
Tensor Ring - Stochastic Gradient Descent
‣ For large-scale datasets, stochastic gradient descent (SGD) 
shows high computational efficiency and scalability for matrix/
tensor factorization.  

‣ We develop a scalable and efficient TR decomposition by using 
SGD, which is also suitable for online learning and tensor 
completion problems.


Learning Efficient Tensor Representations with Ring Structure Networks 
Qibin Zhao1, Masashi Sugiyama1,2,  Longhao Yuan1,4, Andrzej Cichocki3

 1RIKEN Center for Advanced Intelligence Project, 2The University of Tokyo, 3Skolkovo Institute of Science and Technology, 4Saitama Institute of Technology

Background
‣ Tensor decompositions and tensor networks aim to represent 
high-dimensional data by multilinear operations of latent factors.

‣ Canonical polyadic (CP) decomposition represents a tensor as 
the sum of rank-one tensors by              parameters, where    is 
the dimensions of tensor,     is the mode size, and    denotes the 
tensor rank.   

‣ Tucker decomposition represents a tensor as a core tensor and 
several factor matrices by                     parameters.

‣ Tensor train (TT) decomposition represents a tensor as a set of 
third-order tensors by               parameters.

‣ TT representation scales linearly to the tensor order as the CP 
model, and its solution can be easily computed as the Tucker 
model.  

‣ Problems: TT has limited flexibility due to the rank                    ; 
TT-ranks have a fixed pattern; Permutations of data yield 
inconsistency. 

Tensor Ring Decomposition
‣ A generalization of TT without limitation of rank                       .     

‣ The additional operation between the first and last core tensors 
is added, yielding a circular tensor products of a set of cores.


‣ TR representation is equivalent to the sum of TTs with partially 
shared core tensors.

‣ TR-ranks                     where       is the rank of k-unfolding 
matricization of original tensor. 

‣ TR solution is invariant to circularly dimensional permutation. 

Experimental Results
‣The number of parameters for tensor representation of an 

image under varying approximation error     .


 


‣ Based on tensorization operations, TR decomposition is able 
to capture the intrinsic structure information and provides a 
more compact representation than TT representation.

‣ Each core tensor corresponds to a specific scale of resolution. 


 


‣ TR representation can be used for low-rank approximation of 
model parameters in deep neural networks.  

‣ The model complexity can be compressed by 1300 times. 
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Tensor Decompositions
‣ CP decomposition:


   ‘o’ denotes the outer products of vectors, and    is CP-rank. 

‣ Tucker decomposition:

  

     

         denotes multilinear product on the       mode. 
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‣ TT decomposition:
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Figure 2.9: The CP decomposition for a 4th-order tensor X of rank R. Observe
that the rank-1 subtensors are formed through the outer products of the vectors
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linear combination of such symmetric rank-1 tensors through the so-
called symmetric CP decomposition, given by
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,
while the symmetric tensor rank is the minimal number R of rank-1
tensors that is necessary for its exact representation.

Multilinear products. The mode-n (multilinear) product, also called
the tensor-times-matrix product (TTM), of a tensor, A RI1 I

N ,
and a matrix, B RJ I
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From (2.12) and Figure 2.10, the equivalent matrix form is
C

n

BA
n

, which allows us to employ established fast matrix-by-
vector and matrix-by-matrix multiplications when dealing with very
large-scale tensors. E�cient and optimized algorithms for TTM are,
however, still emerging (Li et al., 2015; Ballard et al., 2015a,b).

Full multilinear (Tucker) product. A full multilinear product, also
called the Tucker product, of an Nth-order tensor, G RR1 R2 R

N ,

X =
RX

r=1

�rb
(1)
r � b(2)

r � b(3)
r � b(4)

r

3.3. The Tucker Tensor Format 325

(a) Standard block diagrams of Tucker (top) and Tucker-CP (bottom) de-
compositions for a 3rd-order tensor
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(b) The TN diagram for the Tucker and Tucker/CP decompositions of a 4th-
order tensor
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Figure 3.3: Illustration of the Tucker and Tucker-CP decompositions, where the
objective is to compute the factor matrices, B n , and the core tensor, G. (a)
Tucker decomposition of a 3rd-order tensor, X G 1 B 1

2 B 2
3 B 3 . In

some applications, the core tensor can be further approximately factorized using
the CP decomposition as G R

r 1 a
r

b
r

c
r
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tively using TT/HT decompositions. (b) Graphical representation of the Tucker-CP
decomposition for a 4th-order tensor, X G 1 B 1
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Figure 2.19: Concepts of the tensor train (TT) and tensor chain (TC) de-
compositions (MPS with OBC and PBC, respectively) for an Nth-order data
tensor, X RI1 I2 I

