs) in (1 + 1)D, and corresponds, precisely ,
to the lattice version of the Ryu–Takatanagi prescription to compute the entanglement
entropy in anti- de Sitter (AdS)/CFT196. Entanglement is thus the area in holographic space
of the minimal surface separating the two regions. This is one of the key observations that
motivates the analogy between MERA and AdS/CFT.

www.nature.com/natrevphys

REV IEWS

546 | SEPTEMBER 2019 | VOLUME 1

Representation for complex quantum systems  
(Orus, Nature Phys.’19)

TREE-TENSOR-NETWORK CLASSIFIERS FOR MACHINE … PHYSICAL REVIEW A 104, 042408 (2021)

FIG. 1. Overview of the machine learning workflow for a TTN classifier. A data instance x from a classical data set is transformed into
a quantum state |!(0)(x)〉 by feeding each element of the data vector xi through a local map φ(xi) defining a qubit superposition, as shown
schematically on the Bloch sphere. The isometric tensors of the TTN (triangles) define a coarse graining of collections of these quantum feature
vectors at progressively higher levels of scale. At the highest level of scale, the projection of the extracted feature vector onto a collection of
weight vectors 〈W"| defines a classification decision.

states also ensures that any entanglement in the quantum ML
model arises from correlations in an ensemble of data and
not from a priori assumptions about preexisting correlations
for individual data vectors [28]. We will parametrize the map
from an L-dimensional classical data vector x to an ensemble
of L two-level systems (qubits) as

|!(0)(x)〉 =
L⊗

j=1

2∑

i j=1

φ
(j)
i j

(x j)|i j〉

. (1)

That is, the parametrization is accomplished in terms of local
maps φ(j)(x) mapping a single data element into a superposi-
tion of qubit states (see Fig. 1). In order to ensure that the full
map !(0)(x) maps each data instance into a normalized vector
in Hilbert space, we require that

∑

i

∣∣φ(j)
i (x)

∣∣2 = 1 ∀ x. (2)

This condition is satisfied by the phaselike encoding

φ0(x) = cos
(π

2
x − xmin

xmax − xmin

)
, (3)

φ1(x) = sin
(π

2
x − xmin

xmax − xmin

)

that has been used in Refs. [28,36,46,63] to encode data for
quantum-inspired ML applications and is shown schemati-
cally by the Bloch sphere representations of each classical
data element in Fig. 1. In Ref. [56] a quantum-inspired
algorithm using MPSs (known in the numerical analysis com-
munity as tensor trains [54]) found good performance in
certain learning tasks using the map

φ0(x) = 1, φ1(x) = ax. (4)

This has the appealing property that each data vector x is
mapped into a weighted superposition of all correlations
xix j · · · xk of orders 0 through L with each xi appearing at
most once, and so a tensor-network weighting vector in this
space can efficiently select out the most relevant correlations
from this exponentially large set. The factor a can be used to
scale the data and avoid numerical overflow. Unfortunately,
this map does not satisfy the condition in Eq. (2) and so is not
suitable for application on quantum hardware. We can define
a generalization of Eq. (3) as

φ0(x) = cos
(

a
x

xmax

)
, φ1(x) = sin

(
a

x
xmax

)
, (5)

with a ∼ O(0.1), which satisfies Eq. (2) and so is suitable
for quantum discriminative applications. Noting that a x

xmax
&

1 ∀ x, we can use the small-angle approximation to find

φ0(x) = 1 + O(a2), φ1(x) = a
x

xmax
+ O(a3), (6)

and so this map has the same essential features as Eq. (4). A
comparison of model performance utilizing the maps (5) and
(4) will be given in Sec. III.

B. Construction of unsupervised feature extractor

We now turn to building an unsupervised feature extractor
as a TTN acting on the encoded quantum data description,
following Ref. [29]. This procedure is depicted graphically by
the dotted blue box in Fig. 1. We assume that we have a collec-
tion of M training data vectors {xm}, m = 1, . . . , M, that has
been encoded into a collection of training states {|!(xm)〉}.
Using this map and these states, we would like to build a
model f (x) = 〈W |!(x)〉 parametrized by a weight vector |W 〉
in the many-body Hilbert space, to perform some machine
learning task (e.g., classification). Given our collection of
training vectors, the optimal weights for a given task can be

042408-3

Tensor-network learning models

Tensor Network Structure Search (TN-SS):

In this work, the main contributions are:

1. We propose tensor-network-purposed GPT-driven structure search
(tnGPS), a large language model (LLM)- driven automation framework
designed to automatically generate novel and effective TN-SS algorithms
tailored to specific downstream tasks;

2. Experimental results demonstrate that the algorithms discovered by
tnGPS outperform existing TN-SS algorithms on benchmark data.

Nature | Vol 610 | 6 October 2022 | 49

Carlo tree search (MCTS) planning procedure. The network takes as
input a state (that is, a tensor tS to decompose), and outputs a policy
and a value. The policy provides a distribution over potential actions.
As the set of potential actions (u(t), v(t), w(t)) in each step is enormous,
we rely on sampling actions rather than enumerating them21,22. The
value provides an estimate of the distribution z of returns (cumulative
reward) starting from the current state tS . With the above reward
scheme, the distribution z models the agent’s belief about the rank of
the tensor St. To play a game, AlphaTensor starts from the target tensor
(nT) and uses the MCTS planner at each step to choose the next action.
Finished games are used as feedback to the network to improve the
network parameters.

Overcoming the challenges posed by TensorGame—namely, an enor-
mous action space, and game states described by large 3D tensors
representing an abstract mathematical operation—requires multiple
advances. All these components, described briefly below, substantially

improve the overall performance over a plain AlphaZero agent (see
Methods and Supplementary Information for details).

Neural network architecture
We propose a transformer-based23 architecture that incorporates
inductive biases for tensor inputs. We first project the S × S × S input
tensor into three S × S grids of feature vectors by using linear layers
applied to the three cyclic transpositions of the tensor. The main part of
the model comprises a sequence of attention operations, each applied
to a set of features belonging to a pair of grids (Extended Data Figs. 3
and 4). This generalizes axial attention24 to multiple grids, and is both
more efficient and yields better results than naive self-attention. The
proposed architecture, which disregards the order of rows and columns
in the grids, is inspired by the invariance of the tensor rank to slice
reordering. The final feature representation of the three matrices is
passed both to the policy head (an autoregressive model) and the value
head (a multilayer perceptron).

