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The figure is modified based on: Explaining and Harnessing Adversarial Examples. ICLR 2015.

Adversarial Attack:  𝑓 𝑥′ = 𝑦! ≠ 𝑓 𝑥 = 𝑦,
where 𝑥! = 𝑥 + 𝛿, 𝛿 = arg	max

"#$
ℒ 𝑓 𝑥 + 𝛿 , 𝑦

Adversarial Purification (AP):  𝑓(𝑔 𝑥′ ) = 𝑦,
*where purifier model 𝑔 is a pre-trained generator.

Adversarial Training (AT):  𝑓′ 𝑥′ = 𝑦,
where robust model 𝑓′	is trained with adversarial 
examples 𝑥′	and true label 𝑦.

Figure 3: Clean (Top) and adversarial examples (Bottom).

Conclusion: We develop a novel efficient defense technology by 
combining AT and AP, which can learn a robust purifier.
Limitations: AToP requires training on the purifier, and as the 
complexity of purifier increases, so does the training cost. 

Figure 4a: Comparison of AT, AP and AToP.

More complex RT can better remove perturbations, 
  but also result in a loss of semantic information.

Accuracy ↑ 
Accuracy ↓ 

Table 7: Standard accuracy and robust accuracy of attacking the classifier model on CIFAR-
10 with ResNet-18.All attacks are 𝑙! threat model with 𝜖 = 8/255. 

The pre-trained purifier model is not good
enough for classification and non-robust itself.

[✓] Achieve optimal robustness on known attacks.
[✗] Vulnerable to unseen attacks.
[✗] Reduce the accuracy of clean examples.

Adversarial Training (AT)

[✓] Keep generalization against unseen attacks.
[✗] Weaker robustness than AT on known attacks.
[✗] Slightly reduce the accuracy of clean examples.

Adversarial Purification (AP)

Related works

Experimental results

[✓] Achieve optimal robustness on known attacks.
[✓] Keep generalization against unseen attacks.
[✓] Achieve optimal accuracy on clean examples.

Adversarial Training on Purification (AToP)Input
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Figure 1: Illustration of adversarial training on purification (AToP). To fine-tune the purifier with adversarial 
training, we aim to optimize the model by freezing classifier parameters and only updating purifier parameters.

𝐿$! = ℓ% 𝑥, 𝜃% .

Based on the pre-trained generator model 
trained by the original generative loss ℓ%	:

Purifier
𝐿$! = ℓ% 𝑥, 𝜃% + 𝜆 · ℓ&'( 𝑥, 𝑦, 𝜃%, 𝜃) .

We incorporate a classification loss ℓ&'( to 
fine-tune the generator model with
a) clean examples 𝑥 and labels 𝑦	:

𝐿$! = ℓ% 𝑥′, 𝜃% + 𝜆 · ℓ&'( 𝑥′, 𝑦, 𝜃%, 𝜃) .
b) adversarial examples 𝑥′ and labels 𝑦	:

AToP: Learning a robust purifier model.
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AT: Learning a robust classifier model.

AP*: Utilizing a pre-trained generator as purifier.
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