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Learning with Bigger Data

» Bigger data always imply we can learn more knowledge.
» High-dimensional, multi-modal, and incomplete

> Big data need bigger models: Over-parameterization
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How to efficiently represent a HD problem with few parameters?



Our Solution: Tensor Network (TN)

» TN is not a learning model but an efficient model representation.
> TNs efficiently exploit the low-rank structures of the model.

» There are lots of theoretical results to analyze the performance.

Tensorization Restoration Decomposition
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Tensor network is a simple yet promising framework.
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From Topology Search to Structure Learning

Evolutionary Topology Search for Tensor Network
Decomposition: an Extended Abstract

Chao Li', Zhun Sun', Junhua Zeng'-?, and Qibin Zhao'*
IRIKEN Center for Advanced Intelligence Project (AIP), Tokyo, Japan
2Guangdong University of Technology
{chao.li, gibin.zhaol}@riken. jp

Abstract

Tensor network (TN) decomposition is a promising framework to represent ex-
tremely high-dimensional problems with few parameters. However, it remains
challenging to search the (near-)optimal topological structures for TN decomposi-
tion, since the number of candidate solutions exponentially grows with increasing
the order of a tensor. In this work, we claim that the issue can be practically
tackled by genetic algorithms (GAs) in an affordable manner, and the key is to
encode the complex topological structures into fixed-length binary strings, a.k.a.,
chromosomes in the context of GA. The experimental results on natural images
demonstrate that, in the decomposition task, GA is able to discover more efficient
topologys than the well-known TN models within a small number of generations.
Our code is available at https://github.com/minogame/icm12020-TNGA.

[Li and Sun, ICML, 2020; Li et al., Neurips workshop on QTNML, 2020]
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> Preliminaries: Tensor network and diagram notation
> Structure Learning of Tensor Network Decomposition

> Tensor Network Decomposition Meets Genetic Algorithm



Part 1:
Tensor and Tensor Network



Tensor Is Ubiquitous
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Intuitively, TENSOR is number-block.

Vectors and matrices Tensor cubic
AEEE
Scalar: a,b € R [ %%%%%
OO O
Vector: X,y € R!
Order-0 Order-1 Order-2 Order-3 Order-5
Vari: M, N g RlXT2  Towr Tmor g e

Tensor: EA)B E Rll XIQX.HXI%

Numberblocks is a British children's CGl-animated TV series.




Diagram Notation
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Tensor Contraction

a A ; b
I alb ?_‘ ﬁ AB
b (1x1) I (I><1 (I x K)

Inner product Linear transform Matrix multiplication

a b c X b
a®b K J /YXlaXQbX?,C
7 7 ([XJ) a[ (1><1><1)

Node:=Tensor Edge:=Contraction Graph:=Tensor Network

> The essence of the tensor network is multivariate polynomial.

> Tensor network decomposition = Polynomial Approximation



Various Tensor Network Models
[Oseledets, 2011]
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[Zhao et al, 2016]

MERA network
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» Given a task, which model is the best one?

1) How to select the best model in an affordable manner?

(@ Is it possible to get models going beyond existing ones?




Part 2:
Structure Learning of TND



Reforge the Diagram Notation

To build a bijection from an arbitrary simple graph to the TN structure. ]

Graph

Tensor network

vertices

edges

degree of vertex
weight of edge

number of edges

cores/core tensors/factors o—o©O
contracted indices (a) matrix product i‘ E

number of indices in each core

@ ® ® (c) tensor ring (TR)

upper limit of summation
(b) tensor train (TT)

number of indices contracted

Correspondence between Graphs and TN structures [Ye & Lim, 2019].

Additional rules

@ Weight-one edges are not allowed.

@ The isolated sub-graphs are “connected” by tensor outer product.

@ [he vertices can be internal. )

The TN structures can be fully described by its adjacency matrices.
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Unified Model Formulation