Synthetic demonstrations
Although tensor decomposition is NP-hard, the inverse task of con-
structing the tensor from its rank-one factors is elementary. Hence,
we generate a large dataset of tensor-factorization pairs (synthetic
demonstrations) by first sampling factors u v w{(, ,)}r r r

r
R() () ()

=1 at random,
and then constructing the tensor = ∑ ⊗ ⊗r

R r r r
=1

() () ()D u v w . We train the
network on a mixture of supervised loss (that is, to imitate synthetic
demonstrations) and standard reinforcement learning loss (that is,
learning to decompose a target tensor nT) (Fig. 2). This mixed training
strategy—training on the target tensor and random tensors— substan-
tially outperforms each training strategy separately. This is despite
randomly generated tensors having different properties from the tar-
get tensors.

Change of basis
 nT (Fig. 1a) is the tensor representing the matrix multiplication bilinear
operation in the canonical basis. The same bilinear operation can be
expressed in other bases, resulting in other tensors. These different

Algorithm 1
A meta-algorithm parameterized by =u v w{ , , }r r r() () ()

r
R

1 for computing
the matrix product C = AB. It is noted that R controls the number of
multiplications between input matrix entries.

Parameters: =u v w{ , , }r r r() () ()
r
R

1: length-n2 vectors such that
Tn

r r r() () ()
r
R

1= ∑ ⊗ ⊗= u v w
Input: A, B: matrices of size n × n
Output: C = AB
(1) for r = 1, …, R do
(2) ← + + + +! !m u a u a v b v b() ()r n n1 1

r
n
r r

n
r

1
() ()

1
() ()2 22 2

(3) for i = 1, …, n2 do
(4) !c w m w mi R1i i

R(1) ()← + +
return C

Change of basis

Pre-generated
synthetic

demonstrations

Played games
buffer

Played
game

Sample
random state

Neural network

Policy head

Value head

Acting

...

LearningUpdated
model

Network inputTraining labels

(u, v, w)

(u(1), v(1), w(1)) (u(2), v(2), w(2)) (u(3), v(3), w(3))

Fig. 2 | Overview of AlphaTensor. The neural network (bottom box) takes
as input a tensor St, and outputs samples (u, v, w) from a distribution
over potential next actions to play, and an estimate of the future returns
(for example, of S−Rank ()t). The network is trained on two data sources:

previously played games and synthetic demonstrations. The updated network
is sent to the actors (top box), where it is used by the MCTS planner to generate
new games.Discovering faster matrix multiplication 

(AlphaTensor, Fawzi et al., Nature’22)

Search for the most suitable TN
model for the task

Various TN models

Motivation:

Language Space

Algorithm Space

Prior Arts

TNGA: Genetic Algorithm (Li and Sun, ICML’20)

TNLS: Stochastic Search (Li et al., ICML’22)

TnALE: Alternating Enumeration (Li et al., ICML’23)

GREEDY: Greedy Algorithm (Hashemizadeh et al., arXiv, 2020)

SVDinsTN: SVD-like Optimization (Zheng et al., CVPR’24)

Bayesian TN-SS (Zeng et al., NN, 2024)

 ……………………

Unknown algorithms

Exploring the enormous language space of
LLMs for autonomous TN-SS algorithm
discovery, saving human experts from the
labor-intensive algorithm design process and
letting them focus on more challenging
problems.

“The limits of my
language mean
the limits of my world.”

— from “Tractatus Logico-Philosophicus”

(1889-1951)

tnGPS: Discovering Unknown Tensor Network Structure Search Algorithms via Large Language Models

…

(, SCORE，CONTEXT)

(, SCORE，CONTEXT)

Knowledge
Categorisation (KC)

Idea Pool Idea Dropout (ID)

Multiple-Stage Innovation

……… Incremental
Innovation (II)

Knowledge
Recombination (KR)

(, SCORE，CONTEXT)

Experiments
(Evaluation)

… …

…

SCORE SCORE SCORE

…

…

Diversity Injection (DI)

…

1 2

3

4

5

6

 : ideas. Different colors indicate the idea from different blocks.

: workflow indicators, indicating the transition of blocks.

: clusters containing similar ideas.

: arrows pointing from input to output for an operations.

Figure 1. A basic workflow to illustrate how human experts do
innovation in research.

follow a similar hypothesis or principle. In Idea Dropout

(ID), this phase models the behavior of human experts by
filtering out certain ideas from the pool, allowing them to fo-
cus only on the most interesting ones for deeper study. The
metrics used in ID are typically multivariate, encompassing
factors such as personal interests, performance, trends, or
even randomness due to the large scale of the idea pool.

In this work, innovation is considered as an operation that
generates new ideas from existing ones. As shown in Fig-
ure 1, we model innovation as a two-stage process consisting
of knowledge recombination (KR) and incremental innova-

tio (II) These phases are key ingredients to create values
in not only research but also in strategy and entrepreneur-
ship (Rubin & Abramson, 2018; Xiao et al., 2022). More
specifically speaking, KR refers to the process of generating
new ideas by merging, integrating, or reconfiguring existing
ideas. II involves gradual improvements or minor modifi-
cations to existing ideas. Additionally, Figure 1 formalizes
diversity injection (DI), which is forced to generate new
ideas that are “orthogonal” to the existing ones. DI is com-
monly observed in real-world scenarios, such as brainstorm-
ing sessions in team meetings or critical comments from
non-experts. Significant innovation is ultimately expected
to emerge by recursively invoking KR, II, and DI within
the workflow.

3. tnGPS: a LLM-Driven Framework for
TN-SS Algorithm discovery

In this section, we introduce tnGPS, an LLM-driven frame-
work for discovering TN-SS algorithms. The introduction
primarily focuses on the technical aspects, illustrating how

tnGPS is designed with a pipeline of prompts to harness
LLMs in order to discover novel TN-SS algorithms, mim-
icking the innovation process of human experts.

