TPFN: Applying Outer Product along Time to Multimodal Sentiment Analysis Fusion on Incomplete Data

[†]RIKEN Center for Advanced Intelligence Project (AIP),Tokyo, Japan [‡]College of Artificial Intelligence, Nankai University, Tianjin, China

Chao Li (RIKEN-AIP)

ECCV2020

chao.li@riken.jp 1/13

RIKEN

Multimodal Sentiment Analysis with Incomplete Data

REMARK

• Outer-product riches the modal interaction in the data fusion phase.

REMARK

- Outer-product riches the modal interaction in the data fusion phase.
- Most of the studies assume that the collected data is complete and ideal.

REMARK

- Outer-product riches the modal interaction in the data fusion phase.
- Most of the studies assume that the collected data is complete and ideal.

Question

How to accurately give the prediction when the dataset (or features) are incomplete?

${\sf Cont'd}$

T2FN (P.P. Liang et al 2019): "Learning representations from imperfect time series data via tensor rank regularization".

ECCV2020

T2FN (P.P. Liang et al 2019): "Learning representations from imperfect time series data via tensor rank regularization".

NOTE

ECCV2020

• Explicit out-products are applied.

T2FN (P.P. Liang et al 2019): "Learning representations from imperfect time series data via tensor rank regularization".

NOTE

ECCV2020

- Explicit out-products are applied.
- Time-steps are averaged in each sample.

T2FN (P.P. Liang et al 2019): "Learning representations from imperfect time series data via tensor rank regularization".

NOTE

ECCV2020

- Explicit out-products are applied.
- Time-steps are averaged in each sample.
- High-dimensional tensor weights.

chao.li@riken.ip

4/13

T2FN (P.P. Liang et al 2019): "Learning representations from imperfect time series data via tensor rank regularization".

NOTE

- Explicit out-products are applied.
- Time-steps are averaged in each sample.
- High-dimensional tensor weights.

Goal of Our work

- Implicit out-product.
- Higher-order statistics of temporal dynamic.
- Dimension reduction of the tensor weights.

ECCV2020

One Step Further along T2FN: Time Product Fusion Network (TPFN)

TPFN consists of:

- (a) Pre-process LSTM
- (b) Fusion: TPF
- (c) Inference: LIM
- (d) Low-rank regularization

TPF: Outer Product along Temporal Domain

TPF: Outer Product along Temporal Domain

The Answer Is No. – Low-rank Inference Module (LIM)

In (P.P. Liang et al 2019), it is pointed out that the low-rank regularization on the fused features M is of importance in the case of incomplete data.

In (P.P. Liang et al 2019), it is pointed out that the low-rank regularization on the fused features M is of importance in the case of incomplete data.

REMARK

In T2FN (P.P. Liang et al 2019), the Frobenius norm of M is regularized. It is therefore implied that the explicit outer-products are inevitable in the model.

In (P.P. Liang et al 2019), it is pointed out that the low-rank regularization on the fused features M is of importance in the case of incomplete data.

REMARK

In T2FN (P.P. Liang et al 2019), the Frobenius norm of \mathbf{M} is regularized. It is therefore implied that the explicit outer-products are inevitable in the model.

Our Claim

Briefly speaking, the nuclear norm (i.e., convex surrogate of the rank) of \mathbf{M} is upper-bounded by the Frobenius norm of the concatenated features from all modalities and time-steps.

In (P.P. Liang et al 2019), it is pointed out that the low-rank regularization on the fused features M is of importance in the case of incomplete data.

REMARK

In T2FN (P.P. Liang et al 2019), the Frobenius norm of \mathbf{M} is regularized. It is therefore implied that the explicit outer-products are inevitable in the model.

Our Claim

Briefly speaking, the nuclear norm (i.e., convex surrogate of the rank) of M is upper-bounded by the Frobenius norm of the concatenated features from all modalities and time-steps.

REMARK

The regularization term is applied before the outer-product. The explicit out-products is avoided in our model.

IINI

Datasets: MOSI (A. Zadeh et al, 2016) and MOSEI (A. Zadeh et al, 2018).

	Number of Samples			Size of Features		
	Train	Val	Test	Acoustic	Visual	Language
MOSEI	15,290	2,291	4,832	74	35	300
MOSI	1,284	229	686	5	20	300

Missing Pattern

- Random Drop (RD)
- Structured Drop (SR): Randomly drop the whole modalities from each time-step.

RIKEN

Performance (ACC-2) on CMU-MOSI

TFPN/reg: TPFN without low-rank regularization.

Task	Method	Low	Medium	High	Params
RD	TFN	0.7361	0.7172	0.4475	759,424
	LMF	0.7346	0.7317	0.5218	2,288
	HPFN	0.7565	0.6982	0.5568	4,622,039
	T2FN	0.7769	0.7113	0.5962	19,737
	TPFN/reg(ours)	0.7638	0.7594	0.5845	8,652
	TPFN(ours)	0.7915	0.7609	0.6559	19,488
SD	TFN	0.7317	0.6880	0.5758	390,784
	LMF	0.7346	0.7128	0.5976	792
	HPFN	0.7463	0.7186	0.6151	1,168,247
	T2FN	0.7478	0.7142	0.6137	19,737
	TPFN/reg(ours)	0.7682	0.7288	0.6151	11,360
	TPFN(ours)	0.7594	0.7434	0.6516	7,344

Chao Li (RIKEN-AIP)

Performance (ACC-2) on CMU-MOSEI

TFPN/reg: TPFN without low-rank regularization.

Task	Method	Low	Medium	High	Params
RD	TFN	0.7195	0.7193	0.6705	1,353,856
	LMF	0.7307	0.7233	0.6684	1,208
	HPFN	0.7371	0.7189	0.7119	1,295,895
	T2FN	0.7394	0.7382	0.7104	18,785
	TPFN/reg(ours)	0.7375	0.7297	0.7156	14,240
	TPFN(ours)	0.7411	0.7367	0.7334	16,842
SD	TFN	0.7295	0.7121	0.6968	759,424
	LMF	0.7313	0.7067	0.7057	1,304
	HPFN	0.7311	0.7245	0.7003	1,296,423
	T2FN	0.7350	0.7295	0.7173	9,945
	TPFN/reg(ours)	0.7437	0.7301	0.7007	7,056
	TPFN(ours)	0.7386	0.7382	0.7301	5,796

Chao Li (RIKEN-AIP)

• The outer-product is important to obtain rich interaction among modalities.

- The outer-product is important to obtain rich interaction among modalities.
- The benefit by outer-products is also given through time-steps.

- The outer-product is important to obtain rich interaction among modalities.
- The benefit by outer-products is also given through time-steps.
- Low-rank tensor decomposition is a promising tool to tackle the dimension exploration issue by outer-products.

- The outer-product is important to obtain rich interaction among modalities.
- The benefit by outer-products is also given through time-steps.
- Low-rank tensor decomposition is a promising tool to tackle the dimension exploration issue by outer-products.
- The low-rank regularization on the fused features works well to cope with the incompleteness issue.

TPFN: Applying Outer Product along Time to Multimodal Sentiment Analysis Fusion on Incomplete Data

[†]RIKEN Center for Advanced Intelligence Project (AIP),Tokyo, Japan [‡]College of Artificial Intelligence, Nankai University, Tianjin, China

Chao Li (RIKEN-AIP)

ECCV2020

chao.li@riken.jp 13 / 13

RIKEN