N . (a) Tensor Train (TT) can be mathematically de-
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that TC/MPS is e�ectively a TT with a single loop connecting the first and the last
core, so that all TC-cores are of 3rd-order.
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Table 4.1: Equivalent representations of the Tensor Train decomposition (MPS
with open boundary conditions) approximating an Nth-order tensor X
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Zk(ik) denotes ikth slice matrix of core tensor Zk.
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Tensor Ring - Sequential SVDs
‣ Tensor ring (TR) decomposition can be performed by using 
sequential SVDs, which is called TR-SVD algorithm.

Block-Wise Alternating Least-Squares (ALS)
‣ ALS is firstly applied to optimize the block of core tensors at 
each iteration.

‣ The low-rank matrix decomposition can be employed to 
separate the block into two core tensors. 


✏

Algorithm 3 Tensor-train Stochastic Gradient Descent (TTSGD)

1: Input: Incomplete tensor Y and TT � rank r.

2: Initialization: core tensors G(1)
,G(2)

, · · · ,G(N)of approximated tensor X .

3: While the optimization stopping condition is not satisfied

4: Randomly sample one observed entry from Y.

5: For i=1:N

6: Compute @f

@G
(n)
imn

= (ym � xm)(G>n
imn

G<n
imn

)T .

7: End

8: Update corresponding G
(n)
imn

by gradient descent method.

9: End while

10: Output: G(1)
,G(2)

, · · · ,G(N).

3.4. Computational Complexity

For tensorX 2 RI1⇥I2⇥···⇥IN with number of observed entriesM , we assume

all I1, I2, · · · , IN is equal to I, and r1 = r2 = · · · = r
N�1 = r. According equa-

tion 10, 20 and 15,we list the computational complexity of our three algorithms

for every iteration in table 1. Though the time complexity will exponentially

increase by data dimensions, STTOPT and TTSGD is free from dimensionality

so they can deal with large-scale data. Besides, TTSGD uses the least time

complexity and space complexity.

Table 1: Computational complexity of TTWOPT, STTOPT, TTSGD for every iteration

Algorithm Time complexity Space complexity

TTWOPT O(rN�1
I

N�1) O(IN + r

2
I

N�1)

STTOPT O(Mr

N�1) O(MIr)

TTSGD O(rN�1) O(Ir)

i2 = 1i2 = 2i2 = 3i2 = 4

4. Experiments

One advantage of gradient-based optimization is that we do not need too

tune so many hyper parameters, we can easily get any wanted accuracy within
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Table 5: Results on CIFAR-10 images.

✏ Ranks N

p

Epoch
TT-SVD 0.092 (1 7 79 67) 66099 NaN
TR-SVD 0.095 (5,3,49,58) 42710 NaN

TR-BALS 0.094 (61,13,3,6) 63278 23
TR-ALS 0.1076 (5,3,49,58) 42710 10
TR-SGD 0.1041 (5,3,49,58) 42710 100

(a) RSE = 0.18, Epoch = 10 (b) RSE=0.10, Epoch =100

Figure 6: The reconstructed images by using TR-SGD after 10 and 100 epochs.

testing errors under the same compression level (i.e., TT/TR ranks). In addition, TR can achieve
much better compression rate under the same level of test error. When r1 = . . . = r4 = 2, the
compression rate of dense weight matrix is up to 1300 times.

We tested the tensorizing neural networks with the same architecture on SVHN dataset
(http://ufldl.stanford.edu/housenumbers/). By setting all the TT-ranks in the network to 4, we
achieved the test error of 0.13 with compression rate of 444 times, while we can achieve the same test
error by setting all the TR-ranks to 3 with compression rate of 592 times. We can conclude that the
TR representation can obtain significantly higher compression rate under the same level of test error.

6 CONCLUSION

We have proposed a novel tensor decomposition model, which provides an efficient representation
for a very high-order tensor by a sequence of low-dimensional cores. The number of parameters in
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Figure 7: The classification performances of tensorizing neural networks by using TR representation.
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The tensorization of an image

Summary
‣ A novel tensor decomposition model which can provide an 
compact representation for a very high-order tensor. 

‣ A scalable SGD algorithm which is useful for 
large-scale tensors, online learning, and tensor 
completion. 

‣TR representation achieves much more 
compressive deep learning models compared 
to TT representation.

Our monographs (2017)

r1rk+1  Rk

k-unfolding 
matrix 

An individual 
core tensor is 
corrupted by 
random 
disturbance.