Global architecture of tnGPS. We conceptualize tnGPS
as a system where the inputs are known TN-SS algorithms
encoded in Python, and the outputs are newly discovered
TN-SS algorithms. Inspired by the way human experts con-
duct innovative research, tnGPS is designed with a global
pipeline similar to the one depicted in Figure 1. In this
design, the LLM acts as an agent to perform the functions
of each phase shown in Figure 1, replacing human experts.
Below, we introduce the specific implementation of each
block in detail.

Idea Pool, also referred to as “the pool” for brevity
throughout the paper, is defined as a set of algo-
rithms described as (algorithm, score). Here,
algorithm contains various implementations of the func-
tion GenerateSamples(·) as defined in Eq. (2) of a TN-SS
algorithm using Python, and score is a scalar value indi-
cating the algorithm’s performance in the TN-SS problem.
To help LLMs understand TN-SS algorithms effectively, all
algorithms in the pool are standardized with a unified
interface, as depicted in Figure 2. Additionally, the text
in Figure 2 will serve as the “pilot” for constructing the
prompt, as discussed at the end of this section.

Knowledge categorisation (KC). In this phase, we cre-
ate clusters of algorithms using LLMs. Each cluster con-
tains similar algorithms, representing a distinct piece
of knowledge on how to solve TN-SS. In doing so, we first
simplify and initialize the clusters with each algorithm in the
pool. Once a new algorithm (e.g. one generated by tnGPS)
is coming, we prompt the LLM to evaluate the methodolog-
ical similarity between the new algorithm and the cluster
centroids, which are the algorithms with the best scores in
each cluster. The new algorithm is then assigned an index
to declare its cluster membership. The key prompt used in
this phase is illustrated in Figure 3.

Idea dropout (ID). The dropout is conducted by randomly
selecting algorithms from the pool using a roulette selection
mechanism. Consider N algorithms, indexed from 1 to N
based on their scores, ranked from highest to lowest. In-
spired by the previous work (Li & Sun, 2020), the roulette
selection performs a sequential sampling without replace-
ment The probability of selecting the kth algorithm is given
by

Pr(k) = max

⇢
0.01, ln

✓
↵

eps+ k

◆�
, (3)

where eps is a very small positive number to ensure numeri-
cal stability, ln(·) denotes the natural logarithm function,
and ↵ > 0 is a hyperparameter that controls the selection
preference. A smaller value of ↵ increases the likelihood of
selecting algorithms with higher scores.

4

Human Experts Research Workflow

Incremental Innovation (II) Prompt

Idea Pool: Gather information through
literature reviews and paper retrieval.
Knowledge Categorization (KC): Refine
ideas into knowledge clusters.
Idea Dropout (ID): Filter out less
interesting ideas to focus on the most
promising ones.
Knowledge Recombination (KR) :
Generate new ideas by merging existing
ones.
Incremental Innovation (II): Make gradual
improvements to existing ideas.
Diversity Injection (DI): Introduce new,
orthogonal ideas through brainstorming or
external feedback.
Experiments (Evaluation): Test and
score ideas to validate their potential.

Workflow of tnGPS

Building LLM-agent to mimic human experts for innovative research.

The Full Prompt

tnGPS: Discovering Unknown Tensor Network Structure Search Algorithms via Large Language Models

Algorithm 1: # centroid

Algorithm N: # centroid

Give me a novel ‘GenerateSample’ that is methodologically different from the
above algorithms. You are encouraged to be creative to incorporate novel ideas
but do not simply stack methods together.

… (omitted)
…

…

Figure 6. The key prompt used in diversity injection (DI). The
purple sentence specifies the goal and the orange sentence clarifies
the restriction.

ation. To meet these requirements, we designed the prompt
shown in Figure 7. It’s important to note that the prompt in
Figure 7 was developed through a trial-and-error process,
making it dependent on the specific LLM used and our code-
writing conventions. As a result, manual adjustments may
be necessary when using different LLM models.

Provide runnable code that has implemented all your ideas (If any part
requires choice, use choices from random). Do not leave any placeholder for
me, all the functionality should be actually implemented. Your response format
<code>
Your code
</code>
Also, you don’t need to add any other words.

Figure 7. The prompt used for format restriction of the output.
The purple sentence specifies the goal and the orange sentence
clarifies the restriction.

Finally, the complete prompts used in KC, KR, II and
DI are constructed following the same architecture as shown
in Figure 8. It consists of three parts: interface description
(Figure 2), those goal-oriented prompts following a list of
algorithms and scores (e.g., Figures 3, 4, 5, 6), and format
restriction (Figure 7). These three parts are concatenated
together to provide comprehensive instructions to the LLM.

Interface description

Format restriction

A list of algorithms (and scores)

Purpose and restriction instructions.
+

beginning

end

Figure 8. Illustration to prompt architecture.

Experiments (evaluation) with sandbox. All newly
generated TN-SS algorithms are evaluated on local (su-
per)computers using task-specific training data. However,
due to the probabilistic nature of LLMs, there is a possibility
of receiving unexpected outputs, such as unrunable code,
unnecessary comments, or error messages from the LLM
platforms. To address this issue, we construct a sandbox

environment to run the code in a relatively isolated setting
using small-scale training data before conducting high-cost
formal numerical experiments. If program errors, abnormal
resource consumption, or unexpected output formats occur,
the sandbox will immediately terminate the process and
remove the problematic code from the job queue awaiting
implementation.

4. Experimental Results
In this section, we use several benchmarks to demonstrate
that tnGPS can discover new algorithms that outperform
SOTA methods for TN-SS. Additionally, we conduct abla-
tion experiments to evaluate the impact of each component
within tnGPS on the discovery performance.

4.1. Natural Images Compression

In this experiment, we aim to use TN-SS algorithms to
search for optimal topology and ranks for a tensor network
(TN) to represent natural images with fewer parameters.

Data preparation. We randomly select 14 images from
the BSD500 dataset (Arbelaez et al., 2010). These images
are converted to grayscale and resized to 256⇥ 256 pixels.
Each image is then reshaped into an order-8 tensor by the
default Python reshaping function. The 14 pre-processed
images are split into two sets: 4 images for training and 10
images for testing.

