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Background

> Tensor decompositions and tensor networks aim to represent
high-dimensional data by multilinear operations of latent factors.

» Canonical polyadic (CP) decomposition represents a tensor as
the sum of rank-one tensors by O(dnr) parameters, where d is
the dimensions of tensor, n Is the mode size, and 7" denotes the
tensor rank.

> Tucker decomposition represents a tensor as a core tensor and
several factor matrices by O(dnr + r®) parameters.

> Tensor train (TT) decomposition represents a tensor as a set of
third-order tensors by O(dnr?) parameters.

> TT representation scales linearly to the tensor order as the CP
model, and its solution can be easily computed as the Tucker
model.

» Problems: TT has limited flexibility due to the rankr1 = rg4+1 = 1;
TT-ranks have a fixed pattern; Permutations of data yield
iInconsistency.

Tensor Decompositions

» CP decomposition:
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‘o’ denotes the outer products of vectors, and R is CP-rank.
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Tensor Ring - Sequential SVDs

> Tensor ring (TR) decomposition can be performed by using
sequential SVDs, which is called TR-SVD algorithm.
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Tensor Ring Decomposition

> A generalization of TT without limitation of rank 1 = 7r44+1 = 1.
> The additional operation between the first and last core tensors
IS added, yielding a circular tensor products of a set of cores.
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Z. (i) denotes irth slice matrix of core tensor Zj.

> TR representation is equivalent to the sum of TTs with partially
shared core tensors.

> TR-ranks 717,41 < R where R is the rank of k-unfolding
matricization of original tensor.

> TR solution is invariant to circularly dimensional permutation.

Tensor Ring - Stochastic Gradient Descent

> For large-scale datasets, stochastic gradient descent (SGD)
shows high computational efficiency and scalability for matrix/
tensor factorization.

> We develop a scalable and efficient TR decomposition by using
SGD, which is also suitable for online learning and tensor
completion problems.
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Block-Wise Alternating Least-Squares (ALS)

> ALS is firstly applied to optimize the block of core tensors at
each iteration.

> The low-rank matrix decomposition can be employed to
separate the block into two core tensors.
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Experimental Results

» The number of parameters for tensor representation of an
iImage under varying approximation error €.

Data e = 0.1 e = 0.01 e =9 —4 e =2e—15
W — 956, d — 2 SVD TT/TR | SVD TT/TR | SVD TT/TR | SVD TT/TR
’ 97¢3 9.7e3 | 7.2¢4 T2e4 | 1.2¢5 1.25 | 1.3e5 1.3e5
Tensorization e =20.1 e = 0.01 e =2e—3 e =1le— 14
TT TR TT TR TT TR TT TR
n=106,d=4 | 5.1e3 3.8e3 | 6.8e4 6.4ed | 1.0e5 7.3ed | 1.3e5 7.4e4
n=4d=8 | 48e3 43e3 | 7.8¢e4 78e4 | 1.1e5 9.8e4 | 1.3e5 1.0e5
n=2d=16 | 74e3 T7.4e3 | 1.0e5 1.0e5 | 1.5¢5 1.5¢5 | 1.7¢5 1.7e5

» Based on tensorization operations, TR decomposition is able
to capture the intrinsic structure information and provides a
more compact representation than TT representation.

> Each core tensor corresponds to a specific scale of resolution.

An individual
core tensor is
corrupted by
random
disturbance.

> TR representation can be used for low-rank approximation of
model parameters in deep neural networks.
» The model complexity can be compressed by 1300 times.

14¢

o, -®-TT-layer i -®-TT-layer
. . . | —~ N -® TR-layer s a | ® TR-layer
| | | | I 2 g
il =1 11 =3 il =1 11 =3 \: ‘\‘ ~— Y \.\
[e) \, o 22‘ e n
= = 08 n = ]
] ; . ) . q) Q . q)
19 = 1 190 = 3 (@)) _‘\\ \‘\ O 2.1 N
E 0.6 N c -
Hi=2|ii=4a|ii=2i=4 = o @ *
— 11 = 1 = 11 = 1 = ] . N O \
w 04 ‘ . oL \
11 =1 11 =3 11 =1 11 =3 = \\\\ -\\~ = \\\
\~\ \
- | | | 0.2F ‘- - . \
19 = 2 19 =4 e S g \
0 ' ' O— 0O ®
2 3 4 5 6 2 3 4 5 6
23?32- i1=2 =4 |i=2|i=4 Ranks Ranks
13 =
i3 =1 The classification performances of tensorizing neural networks by using TR representation.
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> A novel tensor decomposition model which can provide an
compact representation for a very high-order tensor.

> A scalable SGD algorithm which is useful for
large-scale tensors, online learning, and tensor
completion.

» TR representation achieves much more
compressive deep learning models compared
to TT representation. e —-
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