Learning Efficient Tensor Representations with Ring Structure Networks

Qibin Zhao ${ }^{1}$, Masashi Sugiyama ${ }^{1,2}$, Longhao Yuan ${ }^{1,4}$, Andrzej Cichocki ${ }^{3}$

${ }^{1}$ RIIKEN Center for Advanced Intelligence Project, ${ }^{2}$ The University of Tokyo, ${ }^{3}$ Skolkovo Institute of Science and Technology, ${ }^{4}$ Saitama Institue of Technology

Background

- Tensor decompositions and tensor networks aim to represent high-dimensional data by multilinear operations of latent factors. - Canonical polyadic (CP) decomposition represents a tensor as the sum of rank-one tensors by $\mathcal{O}(d n r)$ parameters, where d is the dimensions of tensor, n is the mode size, and r denotes the tensor rank.
- Tucker decomposition represents a tensor as a core tensor and several factor matrices by $\mathcal{O}\left(d n r+r^{d}\right)$ parameters.
- Tensor train (TT) decomposition represents a tensor as a set of third-order tensors by $\mathcal{O}\left(d n r^{2}\right)$ parameters.
- TT representation scales linearly to the tensor order as the CP model, and its solution can be easily computed as the Tucker model.
- Problems: TT has limited flexibility due to the rank $r_{1}=r_{d+1}=1$; TT-ranks have a fixed pattern; Permutations of data yield inconsistency.

Tensor Decompositions

- CP decomposition:

$$
\underline{\mathbf{x}}=\sum_{r=1}^{R} \lambda_{r} \mathbf{b}_{r}^{(1)} \circ \mathbf{b}_{r}^{(2)} \circ \mathbf{b}_{r}^{(3)} \circ \mathbf{b}_{r}^{(4)}
$$

' o ' denotes the outer products of vectors, and R is CP-rank. - Tucker decomposition:

$$
\underline{\mathbf{x}}=\underline{\mathbf{G}} \times \times_{1} \mathbf{B}^{(1)} \times_{2} \mathbf{B}^{(2)} \times_{3} \mathbf{B}^{(3)} \times_{4} \mathbf{B}^{(4)}
$$

\times_{i} denotes multilinear product on the i th mode. ($R_{1}, R_{2}, R_{3}, R_{4}$) are Tucker ranks.

- TT decomposition:
$x_{i_{1}, i_{2}, \ldots, i_{N}}=\mathbf{G}_{i_{1}}^{(1)} \mathbf{G}_{i_{2}}^{(2)} \cdots \mathbf{G}_{i_{N}}^{(N)}$
$\left(R_{1}, R_{2}, \ldots, R_{N-1}\right)$ are TT-ranks.

Tensor Ring - Sequential SVDs

- Tensor ring (TR) decomposition can be performed by using sequential SVDs, which is called TR-SVD algorithm.

$$
\begin{aligned}
& \text { k-unfolding } \quad T_{(k k}\left(\overline{i_{1} \cdots i_{k}}, \overline{\left.i_{k+1} \cdots i_{d}\right)}=\operatorname{Tr}\left\{\prod_{j=1}^{k} Z_{j}\left(i_{j}\right) \prod_{j=k+1}^{d} Z_{j}\left(i_{j}\right)\right\}=\left\{\operatorname{vec}\left(\prod_{j=1}^{k} Z_{j}\left(i_{j}\right)\right), \text { vec }\left(\prod_{j=d}^{k+1} Z_{j}^{T}\left(i_{j}\right)\right)\right\rangle\right. \text {. } \\
& \text { matrix } \\
& T_{\langle k\rangle}\left(\overline{i_{1} \cdots i_{k}}, \overline{\left.i_{k+1} \cdots i_{d}\right)}\right)=\sum_{\alpha_{1} \alpha_{k+1}} Z^{\leq k}\left(\overline{i_{1} \cdots i_{k}}, \overline{\alpha_{1} \alpha_{k+1}}\right) Z^{>k}\left(\overline{\alpha_{1} \alpha_{k+1}}, \overline{k_{k+1} \cdots i_{d}}\right),
\end{aligned}
$$

Tensor Ring Decomposition

- A generalization of $T T$ without limitation of rank $r_{1}=r_{d+1}=1$.
- The additional operation between the first and last core tensors is added, yielding a circular tensor products of a set of cores.

$T\left(i_{1}, i_{2}, \ldots, i_{d}\right)=\operatorname{Tr}\left\{\mathbf{Z}_{1}\left(i_{1}\right) \mathbf{Z}_{2}\left(i_{2}\right) \cdots \mathbf{Z}_{d}\left(i_{d}\right)\right\}=\operatorname{Tr}\left\{\prod_{k=1}^{d} \mathbf{Z}_{k}\left(i_{k}\right)\right\}$

$$
\mathbf{Z}_{k}\left(i_{k}\right) \text { denotes } i_{k} \text { th slice matrix of core tensor } \mathcal{Z}_{k} \text {. }
$$

- TR representation is equivalent to the sum of TTs with partially shared core tensors.
- TR-ranks $r_{1} r_{k+1} \leq R_{k}$ where R_{k} is the rank of k -unfolding matricization of original tensor.
- TR solution is invariant to circularly dimensional permutation.