Settings of tnGPS. We use three existing TN-SS algorithms
as inputs: TNGA (Li & Sun, 2020), GREEDY (Hashem-
izadeh et al., 2020) and TNLS (Li et al., 2022). The eval-
uation phase in tnGPS calculates Eq. (1) for each gener-
ated algorithm, averaging the results over the images in the
training set. In Eq. (1), we set � = 5 and use the same
compression ratio function � as in previous work (Li & Sun,
2020). The hyperparameters required in tnGPS are listed
in Table 1. For this experiment, we set m = 2, n = 1,
↵1 = ↵2 = 100, c = 5 and #Iter = 30. Additionally, we
select gpt-4-1106-preview as the LLM model, apply-
ing a temperature of 0.7 uniformly across all prompts. After
implementation, we select the top-three algorithms from the
pool (excluding the input algorithms), termed Ho-11, Ho-2,
and Ho-3, as the outputs of tnGPS. The three algorithms
will be evaluated and compared with the existing TN-SS
algorithms.

Implementation details. In the experiment, we imple-
ment four additional sampling-based TN-SS algorithms in-
cluding TNGA (Li & Sun, 2020), TNLS (Li et al., 2022),
GREEDY (Hashemizadeh et al., 2020) and TnALE (Li et al.,
2023). Since the vanilla TNGA and TNLS are designed to

1The name “Ho” is shorthand for ”homunculus”, representing
that these algorithms are created through some “unusual” means.

6

tnGPS: Discovering Unknown Tensor Network Structure Search Algorithms via Large Language Models

Function description:
def GenerateSample(history_populations, fitness_scores, best_individual,
 new_individuals_numbers, current_iteration, maximum_iteration, hyperparameters):

 # GenerateSample: Function takes in integer vectors and output integer vectors.

 # Inputs:
 # history_populations: Dictionary. Keys are integer strings from '1' to some
 # larger value. Each key contains a list of integer numpy vectors.
 # fitness_scores: Dictionary. Keys are same as history_populations.

 # hyperparameters: Dictionary. Keys are strings contain the constants
 # used for computation. Default values should be provided using .get().

 # Output:
 # new_individuals: List, len new_individuals_numbers, contains integer
 # numpy vectors. Each vector's len is the same as the len of the vectors in
 # history_populations. Furthermore, The elements are within range
 # [1,hyperparameters[‘code_upperbound']].

 return new_individuals

… (omitted)

Figure 2. The prompt used for interface description.

Algorithm 1: # centroid

Algorithm N: # centroid

=============
New Algorithm:

==============
Which algorithm in the above is methodologically most similar to the new algorithm?
Just give me the function number with no other words.

… (omitted)…

…

…

Figure 3. The key prompt used in knowledge categorisation (KC).
The purple sentence specifies the goal of the prompt.

To select a preferred algorithm in ID, we need to implement
the roulette selection twice. First, we perform selection at
the knowledge level. This involves selecting the centroids
of clusters to determine which clusters will be considered.
Second, within the selected clusters, we perform selection at
the algorithm level to choose the preferred algorithm from
each cluster. This “bi-level” process is repeated until the
desired number of algorithms has been selected.

Knowledge recombination (KR). Guided by the workflow
shown in Figure 1, KR is a fundamental phase to generate
novel TN-SS algorithms in tnGPS. In this phase, the input
consists of N � 0 pairs of (algorithm, score). The
output is M new algorithms generated by the LLM. The
key prompt used in KR is illustrated in Figure 4. The de-
sign of this prompt aims to enable the LLM to understand
the factors contributing to the superior performance of cer-
tain algorithms while avoiding the meaningless stacking of
Python code.

Incremental innovation (II) follows KR as another block
for creating innovation in tnGPS. Unlike KR which recom-
bines algorithms, II aims at mortifying algorithms indi-
vidually and slightly. Figure 5 gives the key prompt used
in this phase. In our experience with GPT-3.5/4, we found

Algorithm 1:

Algorithm 1 score:

Algorithm N:

Algorithm N score:
Algorithms 1 to N are implementations of the ‘GenerateSample’ function. A lower score
implies better performance.

Learning from their results, think about what works and what doesn’t, provide M novel
methods with lower scores. You are encouraged to be creative to incorporate novel
ideas but do not simply stack methods together.

… (omitted)

…

…

…

…

Figure 4. The key prompt used in knowledge recombination (KR).
The purple sentence specifies the goal and the orange sentence
clarifies the restriction.

that the LLM tends to improve code aspects such as effi-
ciency, readability, and parallelism, which are not the focus
of this phase. To prevent this, we include specific instruc-
tions (highlighted in orange in Figure 5) to guide the LLM
away from these unintended improvements and focus on the
targeted modifications.

Algorithm 1:

Algorithm N:

Independently make improvements over these Algorithms that will increase their
practical performance (not on the code efficiency, readability and parallel
processing level). You are encouraged to be creative to incorporate novel ideas.

… (omitted)
…

…

Figure 5. The key prompt used in incremental innovation (II).
The purple sentence specifies the goal and the orange sentence
clarifies the restriction.

Diversity injection (DI). We implement DI by leveraging
the LLM to create new clusters in the algorithm pool. In
doing so, we design the prompt as Figure 6, instructing
the LLM to generate TN-SS algorithms that are method-
ologically distinct from the centroids of existing clusters.
Following this, the newly created algorithms from DI serve
as centroids for new clusters. The newly created algorithms
from DI serve as centroids for new clusters. Since rely-
ing solely on existing knowledge can lead to “path depen-
dence”—where new ideas are heavily influenced by past
knowledge—we encourage the LLM to explore new ideas in
DI without considering performance metrics (e.g., scores).
This approach enriches the diversity of the algorithm pool.

Format restriction and prompt architecture. In addition
to the goal-oriented prompts mentioned earlier, we need to
enforce specific format restrictions on the LLM’s output.
For instance, this includes omitting unnecessary analyses
and specifying the desired format for code outputs. Further-
more, instructions related to code writing must be included
to ensure that there are no compilation failures during evalu-

5

Knowledge Categorization (KC) Prompt Knowledge Recombination (KR) Prompt

tnGPS: Discovering Unknown Tensor Network Structure Search Algorithms via Large Language Models

Function description:
def GenerateSample(history_populations, fitness_scores, best_individual,
 new_individuals_numbers, current_iteration, maximum_iteration, hyperparameters):

 # GenerateSample: Function takes in integer vectors and output integer vectors.

 # Inputs:
 # history_populations: Dictionary. Keys are integer strings from '1' to some
 # larger value. Each key contains a list of integer numpy vectors.
 # fitness_scores: Dictionary. Keys are same as history_populations.