> (Augmented) adjacency matrix. a simple way to model tensor networks

‘ 7“1 12 ....... 7“ 5 0 0 0
@0 rsls~rs 0 O
@0 0 ryliira: 0
@0 O o ﬂz ...... I 5' ~~~~~~ T
. \7“6 0 0 0 rg-. [
~~~~~~~ "(Free legs) or zeros
order-6 Tensor Ring (Augmented) Adjacency matrix

» Tensor networks (TN) are fully modeled by adjacency matrices.

» The matrix contains the both topological and algebraic information.
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Unified Model Formulation

A general model of TN representation with arbitrary graphical structure.
X =TN(V;A), (1)

where TN(-;A) denotes the index contraction operations under the adja-
cency matrix A € RV*N and V := {V;, i € [N]} denotes a collection of
core tensors.

Problem setting - structure learning of tensor network (TN) decomposition

Formal statement

Given a population of tensors {X'}, the structure learning of TN is to find
the optimal adjacency matrix Ag, such that for every X(;) € {X'} there

exists a set of tensors V(; that satisfies Eq. (1).
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Optimization Model

Optimization model Approx. error

Topology
e\ 7
min [ D(A) - log(A)[l;, s.t.€x (min X — TN(V;A)| ) <6 (2)
Squareness

where D( -) denotes filling the non-diagonal elements of a matrix by zeros,
log(-) and || - || denotes the element-wise logarithm and 1-norm of a matrix.

Proposition (roughly)

The logarithm of models’ compression ratio is bounded by the objective
function in Eq. (2) up to a fixed affine transform.

Integer programming is generally NP-complete.

y
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Part 3:
TN meets Genetic Algorithm
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Genetic Algorithm: An Efficient Heuristic

Tensor Network

- Modelling . /L\\ PrOS_ ).
> Global optimization ““
Solution\ %ptimization . . . .
Evolutionary Algorithm > M U |t|0bjeCtIV9 frlend Iy

&fﬁf&&jx » Parallel computation
""""""" /‘ \ Cone
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Deep Learning
Framework

= § > Prohibitive computation

TensorFlow

> No theoretical guarantee

_________________________________________

The computational requirement is partially satisfied by the boost
development of GPUs (HPC-Tensorflow).
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Structure Encoding

Encoding the Adjacency matrices into fixed length strings.

Adjacency Matrix Binary form
/O 2 0 O\ /O "\ 1_ ) _O_ ) _Q_\:' | (Zh_l‘:)I_Il_O§(zll_leS (?i)lzlflation)
Binarization ', ------ \‘ En_COdﬁ l: _1_ - _Q_ _Q:( :1_ - _O: 1 L)
2.0 2 Ofsmisen 11011 O 7 ~----2--F e \
0 2 0 2 01 0 1 1.0 15101 TR
O O ) O O 1 Gene (Allﬁe=0) )
\ J \ 0 0 )

Order-4 tensor with TT-format

Adjacency Matrix

g zgé Chromosomes (Population)
0 3 6 4 2010 0
4 0 4 3 -1_2__/0_____5_)&_3_ _____ 0. 4

Gene (Allele=0)



Meta-algorithm

Algorithm 1 GA-based meta-algorithm for topology learning of TN

Input: Tensor X € RI1x->xla. Number of of the vertices N > d and labeled vertices by the
physical modes of X" or internal.

1. Population Initialization. /Each individual corresponds to different TN structure.
Iteration until convergence:
2. Fitness evaluation //Use accuracy and simplicity of the model to evaluate the graphs.
3. Elimination //Remove the graphs with bad fitness.
4. Recombination //Keep the structures of the superior graphs into the next generation.
S. Mutation //Slightly change each graph for the diversity of the solutions.
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Genetic Operators: Fithess and Elimination

1. Fithess score:

F(R) = [[D(A) - log(R) [, + A~ min [ — TN(T: A/ 1xE 3

A\ J/
N

relative square error (RSE)

The fitness scores are used to rank the individuals. J

2. Elimination
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Genetic Operators: Recombination

3.1 Parent selection (Russian roulette process)
0.3
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Fixed Point

<pin the where a, 8 > 0 denote tuning param-
roulette eters.
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3.2 Crossover

Recombination Children
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Genetic Operators: Mutation

4. Mutation

- N

m Mutation >

\~,

Discussion:

» Mutation is the key operator to obtain the global minimum.
» The algorithm design follows the maximum entropy principle.

» More cost results in better performance.
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Tensor Decomposition on Synthetic Data

The synthetic data are randomly (Gaussian, ¢ = 0.1) generated with ran-
dom graph (Erods-Renyi model G(n,p), n=4,...,8, p € [0.15,0.85]). J

Gen.] — The number of generations we obtain the results.
Eff.7 — Parameter ratio compared to the ground-truth.

Order

Trial 4 8

[ Gen. ) Eff. ) Geni Efr. | Gen.Jf EfF. ) Gen.)f EFf. | Gen.) Eff.)

001 1333 003 1.084 005 1.052 003 1.052 001 1.396
001 1500 003 1.690 006 1.062 008 1.096 005 1.000
001 1500 002 1.000 004 1.000 003 1.000 001 1.320
0601 1000 001 1.445 003 1.000 001 1.000 020 1.000
001 1.000 002 1.000 005 1.052 003 1.000 005 1 inO

mOOm®D>

_-‘
The proposed method obtains the same (Eff.= 1.000) or even better (Eff.> 1.000) com-
pression ratio compared to the ground-truth. J
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Trade off between “elitism” and “populism”.
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TN Decomposition on Natural Images

10 natural images are randomly selected from LIVE dataset [Sheikh et al.,
2006/, and reshaped as order-8 tensors. J

The learned structures are more complex than path, tree or cyclic graphs
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Discussion and Concluding Remarks

Computationally efficient? No, and yes.

» Additional computation requirement is unavoidable.

> Lots of near-optimal structures outperforms the existing models.

Potential applications? Model compression.

Takeaway messages and future work? Small-world network.

> The learned topology is far away from the well-developed models

> Intuitively the results are more close to Watts—Strogatz graphs

[Watts and Strogatz, Nature, 1998] 26



