Fully-Connected Tensor Network Decomposition and Its Application to Higher-Order Tensor Completion

Yu-Bang Zheng ${ }^{1}$

Ting-Zhu Huang ${ }^{1}$, Xi-Le Zhao ${ }^{1}$, Qibin Zhao ${ }^{2}$, Tai-Xiang Jiang ${ }^{3}$
${ }^{1}$ University of Electronic Science and Technology of China, China
${ }^{2}$ Tensor Learning Team, RIKEN AIP, Japan
${ }^{3}$ Southwestern University of Finance and Economics, China

AAAI 2021

Outline

(1) Background and Motivation
(2) FCTN Decomposition
(3) FCTN-TC Model and Solving Algorithm

4 Numerical Experiments
(5) Conclusion

Outline

(1) Background and Motivation

2 FCTN Decomposition

(3) FCTN-TC Model and Solving Algorithm

4 Numerical Experiments
(5) Conclusion

Higher-Order Tensors

Many real-world data are higher-order tensors: e.g., color video, hyperspectral image, and traffic data.

color video

hyperspectral image

traffic data

Tensor Completion

Missing Values Problems: recommender system design, image/video inpainting, and traffic data completion.

recommender system

hyperspectral image

traffic data

Tensor Completion

Missing Values Problems: recommender system design, image/video inpainting, and traffic data completion.

recommender system

hyperspectral image

traffic data

Tensor Completion (TC): complete a tensor from its partial observation.

III-Posed Inverse Problem

III-posed inverse problem

III-Posed Inverse Problem

III-posed inverse problem
\Uparrow
Prior/Intrinsic property

- Piecewise smoothness
- Nonlocal self-similarity
- Low-rankness

III-Posed Inverse Problem

Low-Rank Tensor Decomposition (Φ)

Prior/Intrinsic property

- Piecewise smoothness
- Nonlocal self-similarity
- Low-rankness

$$
\begin{aligned}
\min _{\mathcal{X}, \mathcal{G}} & \frac{1}{2}\left\|\mathcal{X}-\Phi\left(\mathcal{G}_{1}, \mathcal{G}_{2}, \cdots, \mathcal{G}_{N}\right)\right\|_{F}^{2}, \\
\text { s.t. } & \mathcal{P}_{\Omega}(\mathcal{X})=\mathcal{P}_{\Omega}(\mathcal{F}) .
\end{aligned}
$$

Minimizing Tensor Rank

$$
\begin{aligned}
\min _{\mathcal{X}} & \operatorname{Rank}(\mathcal{X}), \\
\text { s.t. } & \mathcal{P}_{\Omega}(\mathcal{X})=\mathcal{P}_{\Omega}(\mathcal{F}) .
\end{aligned}
$$

Here $\mathcal{F} \in \mathbb{R}^{I_{1} \times I_{2} \times \cdots \times I_{N}}$ is an incomplete observation of $\mathcal{X} \in \mathbb{R}^{I_{1} \times I_{2} \times \cdots \times I_{N}}, \Omega$ is the index of the known elements, and $\mathcal{P}_{\Omega}(\mathcal{X})$ is a projection operator which projects the elements in Ω to themselves and all others to zeros.

Tensor Decomposition

Tensor Decomposition

- decomposes a higher-order tensor to a set of low-dimensional factors;
- has powerful capability to capture the global correlations of tensors.

Tensor Decomposition

Tensor Decomposition

- decomposes a higher-order tensor to a set of low-dimensional factors;
- has powerful capability to capture the global correlations of tensors.

Tucker decomposition

CANDECOMP/PARAFAC (CP) decomposition

Tensor Decomposition

Limitations of Tucker Decomposition

- only characterizes correlations among one mode and all the rest of modes, rather than between any two modes;
- needs high storage cost.

Tensor Decomposition

Limitations of Tucker Decomposition

- only characterizes correlations among one mode and all the rest of modes, rather than between any two modes;
- needs high storage cost.

Limitations of CP Decomposition

- difficulty in flexibly characterizing different correlations among different modes;
- difficulty in finding the optimal solution.