 # hyperparameters: Dictionary. Keys are strings contain the constants
 # used for computation. Default values should be provided using .get().

 # Output:
 # new_individuals: List, len new_individuals_numbers, contains integer
 # numpy vectors. Each vector's len is the same as the len of the vectors in
 # history_populations. Furthermore, The elements are within range
 # [1,hyperparameters[‘code_upperbound']].

 return new_individuals

… (omitted)

Figure 2. The prompt used for interface description.

Algorithm 1: # centroid

Algorithm N: # centroid

=============
New Algorithm:

==============
Which algorithm in the above is methodologically most similar to the new algorithm?
Just give me the function number with no other words.

… (omitted)…

…

…

Figure 3. The key prompt used in knowledge categorisation (KC).
The purple sentence specifies the goal of the prompt.

To select a preferred algorithm in ID, we need to implement
the roulette selection twice. First, we perform selection at
the knowledge level. This involves selecting the centroids
of clusters to determine which clusters will be considered.
Second, within the selected clusters, we perform selection at
the algorithm level to choose the preferred algorithm from
each cluster. This “bi-level” process is repeated until the
desired number of algorithms has been selected.

Knowledge recombination (KR). Guided by the workflow
shown in Figure 1, KR is a fundamental phase to generate
novel TN-SS algorithms in tnGPS. In this phase, the input
consists of N � 0 pairs of (algorithm, score). The
output is M new algorithms generated by the LLM. The
key prompt used in KR is illustrated in Figure 4. The de-
sign of this prompt aims to enable the LLM to understand
the factors contributing to the superior performance of cer-
tain algorithms while avoiding the meaningless stacking of
Python code.

Incremental innovation (II) follows KR as another block
for creating innovation in tnGPS. Unlike KR which recom-
bines algorithms, II aims at mortifying algorithms indi-
vidually and slightly. Figure 5 gives the key prompt used
in this phase. In our experience with GPT-3.5/4, we found

Algorithm 1:

Algorithm 1 score:

Algorithm N:

Algorithm N score:
Algorithms 1 to N are implementations of the ‘GenerateSample’ function. A lower score
implies better performance.

Learning from their results, think about what works and what doesn’t, provide M novel
methods with lower scores. You are encouraged to be creative to incorporate novel
ideas but do not simply stack methods together.

… (omitted)

…

…

…

…

Figure 4. The key prompt used in knowledge recombination (KR).
The purple sentence specifies the goal and the orange sentence
clarifies the restriction.

that the LLM tends to improve code aspects such as effi-
ciency, readability, and parallelism, which are not the focus
of this phase. To prevent this, we include specific instruc-
tions (highlighted in orange in Figure 5) to guide the LLM
away from these unintended improvements and focus on the
targeted modifications.

Algorithm 1:

Algorithm N:

Independently make improvements over these Algorithms that will increase their
practical performance (not on the code efficiency, readability and parallel
processing level). You are encouraged to be creative to incorporate novel ideas.

… (omitted)
…

…

Figure 5. The key prompt used in incremental innovation (II).
The purple sentence specifies the goal and the orange sentence
clarifies the restriction.

Diversity injection (DI). We implement DI by leveraging
the LLM to create new clusters in the algorithm pool. In
doing so, we design the prompt as Figure 6, instructing
the LLM to generate TN-SS algorithms that are method-
ologically distinct from the centroids of existing clusters.
Following this, the newly created algorithms from DI serve
as centroids for new clusters. The newly created algorithms
from DI serve as centroids for new clusters. Since rely-
ing solely on existing knowledge can lead to “path depen-
dence”—where new ideas are heavily influenced by past
knowledge—we encourage the LLM to explore new ideas in
DI without considering performance metrics (e.g., scores).
This approach enriches the diversity of the algorithm pool.

Format restriction and prompt architecture. In addition
to the goal-oriented prompts mentioned earlier, we need to
enforce specific format restrictions on the LLM’s output.
For instance, this includes omitting unnecessary analyses
and specifying the desired format for code outputs. Further-
more, instructions related to code writing must be included
to ensure that there are no compilation failures during evalu-

5

Diversity Injection (DI) Prompt

tnGPS: Discovering Unknown Tensor Network Structure Search Algorithms via Large Language Models

Algorithm 1: # centroid

Algorithm N: # centroid

Give me a novel ‘GenerateSample’ that is methodologically different from the
above algorithms. You are encouraged to be creative to incorporate novel ideas
but do not simply stack methods together.

… (omitted)
…

…

Figure 6. The key prompt used in diversity injection (DI). The
purple sentence specifies the goal and the orange sentence clarifies
the restriction.

ation. To meet these requirements, we designed the prompt
shown in Figure 7. It’s important to note that the prompt in
Figure 7 was developed through a trial-and-error process,
making it dependent on the specific LLM used and our code-
writing conventions. As a result, manual adjustments may
be necessary when using different LLM models.

Provide runnable code that has implemented all your ideas (If any part
requires choice, use choices from random). Do not leave any placeholder for
me, all the functionality should be actually implemented. Your response format
<code>
Your code
</code>
Also, you don’t need to add any other words.

Figure 7. The prompt used for format restriction of the output.
The purple sentence specifies the goal and the orange sentence
clarifies the restriction.

Finally, the complete prompts used in KC, KR, II and
DI are constructed following the same architecture as shown
in Figure 8. It consists of three parts: interface description
(Figure 2), those goal-oriented prompts following a list of
algorithms and scores (e.g., Figures 3, 4, 5, 6), and format
restriction (Figure 7). These three parts are concatenated
together to provide comprehensive instructions to the LLM.

Interface description

Format restriction

A list of algorithms (and scores)

Purpose and restriction instructions.
+

beginning

end

Figure 8. Illustration to prompt architecture.

