

Defense method	Clean images	Known attacks	Unseen attacks
Vanilla model	~94%	~0%	~0%
Expectation	=	$\uparrow \uparrow$	\uparrow
AT	$\downarrow\downarrow$	$\uparrow \uparrow$	N/A
AP	\downarrow	1	1
AToP (ours)		$\uparrow \uparrow$	1

 $\left[\checkmark\right]$ Achieve optimal robustness on known attacks.

- [X] Vulnerable to unseen attacks.
- [X] Reduce the accuracy of clean examples.

Adversarial Purification (AP)

 $\left[\sqrt{} \right]$ Keep generalization against unseen attacks.

- [X] Weaker robustness than AT on known attacks.
- [X] Slightly reduce the accuracy of clean examples.

The pre-trained purifier model is not good enough for classification and non-robust itself.

Adversarial Training on Purification (AToP): Advancing Both Robustness and Generalization

Guang Lin^{1,2}, Chao Li², Jianhai Zhang³, Toshihisa Tanaka^{1,2} and Qibin Zhao^{2,1,*} ¹Tokyo University of Agriculture and Technology, ²RIKEN AIP, ³Hangzhou Dianzi University

Background

Based on the **pre-trained generator model** trained by the original generative loss ℓ_a : $L_{\theta_g} = \ell_g(x, \theta_g)$

We incorporate a classification loss ℓ_{cls} to fine-tune the generator model with a) clean examples *x* and labels *y* :

$$L_{\theta_g} = \ell_g(x, \theta_g) + \lambda \cdot \ell_{cls}(x, y, \theta_g, \theta_f).$$

b) adversarial examples x' and labels y: $L_{\theta_g} = \ell_g(x', \theta_g) + \lambda \cdot \ell_{cls}(x', y, \theta_g, \theta_f).$

Table 6: Standar StAdv non- l_p (e
Adv. Trainin Adv. Trainin Adv. Training Adv. Trainin PAT-s Adv. CR Dif
Figure 4a: Com
80
50 Standard EGSM
Adversa
[√] [√]
Table 7: Standa 10 with ResNet
Transforms
RT_1
RT_2
RT_3
More com but also re
Conclusio combining Limitation complexity

Paper

Experimental results

and accuracy and robust accuracy against AutoAttack l_{∞} ($\epsilon = 8/255$), l_2 ($\epsilon = 1$) and = 0.05) threat models on CIFAR-10 with ResNet-50 classifier model.

Defense method	Standard Acc.	l_∞	l_2	StAdv
Standard Training	94.8	0.0	0.0	0.0
ing with l_{∞} (Laidlaw et al., 2021) ing with l_2 (Laidlaw et al., 2021) with StAdv (Laidlaw et al., 2021) ing with all (Laidlaw et al., 2021)	86.8 85.0 86.2 84.0	<u>49.0</u> 39.5 0.1 <u>25.7</u>	$ \begin{array}{r} 19.2 \\ \underline{47.8} \\ 0.2 \\ \underline{30.5} \end{array} $	4.8 7.8 <u>53.9</u> <u>40.0</u>
self (Laidlaw et al., 2021) AIG (Dolatabadi et al., 2022) fPure (Nie et al., 2022)	82.4 83.2 88.2	30.2 40.0 70.0	34.9 33.9 70.9	46.4 49.6 55.0
Ours	89.1	71.2	73.4	56.4

parison of AT, AP and AToP. Figure 3: Clean (Top) and adversarial examples (Bottom).

arial Training on Purification (AToP)

Achieve optimal robustness on known attacks.

Keep generalization against unseen attacks.

Achieve optimal accuracy on clean examples.

ard accuracy and robust accuracy of attacking the classifier model on CIFARet-18.All attacks are l_{∞} threat model with $\epsilon = 8/255$.

AToP	Standard Acc.	FGSM	PGD-10	PGD-20	PGD-1000
×	93.36	16.60	0.00	0.00	0.00
√	93.36	91.99	43.55	36.72	39.45
×	84.18	55.08	72.27	70.90	67.97
√	90.04	89.84	84.77	84.57	84.38
×	75.98	67.97	70.51	70.70	70.31
✓	80.02	70.90	73.05	72.07	73.44

plex RT can better remove perturbations, esult in a loss of semantic information.

Accuracy ↑ Accuracy

on: We develop a novel efficient defense technology by AT and AP, which can learn a robust purifier. ns: AToP requires training on the purifier, and as the y of purifier increases, so does the training cost.