Tensor Decompositions

Recently, the popular tensor train (TT) and tensor ring (TR) decompositions have emerged and shown great ability to deal with higher-order, especially beyond thirdorder tensors.

Tensor Decompositions

Recently, the popular tensor train (TT) and tensor ring (TR) decompositions have emerged and shown great ability to deal with higher-order, especially beyond thirdorder tensors.

TT decomposition

Tensor Decompositions

Recently, the popular tensor train (TT) and tensor ring (TR) decompositions have emerged and shown great ability to deal with higher-order, especially beyond thirdorder tensors.

TT decomposition

$$
\begin{aligned}
& \mathcal{X}\left(i_{1}, i_{2}, \cdots, i_{N}\right)=\sum_{r_{1}=1}^{R_{1}} \sum_{r_{2}=1}^{R_{2}} \cdots \sum_{r_{N}=1}^{R_{N}} \\
& \left\{\mathcal{G}_{1}\left(r_{N}, i_{1}, r_{1}\right) \mathcal{G}_{2}\left(r_{1}, i_{2}, r_{2}\right) \cdots \mathcal{G}_{N}\left(r_{N-1}, i_{N}, r_{N}\right)\right\}
\end{aligned}
$$

TR decomposition

Motivations

Limitations of TT and TR Decomposition

- A limited correlation characterization: only establish a connection (operation) between adjacent two factors, rather than any two factors;

Motivations

Limitations of TT and TR Decomposition

- A limited correlation characterization: only establish a connection (operation) between adjacent two factors, rather than any two factors;
- Without transpositional invariance: keep the invariance only when the tensor modes make a reverse permuting (TT and TR) or a circular shifting (only TR), rather than any permuting.

Examples:
\triangleright reverse permuting: $[1,2,3,4] \rightarrow[4,3,2,1]$;
\triangleright circular shifting: $[1,2,3,4] \rightarrow[2,3,4,1],[3,4,1,2],[4,1,2,3]$.

Motivations

Limitations of TT and TR Decomposition

- A limited correlation characterization: only establish a connection (operation) between adjacent two factors, rather than any two factors;
- Without transpositional invariance: keep the invariance only when the tensor modes make a reverse permuting (TT and TR) or a circular shifting (only TR), rather than any permuting.

Examples:
\triangleright reverse permuting: $[1,2,3,4] \rightarrow[4,3,2,1]$;
\triangleright circular shifting: $[1,2,3,4] \rightarrow[2,3,4,1],[3,4,1,2],[4,1,2,3]$.

How to break through?

Outline

(1) Background and Motivation

(2) FCTN Decomposition
(3) FCTN-TC Model and Solving Algorithm

4 Numerical Experiments
(5) Conclusion

FCTN Decomposition

Definition 1 (FCTN Decomposition)

The FCTN decomposition aims to decompose an Nth-order tensor \mathcal{X} into a set of lowdimensional Nth-order factor tensors $\mathcal{G}_{k}(k=1,2, \cdots, N)$. The element-wise form of the FCTN decomposition can be expressed as

$$
\begin{align*}
\mathcal{X}\left(i_{1}, i_{2}, \cdots, i_{N}\right)= & \sum_{r_{1,2}=1}^{R_{1,2}} \sum_{r_{1,3}=1}^{R_{1,3}} \cdots \sum_{r_{1, N}=1}^{R_{1, N}} \sum_{r_{2,3}=1}^{R_{2,3}} \cdots \sum_{r_{2, N}=1}^{R_{2, N}} \cdots \sum_{r_{N-1, N}=1}^{R_{N-1, N}} \\
& \left\{\mathcal{G}_{1}\left(i_{1}, r_{1,2}, r_{1,3}, \cdots, r_{1, N}\right)\right. \tag{1}\\
& \mathcal{G}_{2}\left(r_{1,2}, i_{2}, r_{2,3}, \cdots, r_{2, N}\right) \cdots \\
& \mathcal{G}_{k}\left(r_{1, k}, r_{2, k}, \cdots, r_{k-1, k}, i_{k}, r_{k, k+1}, \cdots, r_{k, N}\right) \cdots \\
& \left.\mathcal{G}_{N}\left(r_{1, N}, r_{2, N}, \cdots, r_{N-1, N}, i_{N}\right)\right\} .
\end{align*}
$$

Note: Here $\mathcal{X} \in \mathbb{R}^{I_{1} \times I_{2} \times \cdots \times I_{N}}$ and $\mathcal{G}_{k} \in \mathbb{R}^{R_{1, k} \times R_{2, k} \times \cdots \times R_{k-1, k} \times I_{k} \times R_{k, k+1} \times \cdots \times R_{k, N}}$.