Experiments (evaluation) with sandbox. All newly
generated TN-SS algorithms are evaluated on local (su-
per)computers using task-specific training data. However,
due to the probabilistic nature of LLMs, there is a possibility
of receiving unexpected outputs, such as unrunable code,
unnecessary comments, or error messages from the LLM
platforms. To address this issue, we construct a sandbox

environment to run the code in a relatively isolated setting
using small-scale training data before conducting high-cost
formal numerical experiments. If program errors, abnormal
resource consumption, or unexpected output formats occur,
the sandbox will immediately terminate the process and
remove the problematic code from the job queue awaiting
implementation.

4. Experimental Results
In this section, we use several benchmarks to demonstrate
that tnGPS can discover new algorithms that outperform
SOTA methods for TN-SS. Additionally, we conduct abla-
tion experiments to evaluate the impact of each component
within tnGPS on the discovery performance.

4.1. Natural Images Compression

In this experiment, we aim to use TN-SS algorithms to
search for optimal topology and ranks for a tensor network
(TN) to represent natural images with fewer parameters.

Data preparation. We randomly select 14 images from
the BSD500 dataset (Arbelaez et al., 2010). These images
are converted to grayscale and resized to 256⇥ 256 pixels.
Each image is then reshaped into an order-8 tensor by the
default Python reshaping function. The 14 pre-processed
images are split into two sets: 4 images for training and 10
images for testing.

Settings of tnGPS. We use three existing TN-SS algorithms
as inputs: TNGA (Li & Sun, 2020), GREEDY (Hashem-
izadeh et al., 2020) and TNLS (Li et al., 2022). The eval-
uation phase in tnGPS calculates Eq. (1) for each gener-
ated algorithm, averaging the results over the images in the
training set. In Eq. (1), we set � = 5 and use the same
compression ratio function � as in previous work (Li & Sun,
2020). The hyperparameters required in tnGPS are listed
in Table 1. For this experiment, we set m = 2, n = 1,
↵1 = ↵2 = 100, c = 5 and #Iter = 30. Additionally, we
select gpt-4-1106-preview as the LLM model, apply-
ing a temperature of 0.7 uniformly across all prompts. After
implementation, we select the top-three algorithms from the
pool (excluding the input algorithms), termed Ho-11, Ho-2,
and Ho-3, as the outputs of tnGPS. The three algorithms
will be evaluated and compared with the existing TN-SS
algorithms.

Implementation details. In the experiment, we imple-
ment four additional sampling-based TN-SS algorithms in-
cluding TNGA (Li & Sun, 2020), TNLS (Li et al., 2022),
GREEDY (Hashemizadeh et al., 2020) and TnALE (Li et al.,
2023). Since the vanilla TNGA and TNLS are designed to

1The name “Ho” is shorthand for ”homunculus”, representing
that these algorithms are created through some “unusual” means.

6

tnGPS: Discovering Unknown Tensor Network Structure Search Algorithms via Large Language Models

Function description:
def GenerateSample(history_populations, fitness_scores, best_individual,
 new_individuals_numbers, current_iteration, maximum_iteration, hyperparameters):

 # GenerateSample: Function takes in integer vectors and output integer vectors.

 # Inputs:
 # history_populations: Dictionary. Keys are integer strings from '1' to some
 # larger value. Each key contains a list of integer numpy vectors.
 # fitness_scores: Dictionary. Keys are same as history_populations.

 # hyperparameters: Dictionary. Keys are strings contain the constants
 # used for computation. Default values should be provided using .get().

 # Output:
 # new_individuals: List, len new_individuals_numbers, contains integer
 # numpy vectors. Each vector's len is the same as the len of the vectors in
 # history_populations. Furthermore, The elements are within range
 # [1,hyperparameters[‘code_upperbound']].

 return new_individuals

… (omitted)

Figure 2. The prompt used for interface description.

Algorithm 1: # centroid

Algorithm N: # centroid

=============
New Algorithm:

==============
Which algorithm in the above is methodologically most similar to the new algorithm?
Just give me the function number with no other words.

… (omitted)…

…

…

Figure 3. The key prompt used in knowledge categorisation (KC).
The purple sentence specifies the goal of the prompt.

To select a preferred algorithm in ID, we need to implement
the roulette selection twice. First, we perform selection at
the knowledge level. This involves selecting the centroids
of clusters to determine which clusters will be considered.
Second, within the selected clusters, we perform selection at
the algorithm level to choose the preferred algorithm from
each cluster. This “bi-level” process is repeated until the
desired number of algorithms has been selected.

Knowledge recombination (KR). Guided by the workflow
shown in Figure 1, KR is a fundamental phase to generate
novel TN-SS algorithms in tnGPS. In this phase, the input
consists of N � 0 pairs of (algorithm, score). The
output is M new algorithms generated by the LLM. The
key prompt used in KR is illustrated in Figure 4. The de-
sign of this prompt aims to enable the LLM to understand
the factors contributing to the superior performance of cer-
tain algorithms while avoiding the meaningless stacking of
Python code.

Incremental innovation (II) follows KR as another block
for creating innovation in tnGPS. Unlike KR which recom-
bines algorithms, II aims at mortifying algorithms indi-
vidually and slightly. Figure 5 gives the key prompt used
in this phase. In our experience with GPT-3.5/4, we found

Algorithm 1:

Algorithm 1 score:

Algorithm N:

Algorithm N score:
Algorithms 1 to N are implementations of the ‘GenerateSample’ function. A lower score
implies better performance.

Learning from their results, think about what works and what doesn’t, provide M novel
methods with lower scores. You are encouraged to be creative to incorporate novel
ideas but do not simply stack methods together.

… (omitted)

…

…

…

…

Figure 4. The key prompt used in knowledge recombination (KR).
The purple sentence specifies the goal and the orange sentence
clarifies the restriction.

that the LLM tends to improve code aspects such as effi-
ciency, readability, and parallelism, which are not the focus
of this phase. To prevent this, we include specific instruc-
tions (highlighted in orange in Figure 5) to guide the LLM
away from these unintended improvements and focus on the
targeted modifications.

Algorithm 1:

Algorithm N:

Independently make improvements over these Algorithms that will increase their
practical performance (not on the code efficiency, readability and parallel
processing level). You are encouraged to be creative to incorporate novel ideas.