Tensor Ring - Stochastic Gradient Descent

- For large-scale datasets, stochastic gradient descent (SGD) shows high computational efficiency and scalability for matrix/ tensor factorization.
- We develop a scalable and efficient TR decomposition by using SGD, which is also suitable for online learning and tensor completion problems.

$$
\begin{gathered}
L\left(\mathcal{Z}_{1}, \mathcal{Z}_{2}, \ldots, \mathcal{Z}_{d}\right)=\frac{1}{2} \sum_{i_{1}, \ldots, i_{d}}\left\{T\left(i_{1}, i_{2}, \ldots, i_{d}\right)-\operatorname{Tr}\left(\prod_{k=1}^{d} \mathbf{Z}_{k}\left(i_{k}\right)\right)\right\}^{2}+\frac{1}{2} \lambda_{k}\left\|\mathbf{Z}_{k}\left(i_{k}\right)\right\|^{2} \\
\frac{\partial L}{\partial \mathbf{Z}_{k}\left(i_{k}\right)}=-\left\{T\left(i_{1}, i_{2}, \ldots, i_{d}\right)-\operatorname{Tr}\left(\prod_{k=1}^{d} \boldsymbol{Z}_{k}\left(i_{k}\right)\right)\right\}\left(\prod_{j=1, j \neq k}^{d} \mathbf{Z}_{j}\left(i_{j}\right)\right)^{T}+\lambda_{k} \mathbf{Z}_{k}\left(i_{k}\right)
\end{gathered}
$$

Block-Wise Alternating Least-Squares (ALS)

- ALS is firstly applied to optimize the block of core tensors at each iteration
- The low-rank matrix decomposition can be employed to separate the block into two core tensors. $\mathfrak{z}_{\mathcal{Z}_{1}, \ldots, \mathcal{Z}_{d}}^{\min _{d}} \| \mathcal{T}-\Re\left(\mathcal{Z}_{1}, \ldots, \mathcal{Z}_{d} \|_{F}\right.$

$$
\begin{aligned}
& T\left(i_{1}, i_{2}, \ldots, i_{d}\right)=\sum_{\alpha_{1}, \ldots, \alpha_{d}} Z_{1}\left(\alpha_{1}, i_{1}, \alpha_{2}\right) Z_{2}\left(\alpha_{2}, i_{2}, \alpha_{3}\right) \cdots Z_{d}\left(\alpha_{d}, i_{d}, \alpha_{1}\right) \\
& =\sum_{\alpha_{k}, \alpha_{k+1}}\left\{Z_{k}\left(\alpha_{k}, i_{k}, \alpha_{k+1}\right) Z^{\neq k}\left(\alpha_{k+1}, \overline{i_{k+1} \cdots i_{d} i_{1} \cdots i_{k-1}}, \alpha_{k}\right)\right\}
\end{aligned}
$$

Experimental Results

- The number of parameters for tensor representation of an image under varying approximation error ϵ

$\begin{gathered} \text { Data } \\ n=256, d=2 \end{gathered}$	$\epsilon=0.1$		$\epsilon=0.01$		$\epsilon=9 e-4$		$\epsilon=2 e-15$	
	SVD	TT/TR	SVD	TT/TR	SVD	TT/TR	SVD	TT/TR
	9.7e3	9.7e3	7.2e4	7.2e4	1.2e5	1.2e5	1.3 e 5	1.3 e 5
Tensorization	$\epsilon=0.1$		$\epsilon=0.01$		$\epsilon=2 e-3$		$\epsilon=1 e-14$	
	TT	TR	TT	TR	TT	TR	TT	TR
$n=16, d=4$	5.1e3	3.8e3	6.8 e 4	6.4e4	1.005	7.3 e 4	1.3 e 5	7.4e4
$n=4, d=8$	4.8e3	4.3e3	7.8e4	7.8e4	1.1 e 5	9.8e4	1.3 e 5	1.0e5
$n=2, d=16$	7.4e3	7.4e3	1.0 e 5	1.0 e 5	1.5 e 5	1.5 e 5	1.7 e 5	1.7 e 5

- Based on tensorization operations, TR decomposition is able to capture the intrinsic structure information and provides a more compact representation than T representation.
- Each core tensor corresponds to a specific scale of resolution.

An individual core tensor is corrupted by
random random
random

- TR representation can be used for low-rank approximation of model parameters in deep neural networks.
- The model complexity can be compressed by 1300 times.

The tensorization of an image

Summary

- A novel tensor decomposition model which can provide an compact representation for a very high-order tensor.
- A scalable SGD algorithm which is useful for
large-scale tensors, online learning, and tensor completion.
-TR representation achieves much more compressive deep learning models compared to TT representation.