FCTN Decomposition

Definition 1 (FCTN Decomposition)

The FCTN decomposition aims to decompose an Nth-order tensor \mathcal{X} into a set of lowdimensional Nth-order factor tensors $\mathcal{G}_{k}(k=1,2, \cdots, N)$. The element-wise form of the FCTN decomposition can be expressed as

$$
\begin{align*}
\mathcal{X}\left(i_{1}, i_{2}, \cdots, i_{N}\right)= & \sum_{r_{1,2}=1}^{R_{1,2}} \sum_{r_{1,3}=1}^{R_{1,3}} \cdots \sum_{r_{1, N}=1}^{R_{1, N}} \sum_{r_{2,3}=1}^{R_{2,3}} \cdots \sum_{r_{2, N}=1}^{R_{2, N}} \cdots \sum_{r_{N-1, N}=1}^{R_{N-1, N}} \\
& \left\{\mathcal{G}_{1}\left(i_{1}, r_{1,2}, r_{1,3}, \cdots, r_{1, N}\right)\right. \tag{1}\\
& \mathcal{G}_{2}\left(r_{1,2}, i_{2}, r_{2,3}, \cdots, r_{2, N}\right) \cdots \\
& \mathcal{G}_{k}\left(r_{1, k}, r_{2, k}, \cdots, r_{k-1, k}, i_{k}, r_{k, k+1}, \cdots, r_{k, N}\right) \cdots \\
& \left.\mathcal{G}_{N}\left(r_{1, N}, r_{2, N}, \cdots, r_{N-1, N}, i_{N}\right)\right\} .
\end{align*}
$$

Note: Here $\mathcal{X} \in \mathbb{R}^{I_{1} \times I_{2} \times \cdots \times I_{N}}$ and $\mathcal{G}_{k} \in \mathbb{R}^{R_{1, k} \times R_{2, k} \times \cdots \times R_{k-1, k} \times I_{k} \times R_{k, k+1} \times \cdots \times R_{k, N}}$.
FCTN-ranks: the vector (length: $N(N-1) / 2$) collected by $R_{k_{1}, k_{2}}\left(1 \leq k_{1}<k_{2} \leq\right.$ N and $\left.k_{1}, k_{2} \in \mathbb{N}^{+}\right)$.

FCTN Decomposition

$$
\stackrel{I_{1}}{\mathbf{X}^{I_{2}}=\stackrel{I_{1}}{\mathbf{G}_{1}}-\frac{R_{1,2}}{\mathbf{G}_{2}} \underline{I}_{2}}
$$

Figure 1: The Fully-Connected Tensor Network Decomposition.

FCTN Decomposition

Figure 1: The Fully-Connected Tensor Network Decomposition.
$R_{k_{1}, k_{2}}$: characterizes the intrinsic correlations between the k_{1} th and k_{2} th modes of \mathcal{X}.

FCTN Decomposition: characterizes the correlations between any two modes.

FCTN Decomposition

Matrices/Second-Order Tensors $\mathbf{X}=\mathbf{G}_{1} \mathbf{G}_{2} \Leftrightarrow \mathbf{X}^{\top}=\mathbf{G}_{2}^{\top} \mathbf{G}_{1}^{\top}$
 Higher-Order Tensors
 ? ? ?

FCTN Decomposition

Matrices/Second-Order Tensors

$$
\mathbf{X}=\mathbf{G}_{1} \mathbf{G}_{2} \Leftrightarrow \mathbf{X}^{\top}=\mathbf{G}_{2}^{\top} \mathbf{G}_{1}^{\top}
$$

Higher-Order Tensors
? ? ?