… (omitted)
…

…

Figure 5. The key prompt used in incremental innovation (II).
The purple sentence specifies the goal and the orange sentence
clarifies the restriction.

Diversity injection (DI). We implement DI by leveraging
the LLM to create new clusters in the algorithm pool. In
doing so, we design the prompt as Figure 6, instructing
the LLM to generate TN-SS algorithms that are method-
ologically distinct from the centroids of existing clusters.
Following this, the newly created algorithms from DI serve
as centroids for new clusters. The newly created algorithms
from DI serve as centroids for new clusters. Since rely-
ing solely on existing knowledge can lead to “path depen-
dence”—where new ideas are heavily influenced by past
knowledge—we encourage the LLM to explore new ideas in
DI without considering performance metrics (e.g., scores).
This approach enriches the diversity of the algorithm pool.

Format restriction and prompt architecture. In addition
to the goal-oriented prompts mentioned earlier, we need to
enforce specific format restrictions on the LLM’s output.
For instance, this includes omitting unnecessary analyses
and specifying the desired format for code outputs. Further-
more, instructions related to code writing must be included
to ensure that there are no compilation failures during evalu-

5

tnGPS: Discovering Unknown Tensor Network Structure Search Algorithms via Large Language Models

Algorithm 1: # centroid

Algorithm N: # centroid

Give me a novel ‘GenerateSample’ that is methodologically different from the
above algorithms. You are encouraged to be creative to incorporate novel ideas
but do not simply stack methods together.

… (omitted)
…

…

Figure 6. The key prompt used in diversity injection (DI). The
purple sentence specifies the goal and the orange sentence clarifies
the restriction.

ation. To meet these requirements, we designed the prompt
shown in Figure 7. It’s important to note that the prompt in
Figure 7 was developed through a trial-and-error process,
making it dependent on the specific LLM used and our code-
writing conventions. As a result, manual adjustments may
be necessary when using different LLM models.

Provide runnable code that has implemented all your ideas (If any part
requires choice, use choices from random). Do not leave any placeholder for
me, all the functionality should be actually implemented. Your response format
<code>
Your code
</code>
Also, you don’t need to add any other words.

Figure 7. The prompt used for format restriction of the output.
The purple sentence specifies the goal and the orange sentence
clarifies the restriction.

Finally, the complete prompts used in KC, KR, II and
DI are constructed following the same architecture as shown
in Figure 8. It consists of three parts: interface description
(Figure 2), those goal-oriented prompts following a list of
algorithms and scores (e.g., Figures 3, 4, 5, 6), and format
restriction (Figure 7). These three parts are concatenated
together to provide comprehensive instructions to the LLM.

Interface description

Format restriction

A list of algorithms (and scores)

Purpose and restriction instructions.
+

beginning

end

Figure 8. Illustration to prompt architecture.

Experiments (evaluation) with sandbox. All newly
generated TN-SS algorithms are evaluated on local (su-
per)computers using task-specific training data. However,
due to the probabilistic nature of LLMs, there is a possibility
of receiving unexpected outputs, such as unrunable code,
unnecessary comments, or error messages from the LLM
platforms. To address this issue, we construct a sandbox

environment to run the code in a relatively isolated setting
using small-scale training data before conducting high-cost
formal numerical experiments. If program errors, abnormal
resource consumption, or unexpected output formats occur,
the sandbox will immediately terminate the process and
remove the problematic code from the job queue awaiting
implementation.

4. Experimental Results
In this section, we use several benchmarks to demonstrate
that tnGPS can discover new algorithms that outperform
SOTA methods for TN-SS. Additionally, we conduct abla-
tion experiments to evaluate the impact of each component
within tnGPS on the discovery performance.

4.1. Natural Images Compression

In this experiment, we aim to use TN-SS algorithms to
search for optimal topology and ranks for a tensor network
(TN) to represent natural images with fewer parameters.

Data preparation. We randomly select 14 images from
the BSD500 dataset (Arbelaez et al., 2010). These images
are converted to grayscale and resized to 256⇥ 256 pixels.
Each image is then reshaped into an order-8 tensor by the
default Python reshaping function. The 14 pre-processed
images are split into two sets: 4 images for training and 10
images for testing.

Settings of tnGPS. We use three existing TN-SS algorithms
as inputs: TNGA (Li & Sun, 2020), GREEDY (Hashem-
izadeh et al., 2020) and TNLS (Li et al., 2022). The eval-
uation phase in tnGPS calculates Eq. (1) for each gener-
ated algorithm, averaging the results over the images in the
training set. In Eq. (1), we set � = 5 and use the same
compression ratio function � as in previous work (Li & Sun,
2020). The hyperparameters required in tnGPS are listed
in Table 1. For this experiment, we set m = 2, n = 1,
↵1 = ↵2 = 100, c = 5 and #Iter = 30. Additionally, we
select gpt-4-1106-preview as the LLM model, apply-
ing a temperature of 0.7 uniformly across all prompts. After
implementation, we select the top-three algorithms from the
pool (excluding the input algorithms), termed Ho-11, Ho-2,
and Ho-3, as the outputs of tnGPS. The three algorithms
will be evaluated and compared with the existing TN-SS
algorithms.

Implementation details. In the experiment, we imple-
ment four additional sampling-based TN-SS algorithms in-
cluding TNGA (Li & Sun, 2020), TNLS (Li et al., 2022),
GREEDY (Hashemizadeh et al., 2020) and TnALE (Li et al.,
2023). Since the vanilla TNGA and TNLS are designed to

1The name “Ho” is shorthand for ”homunculus”, representing
that these algorithms are created through some “unusual” means.

6

“Pilots” for the final
prompt construction

Natural Image Compression Task: Use TN-SS to
find compact TNs to represent natural images.

tnGPS: Discovering Unknown Tensor Network Structure Search Algorithms via Large Language Models

Figure 9. Objective vs. number of sample curves of different algorithms on four training images.

Figure 10. Objective vs. number of sample curves of different algorithms on ten testing images.

Table 1. Parameters involved in tnGPS.

