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/Altinified formulation for TD

BEERRERGEIRGSUIS and Analysis

1. Matrix/tensor decomposition is a promising tool
for weight compression.

2. Previously, the authors claim that the efficiency
IS due to the structral similarity in training data.

In our paper, we argue:

OOOOOOOOOOOOOOOO

In CNN,
the low-rank structure
of the kernels is inherent!

(a) CTFAR-10 (b) Noised CIFAR-10

Fig. 1: Comparison of the classification accuracy of the CNNs
in our experiments, where TD represents the conventional
TD-based compression method (by tensor-train-matrix de-
composition), RsTD denotes the proposed model in which the
random shuffling operation is imposed on each kernel before
TD, and the right line in the figure 1s the baseline by the un-
compressed network.

Graphical representation (GR) of TDs
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GR of Tucker decomp.:
TD can be describe by a graph.

X =TD(G; A)
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Experiment setting:

Input
conv —3 X 3 —256 —

stride 1

conv — 3 X 3 —256 — stride 1 ! H a i / 0
conv — 3 x 3 —256 — stride 2 (G ) ~G2)—G:)—G.)
0 w

conv —3 X 3 —256 — stride 1 :
conv — 3 x 3 —256 — stride 1 (a) 4th-order tensor (b) tensor train (TT)

— 3 X 3—256 — stride 2 ! H
conv stride ; o @ @
conv — 3 X 3 —256 — stride 1 @ @ .

global average pooling H+ +W O @ @ w
fully connected-10
soft-max classifier (¢) TT-matrix (d) tensor ring (TR)

Table 1: CNN configurations. The convolution layer parame-  Fig. 2: Graphical representation for decomposing a kernel
ters are denoted by conv —<kernel size>—<number of output  (4th-order tensor) by using tensor train (TT), TT-matrix and
channels>—<stride option>. tensor ring (TR) decomposition, respectively.

Experimental results:

WéRsor Decomposition (TD)

RERABIVESFUffed TD (RsTD) Layer

CIFAR-10 —

CLASSIFCATION ACCURACY
CLASSIFCATION ACCURACY

TD 1s to represent the high-dimensional problem
by a low parametric form. Roughly speaking,

MD d d d
TD : R — R™ xR™ x---xR™

An example: 3rd-order Tucker decomposition

(K x R)

[ [ matrix multiplication
(1xIx K} (1 xP) (PxQxR) (1xQ)

The magic of TD
comes from the tensor contraction operator

Cichocki A, Zdunek R, Phan A H, et al. Nonnegative matrix and tensor factorizations: applications to exploratory multi-way data analysis and blind source separation[M]. John Wiley & Sons, 2009.

s RM”

Rs 1s to randomly change the index for each entry.

R will destroy the original
linear dependence relationship.

Random-shuffling (Rs) operator: R : RM "~

RSTD = Rs + TD:
X =R-TD(G;A)

RsTD Layer for CNN:
Y= f (RTD(@A)@X
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