Theorem 1 (Transpositional Invariance)
Supposing that an Nth-order tensor \mathcal{X} has the following FCTN decomposition: $\mathcal{X}=$ $\operatorname{FCTN}\left(\mathcal{G}_{1}, \mathcal{G}_{2}, \cdots, \mathcal{G}_{N}\right)$. Then, its vector n-based generalized tensor transposition $\overrightarrow{\mathcal{X}^{\mathbf{n}}}$ can be expressed as $\overrightarrow{\mathcal{X}^{\mathbf{n}}}=\operatorname{FCTN}\left(\overrightarrow{\mathcal{G}}_{n_{1}}^{\mathrm{n}}, \overrightarrow{\mathcal{G}}_{n_{2}}^{\mathrm{n}}, \cdots, \overrightarrow{\mathcal{G}}_{n_{N}}^{\mathrm{n}}\right)$, where $\mathbf{n}=\left(n_{1}, n_{2}, \cdots, n_{N}\right)$ is a reordering of the vector $(1,2, \cdots, N)$.

Note: $\overrightarrow{\mathcal{X}^{\mathbf{n}}} \in \mathbb{R}^{I_{n_{1}} \times I_{n_{2}} \times \cdots \times I_{n_{N}}}$ is generated by rearranging the modes of \mathcal{X} in the order specified by the vector \mathbf{n}.

FCTN Decomposition: has transpositional invariance.

FCTN Decomposition

Theorem 2 (The FCTN Rank and the Unfolding Matrix Rank)

Supposing that an Nth-order tensor \mathcal{X} can be represented by Equation (1), the following inequality holds:

$$
\operatorname{Rank}\left(\mathbf{X}_{\left[n_{1: d} ; n_{d+1: N}\right]}\right) \leq \prod_{i=1}^{d} \prod_{j=d+1}^{N} R_{n_{i}, n_{j}},
$$

where $R_{n_{i}, n_{j}}=R_{n_{j}, n_{i}}$ if $n_{i}>n_{j}$ and $\left(n_{1}, n_{2}, \cdots, n_{N}\right)$ is a reordering of the vector $(1,2, \cdots, N)$.
Note: $\mathbf{X}_{\left[n_{1: d} ; n_{d+1: N}\right]}=\operatorname{reshape}\left(\overrightarrow{\mathcal{X}}, \prod_{i=1}^{d} I_{n_{i}}, \prod_{i=d+1}^{N} I_{n_{i}}\right)$.
Comparison:
\triangleright TT-rank: $\operatorname{Rank}\left(\mathbf{X}_{[1: d ; d+1: N]}\right) \leq R_{d}$;
\triangleright TR-rank: $\operatorname{Rank}\left(\mathbf{X}_{[1: d ; d+1: N]}\right) \leq R_{d} R_{N}$;
\triangleright FCTN-rank: $\operatorname{Rank}\left(\mathbf{X}_{[1: d ; d+1: N]}\right) \leq \prod_{i=1}^{d} \prod_{j=d+1}^{N} R_{i, j}$.

FCTN Decomposition

Theorem 2 (The FCTN Rank and the Unfolding Matrix Rank)

Supposing that an Nth-order tensor \mathcal{X} can be represented by Equation (1), the following inequality holds:

$$
\operatorname{Rank}\left(\mathbf{X}_{\left[n_{1: d} ; n_{d+1: N}\right]}\right) \leq \prod_{i=1}^{d} \prod_{j=d+1}^{N} R_{n_{i}, n_{j}}
$$