Parameter Description
#Iter Maximum iteration
↵1 Parameter in Eq. 3 for cluster selection
↵2 Parameter in Eq. 3 for algorithm selection
m Number of selected algorithms in ID
n Number of generated algorithms
c Maximum number of clusters

search only for the topology or permutation of a TN, we
extend them to fit the settings of this experiment. Specif-
ically, we extend TNGA by relaxing its binary constraint
for encoding the topology with integers as done in the pre-
vious works (Li et al., 2022; 2023). For TNLS, we fix the
permutation and set the template used in the algorithm to
be a complete graph, enabling simultaneous search for TN
topology and ranks. In GREEDY, we modify its objective
function from RSE to the function in (1), and further allow
the algorithm to both increase and decrease the ranks during
the search.

The parameter settings of the algorithms are as follows: in
TNGA, we set ↵ = 100, � = 5, the elimination rate to
10%, and the mutation probability to 25%; in TNLS, we set
c1 = 0.99; and in TnALE, we set L0 = 0, L = 15, r2 = 1,
and D = 1. For all methods (including those generated

by tnGPS), we set the upper limit for rank search to 4, the
number of iterations in searching to 20, and the number
of samples2 in each iteration to 100. For TNGA and the
algorithms generated by tnGPS, we initialize them with
same TN structures, which have TN ranks close to one but
with a 15% probability of changing each rank from 1 to
2. We then select the best TN structure from the TNGA
initialization to initialize GREEDY, TNLS, and TnALE.

Results. Figures 9 and 10 show how the value of the ob-
jective function (3) changes with increasing the number of
samples for different TN-SS algorithms. Table 2 shows the
averaged performance metrics, including compression ratio
and RSE, of different algorithms on both the training and
test sets. As shown in Table 2, the three algorithms gen-
erated by tnGPS achieve comparable performance on the
training set, while ‘Ho-2” outperforms other algorithms on
average in the test set. Figure 10 visually demonstrates that
the curves associated with the three algorithms generated by
tnGPS tend to reach smaller values of the objective function
compared to other methods.

New insights gained from the generated algorithms. The
codes of Ho-1,2,3 are provided in Appendix B. These codes
reveal several new insights on how to improve the effective-
ness and efficiency of solving TN-SS problems. First, the

2In TnALE, the number of samples in each iteration is deter-
mined by other hyperparameters.

7

Settings of tnGPS: four images for training, ten
images for testing.

1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209

TnALE: Solving Tensor Network Structure Search with Fewer Evaluations

C. Experiment details
C.1. Low-rank structure of the optimization landscape

To verify the low-rank structure of the optimization landscape of (1), we empirically check the singular values of the
landscape tensor using the synthetic data. To be specific, we re-use the fourth-order tensor in the experiment for TN-PS, i.e.,
TR (order-4) in Table 5. Here we remove the influence of unknown permutations and calculate the objective for all possible
combinations of values of the TN-ranks. As a result, for each data, we have a landscape tensor (a tensor whose entries are
values of the objective function) of order-4, and the modes of the tensor corresponding to the four TN-ranks. Figure 3 (a)
shows the singular values of the landscape tensor unfolded along different modes on average. We see that the landscape
tensor provides a significant low-rank structure in these data. We also depict the complete landscape (contour line, unfolded
along the first two modes) with respect to Data A in Figure 3 (b). We can see that the obviously repeated pattern shown in
the figure is the main reason leading to the low-rank structure of the landscape.

Si
ng

ula
r v

alu
e

Si
ng

ula
r v

alu
e

(a) Averaged singular values for the 4th-order landscape tensor.

10 20 30 40

Indices

5

10

15

20

25

30

35

40

45

In
d

ic
e

s

2

4

6

8

10

12

14

16

(b) Optimization landscapes (the inverse 1/f (x)) wrt. the
tensor of order-4 and correct permutation.

Figure 3. Averaged singular values and Optimization landscapes for the tensor of order-4.

C.2. Details for the experiment of TN-PS (w.r.t., Table 1).

Goal. In this experiment, we intend to verify the superiority of TnALE in solving TN-PS problem.

Data generation. For the synthetic data of TR (order-4, order-6, order-8), PEPS (order-6), HT (order-6) and MERA
(order-8) topology, we re-use the data from (Li et al., 2022). For the generation of data with TW (order-5) structure, we
set the dimension of each tensor mode to be 3, meanwhile, the TN-ranks are randomly selected from {1, 2, 3}. Then we
i.i.d. draw samples from Gaussian distribution N(0, 1) as the values of core tensors. After contracting these core tensors
according to the tensor wheel topology, we uniformly permute the tensor modes at random.

Settings. In the experiment, we implement TNGA and TNLS for comparison. For all the methods, we use the same objective
function as in Li & Sun (2020). Specifically, in the experiment the obejctive function of (1) is as follows:

F (G, r) =
1

✏(G, r)| {z }
compression ratio (CR)

+� · min
Z2TNS(G,r)

kX � Zk2 / kXk2

| {z }
relative square error (RSE)

, (46)

where X denotes the synthetic tensor, and ✏(G, r) represents the compression ratio equalling to

✏(G, r) =
Dimension of X

Dimension sum of core tensors of the TN under (G, r)
.

We set the trade-off parameter in (46) to be 200 and for the solver of the inner minimization, we select the Adam optimizer
Kingma & Ba (2014) with the learning rate of 0.001 and use Gaussian distribution N(0, 0.1) to initialize the core tensors.

Objective:

Ho-1, Ho-2 and Ho-3 are algorithms discovered by tnGPS

Gaussian process Compression: an Out-of-Domain Experiment
#Para. (X1000) #Eva.

• tnGPS: a LLM-driven framework for discovering new TN-SS algorithms.

• tnGPS is designed by prompting LLMs to mimic human experts.

• LLMs provide us new ideas of solving more broad tensor problems.

Ablation Experiments:

The results highlight the importance of the 'KR', 'II', and 'DI'
components

More powerful LLMs like GPT-4 enhance tnGPS performance

Insights gained from the generated algorithms:
tnGPS, can leverage insights gained from the existing algorithms and the embedded knowledge in LLMs for novel algorithm generation
• Non-Markovian searching dynamic
• Inverse annealing for mutation
• Gaussian perturbation mutation
• Best structure crossover
The algorithm discovered by tnGPS implicitly reflects the hidden structure of the data
• Boundary mutation