where $R_{n_{i}, n_{j}}=R_{n_{j}, n_{i}}$ if $n_{i}>n_{j}$ and $\left(n_{1}, n_{2}, \cdots, n_{N}\right)$ is a reordering of the vector $(1,2, \cdots, N)$.
Note: $\mathbf{X}_{\left[n_{1: d} ; n_{d+1: N}\right]}=\operatorname{reshape}\left(\overrightarrow{\mathcal{X}}{ }^{\mathbf{n}}, \prod_{i=1}^{d} I_{n_{i}}, \prod_{i=d+1}^{N} I_{n_{i}}\right)$.
Comparison:
\triangleright TT-rank: $\operatorname{Rank}\left(\mathbf{X}_{[1: d ; d+1: N]}\right) \leq R_{d}$;
\triangleright TR-rank: $\operatorname{Rank}\left(\mathbf{X}_{[1: d ; d+1: N]}\right) \leq R_{d} R_{N}$;
\triangleright FCTN-rank: $\operatorname{Rank}\left(\mathbf{X}_{[1: d ; d+1: N]}\right) \leq \prod_{i=1}^{d} \prod_{j=d+1}^{N} R_{i, j}$.

- the FCTN-rank can bound the rank of all generalized tensor unfolding;
- can capture more informations than TT-rank and TR-rank;

A Discussion of the Storage Cost

CP Decomposition
$\mathcal{O}\left(N R_{1} I\right)$

Tucker Decomposition
$\mathcal{O}\left(\mathrm{NIR}_{3}+R_{3}^{N}\right)$

TT/TR Decomposition $\mathcal{O}\left(N R_{2}^{2} I\right)$

FCTN Decomposition
$\mathcal{O}\left(N R_{4}^{N-1} I\right)$

A Discussion of the Storage Cost

CP Decomposition $\mathcal{O}\left(N R_{1} I\right)$

Tucker Decomposition

$$
\mathcal{O}\left(N I R_{3}+R_{3}^{N}\right)
$$

TT/TR Decomposition
$\mathcal{O}\left(N R_{2}^{2} I\right)$

FCTN Decomposition
$\mathcal{O}\left(N R_{4}^{N-1} I\right)$

The storage cost of the FCTN decomposition seems to theoretical high. But when we express real-world data, the required FCTN-rank is usually less than CP, TT, TR, and Tucker-ranks.

FCTN Composition

Definition 2 (FCTN Composition)

We call the process of generating \mathcal{X} by its FCTN factors $\mathcal{G}_{k}(k=1,2, \cdots N)$ as the FCTN composition, which is also denoted as $\operatorname{FCTN}\left(\left\{\mathcal{G}_{k}\right\}_{k=1}^{N}\right)$. If one of the factors $\mathcal{G}_{t}(t \in\{1,2, \cdots, N\})$ does not participate in the composition, we denote it as $\operatorname{FCTN}\left(\left\{\mathcal{G}_{k}\right\}_{k=1}^{N}, / \mathcal{G}_{t}\right)$

Theorem 3

Supposing that $\mathcal{X}=\operatorname{FCTN}\left(\left\{\mathcal{G}_{k}\right\}_{k=1}^{N}\right)$ and $\mathcal{M}_{t}=\operatorname{FCTN}\left(\left\{\mathcal{G}_{k}\right\}_{k=1}^{N}, / \mathcal{G}_{t}\right)$, we obtain that

$$
\mathbf{X}_{(t)}=\left(\mathbf{G}_{t}\right)_{(t)}\left(\mathbf{M}_{t}\right)_{\left[m_{1: N-1 ;} ; n_{1: N-1}\right]},
$$

where

$$
m_{i}=\left\{\begin{array}{ll}
2 i, & \text { if } i<t, \\
2 i-1, & \text { if } i \geq t,
\end{array} \text { and } n_{i}= \begin{cases}2 i-1, & \text { if } i<t, \\
2 i, & \text { if } i \geq t .\end{cases}\right.
$$

Outline

(1) Background and Motivation

(2) FCTN Decomposition

(3) FCTN-TC Model and Solving Algorithm

4 Numerical Experiments
(5) Conclusion

FCTN-TC Model

$$
\begin{gathered}
\text { Relationship } \\
\mathcal{P}_{\Omega}(\mathcal{X})=\mathcal{P}_{\Omega}(\mathcal{F})
\end{gathered}
$$

$$
\begin{aligned}
& \text { Underlying Tensor } \\
& \mathcal{X} \in \mathbb{R}^{I_{1} \times I_{2} \times \cdots \times I_{N}}
\end{aligned}
$$

FCTN-TC Model

\Downarrow

FCTN Decomposition-Based TC (FCTN-TC) Model

$$
\begin{equation*}
\min _{\mathcal{X}, \mathcal{G}} \frac{1}{2}\left\|\mathcal{X}-\operatorname{FCTN}\left(\mathcal{G}_{1}, \mathcal{G}_{2}, \cdots, \mathcal{G}_{N}\right)\right\|_{F}^{2}+\iota_{\mathbb{S}}(\mathcal{X}) \tag{2}
\end{equation*}
$$

where $\mathcal{G}=\left(\mathcal{G}_{1}, \mathcal{G}_{2}, \cdots, \mathcal{G}_{N}\right)$,

$$
\iota_{\mathbb{S}}(\mathcal{X}):=\left\{\begin{array}{l}
0, \text { if } \mathcal{X} \in \mathbb{S}, \\
\infty, \text { otherwise },
\end{array} \text { with } \mathbb{S}:=\left\{\mathcal{X}: \mathcal{P}_{\Omega}(\mathcal{X}-\mathcal{F})=0\right\}\right.
$$

Ω is the index of the known elements, and $\mathcal{P}_{\Omega}(\mathcal{X})$ is a projection operator which projects the elements in Ω to themselves and all others to zeros.

PAM-Based Algorithm

Proximal Alternating Minimization (PAM)

$$
\left\{\begin{array}{l}
\mathcal{G}_{k}^{(s+1)}=\underset{\mathcal{G}_{k}}{\operatorname{argmin}}\left\{f\left(\mathcal{G}_{1: k-1}^{(s+1)}, \mathcal{G}_{k}, \mathcal{G}_{k+1: N}^{(s)}, \mathcal{X}^{(s)}\right)+\frac{\rho}{2}\left\|\mathcal{G}_{k}-\mathcal{G}_{k}^{(s)}\right\|_{F}^{2}\right\}, k=1,2, \cdots, N \tag{3}\\
\mathcal{X}^{(s+1)}=\underset{\mathcal{X}}{\operatorname{argmin}}\left\{f\left(\mathcal{G}^{(s+1)}, \mathcal{X}\right)+\frac{\rho}{2}\left\|\mathcal{X}-\mathcal{X}^{(s)}\right\|_{F}^{2}\right\}
\end{array}\right.
$$

where $f(\mathcal{G}, \mathcal{X})$ is the objective function of (2) and $\rho>0$ is a proximal parameter.

PAM-Based Algorithm

Proximal Alternating Minimization (PAM)

$$
\left\{\begin{array}{l}
\mathcal{G}_{k}^{(s+1)}=\underset{\mathcal{G}_{k}}{\operatorname{argmin}}\left\{f\left(\mathcal{G}_{1: k-1}^{(s+1)}, \mathcal{G}_{k}, \mathcal{G}_{k+1: N}^{(s)}, \mathcal{X}^{(s)}\right)+\frac{\rho}{2}\left\|\mathcal{G}_{k}-\mathcal{G}_{k}^{(s)}\right\|_{F}^{2}\right\}, k=1,2, \cdots, N, \tag{3}\\
\mathcal{X}^{(s+1)}=\underset{\mathcal{X}}{\operatorname{argmin}}\left\{f\left(\mathcal{G}^{(s+1)}, \mathcal{X}\right)+\frac{\rho}{2}\left\|\mathcal{X}-\mathcal{X}^{(s)}\right\|_{F}^{2}\right\},
\end{array}\right.
$$

where $f(\mathcal{G}, \mathcal{X})$ is the objective function of (2) and $\rho>0$ is a proximal parameter.
\mathcal{G}_{k}-Subproblems $(k=1,2, \cdots, N)$

$$
\begin{align*}
& \left(\mathbf{G}_{k}^{(s+1)}\right)_{(k)}=\left[\mathbf{X}_{(k)}^{(s)}\left(\mathbf{M}_{k}^{(s)}\right)_{\left[n_{1: N-1} ; m_{1: N-1}\right]}+\rho\left(\mathbf{G}_{k}^{(s)}\right)_{(k)}\right]\left[\left(\mathbf{M}_{k}^{(s)}\right)_{\left[m_{1: N-1} ; n_{1: N-1}\right]}\left(\mathbf{M}_{k}^{(s)}\right)_{\left[n_{1: N-1} ; m_{1: N-1}\right]}+\rho \mathbf{I}\right]^{-1}, \tag{4}\\
& \mathcal{G}_{k}^{(s+1)}=\operatorname{GenFold}\left(\left(\mathbf{G}_{k}^{(s+1)}\right)_{(k)}, k ; 1, \cdots, k-1, k+1, \cdots, N\right),
\end{align*}
$$ where $\mathcal{M}_{k}^{(s)}=\operatorname{FCTN}\left(\mathcal{G}_{1: k-1}^{(s+1)}, \mathcal{G}_{k}, \mathcal{G}_{k+1: N}^{(s)}, / \mathcal{G}_{k}\right)$, and vectors \mathbf{m} and \mathbf{n} have the same setting as that in Theorem 3.

\mathcal{X}-Subproblem

$$
\begin{equation*}
\mathcal{X}^{(s+1)}=\mathcal{P}_{\Omega^{c}}\left(\frac{\operatorname{FCTN}\left(\left\{\mathcal{G}_{k}^{(s+1)}\right\}_{k=1}^{N}\right)+\rho \mathcal{X}^{(s)}}{1+\rho}\right)+\mathcal{P}_{\Omega}(\mathcal{F}) \tag{5}
\end{equation*}
$$

PAM-Based Algorithm

Algorithm 1 PAM-Based Solver for the FCTN-TC Model.

Input: $\mathcal{F} \in \mathbb{R}^{I_{1} \times I_{2} \times \cdots \times I_{N}}, \Omega$, the maximal FCTN-rank $R^{\max }$, and $\rho=0.1$.
Initialization: $s=0, s^{\max }=1000, \mathcal{X}^{(0)}=\mathcal{F}$, the initial FCTN-rank $R=\max \{\operatorname{ones}(N(N-$

1) $\left./ 2,1), R^{\text {max }}-5\right\}$, and $\mathcal{G}_{k}^{(0)}=\operatorname{rand}\left(R_{1, k}, R_{2, k}, \cdots, R_{k-1, k}, I_{k}, R_{k, k+1}, \cdots, R_{k, N}\right)$, where $k=1,2, \cdots, N$. while not converged and $s<s^{\max }$ do

Update $\mathcal{G}_{k}^{(s+1)}$ via (4).
Update $\mathcal{X}^{(s+1)}$ via (5).
Let $R=\min \left\{R+1, R^{\max }\right\}$ and expand $\mathcal{G}_{k}^{(s+1)}$ if $\left\|\mathcal{X}^{(s+1)}-\mathcal{X}^{(s)}\right\|_{F} /\left\|\mathcal{X}^{(s)}\right\|_{F}<10^{-2}$.
Check the convergence condition: $\left\|\mathcal{X}^{(s+1)}-\mathcal{X}^{(s)}\right\|_{F} /\left\|\mathcal{X}^{(s)}\right\|_{F}<10^{-5}$.
Let $s=s+1$.
end while
Output: The reconstructed tensor \mathcal{X}.

Theorem 4 (Convergence)
The sequence $\left\{\mathcal{G}^{(s)}, \mathcal{X}^{(s)}\right\}_{s \in \mathbb{N}}$ obtained by the Algorithm 1 globally converges to a critical point of (2).

Outline

(1) Background and Motivation

(2) FCTN Decomposition

(3) FCTN-TC Model and Solving Algorithm

4 Numerical Experiments
(5) Conclusion

Synthetic Data Experiments

- Compared Methods: TT-TC (PAM), TR-TC (PAM), and FCTN-TC (PAM);
- Quantitative Metric: the relative error (RSE) between the reconstructed tensor and the ground truth.

Figure 2: Reconstructed results on the synthetic dataset.

Real Data Experiments

Compared Methods:

- HaLRTC [Liu et al. 2013; IEEE TPAMI];
- TMac [Xu et al. 2015; IPI];
- t-SVD [Zhang and Aeron 2017; IEEE TSP];
- TMacTT [Bengua et al. 2017; IEEE TIP];
- TRLRF [Yuan et al. 2019; AAA/].

Quantitative Metric:

- PSNR;
- RSE.

Color Video Data

Table 1: The PSNR values and the running times of all utilized methods on the color video data.

Dataset	MR	95\%	90\%	80\%	Mean time (s)	Dataset	MR	95\%	90\%	80\%	Mean time (s)
news	Observed	8.7149	8.9503	9.4607		containe	Observed	4.5969	4.8315	5.3421	
	HaLRTC	14.490	18.507	22.460	36.738		HaLRTC	18.617	21.556	25.191	34.528
	TMac	$\underline{25.092}$	27.035	29.778	911.14		TMac	26.941	26.142	32.533	1224.4
	t-SVD	25.070	$\underline{28.130}$	31.402	74.807		t-SVD	28.814	34.912	39.722	71.510
	TMacTT	24.699	27.492	31.546	465.75		TMacTT	28.139	31.282	37.088	450.70
	TRLRF	22.558	27.823	31.447	891.96		TRLRF	30.631	32.512	38.324	640.41
	FCTN-TC	26.392	29.523	33.048	473.50		FCTN-TC	30.805	37.326	42.974	412.72
Dataset	MR	95\%	90\%	80\%	$\begin{array}{c\|} \hline \hline \text { Mean } \\ \text { time (s) } \\ \hline \end{array}$	Dataset	MR	95\%	90\%	80\%	Mean time (s)
elephants	Observed	3.8499	4.0847	4.5946	-	bunny	Observed	6.4291	6.6638	7.1736	
	HaLRTC	16.651	20.334	24.813	38.541		HaLRTC	14.561	19.128	23.396	32.882
	TMac	26.753	28.648	31.010	500.70		TMac	25.464	28.169	30.525	779.78
	t-SVD	21.810	27.252	30.975	63.994		t-SVD	21.552	26.094	30.344	66.294
	TMacTT	25.918	$\underline{28.880}$	32.232	204.64		TMacTT	26.252	$\underline{29.512}$	33.096	264.15
	TRLRF	$\underline{27.120}$	28.361	32.133	592.13		TRLRF	$\underline{27.749}$	29.034	33.224	652.03
	FCTN-TC	27.780	30.835	34.391	455.71		FCTN-TC	28.337	32.230	36.135	468.25

The data is available at $h t t p: / / t r a c e . e a s . a s u . e d u / y u v /$.

Color Video Data

Figure 3: Reconstructed results on the 35th frame of the CV bunny.

Traffic Data

Observed

TMacTT

RSE=0.0613

HaLRTC

TRLRF

RSE=0.0766

TMac

FCTN-TC

RSE=0.0553
t-SVD

Ground truth

0	200	400	600	800	1000	1200	1400	1600	1800	2000

Figure 4: Reconstructed results on the traffic flow dataset with $M R=40 \%$. The first and the second rows are the results on the 2nd day and the corresponding residual results, respectively.

The data is available at http://gtl.inrialpes.fr/.

Conclusion

Contributions

(1) Propose an FCTN decomposition, which breaks through the limitations of TT and TR decompositions;
(2) Employ the FCTN decomposition to the TC problem and develop an efficient PAMbased algorithm to solve it;
(3) Theoretically demonstrate the convergence of the developed algorithm.

Conclusion

Contributions

(1) Propose an FCTN decomposition, which breaks through the limitations of TT and TR decompositions;
(2) Employ the FCTN decomposition to the TC problem and develop an efficient PAMbased algorithm to solve it;
(3) Theoretically demonstrate the convergence of the developed algorithm.

Challenges and Future Directions

(1) Difficulty in finding the optimal FCTN-ranks \Leftarrow Exploit prior knowledge of factors;
(2) Storage cost seems to theoretical high \Leftarrow Introduce probability graphical model.

Thank you very much for listening!

Wechat
Homepage: https://yubangzheng.github.io

