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Tensor Network (TN)
TN is an efficient framework for modeling complex systems by decomposing 
it into simpler, interconnected parts.

Emergent geometry
In the framework of holography, there is a very sugges-
tive connection between entanglement, TNs and quan-
tum gravity: it looks like the MERA is a lattice realization 
of a space with some geometry, in which the curvature 
is somehow linked to entanglement. The observation 
implies that space- time geometry may emerge from 
the underlying structure of entanglement in complex  
quantum states. An instance that has been studied in some 
detail is the possible relation between MERA and the  
AdS/CFT or gauge/gravity duality162. This connection 
between TNs and quantum gravity was originally noticed 
in REF.15, and later investigated in other studies163–166.  
More specifically, for a scale- invariant MERA, the 
tensors in the bulk can be understood as a discretized 
AdS geometry, whereas the indices at the boundary 
correspond to the local Hilbert spaces obtained after a 
discretization of a CFT (FIG. 4). The connection can be 
made more formal by taking the continuum MERA41 
and evaluating the metric of the resulting smooth space 
in the bulk, with the curvature of the geometry being 
linked to the density of disentanglers164,165. Currently, 
the connection is intriguing and has motivated a lot 
of research, especially from the string theory com-
munity. In particular, there have also been claims that 
MERA does not correspond to an AdS geometry, but 
rather to a de Sitter geometry167. In recent work, how-
ever, it was shown that MERA is neither AdS nor de 
Sitter, but rather a lightcone geometry168. Although 
this connection is certainly suggestive and remarkable, 

the role played by TNs in the quantization of gravity  
remains unclear.

Artificial intelligence
In this section, I will comment on the recent observation 
that neural networks (such as those used in deep learn-
ing) are in fact particular cases of TNs, and on the use of 
MPS to improve some methods of artificial intelligence. 
Additionally, I will outline the result that syntactic rela-
tions in language have a TN structure that is inherited 
by probabilistic language models.

Machine learning
Several promising connections between TNs and 
machine learning have been put forward. In REF.16, it was 
shown that deep learning architectures can be under-
stood using the language of quantum entanglement. 
To name a couple of examples, convolutional networks 
correspond to specific cases of TTNs, and recurrent neu-
ral networks correspond to MPS. More generically, the 
whole machinery of quantum information and entan-
glement theory can be applied to understand neural 
networks in new ways. One must, however, be careful, 
since in general neural networks are characterized by 
nonlinear functions, whereas TNs are linear and there-
fore obey the superposition principle. In REF.169, it was 
shown that there is an equivalence between restricted 
Boltzmann machines (a simple type of neural network) 
and TN states. Boltzmann machines were also shown 
to be connected to some classes of TN states in arbitrary 
dimensions170. In REFS171–174, MPS and TTNs were used 
for supervised and unsuper vised learning tasks of clas-
sifying images. Finally, in REF.175, it was discussed how 
quantum circuits based on MPS and TTNs could be 
used to implement machine- learning tasks in near-term 
quantum devices, and REF.176 explored how probabilistic 
graphical models motivate the concept of generalized 
TNs, in which information from a tensor can be copied 
and reused in other parts of the network, thus allowing 
for new types of variational wavefunctions.

Language models
From the perspective of computational linguistics, 
probabilistic language models used for speech and text 
recog nition were found to have a TN structure. This is a 
consequence of the fact that Chomsky’s MERGE operation 
can be understood as a physical coarse- graining of infor-
mation177. Such probabilistic models usually have the 
form of a TTN or even an MPS, for example, loop-free 
TNs. In turn, this matches the empirical observation that 
convolutional neural networks are quite good at language 
processing. In connection with the results mentioned 
in the previous section, it is clear that this is indeed so 
because such neural networks are TTNs, which encode 
the renormalization group structure of language found in  
REF.177, and are therefore naturally well-suited for the task.

Further topics
There are many other interesting results related to TN 
states and methods, and I cannot attempt to summarize 
all of them here. Nevertheless, here I outline a few that I 
believe are particularly relevant.

Boltzmann machine
A specific type of neural 
network in which the target is 
to reproduce some Gibbs 
thermal probabilities.

MERGE
Linguistic operation introduced 
by Noam Chomsky, which 
picks up two entities (for 
example, noun and adjective) 
and produces a new one  
from the two (for instance, 
noun phrase).
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Fig. 4 | 1D MERA. The entanglement entropy of a block of length L for a multiscale 
entanglement renormalization ansatz (MERA) is upper- bounded as χ Ω≤ × ∂S logL L, with 

Ω∂ L the boundary of region ΩL in the tensor network (that is, the number of links crossed 
by the blue dashed line) and χ the bond dimension. It is easy to realize that Ω∂ =O L(log )L , 
and therefore one has that SL = O(log L) for the 1D MERA. This calculation matches the 
behaviour from conformal field theories (CFTs) in (1 + 1)D, and corresponds, precisely ,  
to the lattice version of the Ryu–Takatanagi prescription to compute the entanglement 
entropy in anti- de Sitter (AdS)/CFT196. Entanglement is thus the area in holographic space 
of the minimal surface separating the two regions. This is one of the key observations that 
motivates the analogy between MERA and AdS/CFT.
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Representation for complex quantum systems  
(Orus, Nature Phys.’19)
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FIG. 1. Overview of the machine learning workflow for a TTN classifier. A data instance x from a classical data set is transformed into
a quantum state |!(0)(x)〉 by feeding each element of the data vector xi through a local map φ(xi ) defining a qubit superposition, as shown
schematically on the Bloch sphere. The isometric tensors of the TTN (triangles) define a coarse graining of collections of these quantum feature
vectors at progressively higher levels of scale. At the highest level of scale, the projection of the extracted feature vector onto a collection of
weight vectors 〈W"| defines a classification decision.

states also ensures that any entanglement in the quantum ML
model arises from correlations in an ensemble of data and
not from a priori assumptions about preexisting correlations
for individual data vectors [28]. We will parametrize the map
from an L-dimensional classical data vector x to an ensemble
of L two-level systems (qubits) as

|!(0)(x)〉 =
L⊗

j=1




2∑

i j=1

φ
( j)
i j

(x j )|i j〉



. (1)

That is, the parametrization is accomplished in terms of local
maps φ( j)(x) mapping a single data element into a superposi-
tion of qubit states (see Fig. 1). In order to ensure that the full
map !(0)(x) maps each data instance into a normalized vector
in Hilbert space, we require that

∑

i

∣∣φ( j)
i (x)

∣∣2 = 1 ∀ x. (2)

This condition is satisfied by the phaselike encoding

φ0(x) = cos
(π

2
x − xmin

xmax − xmin

)
, (3)

φ1(x) = sin
(π

2
x − xmin

xmax − xmin

)

that has been used in Refs. [28,36,46,63] to encode data for
quantum-inspired ML applications and is shown schemati-
cally by the Bloch sphere representations of each classical
data element in Fig. 1. In Ref. [56] a quantum-inspired
algorithm using MPSs (known in the numerical analysis com-
munity as tensor trains [54]) found good performance in
certain learning tasks using the map

φ0(x) = 1, φ1(x) = ax. (4)

This has the appealing property that each data vector x is
mapped into a weighted superposition of all correlations
xix j · · · xk of orders 0 through L with each xi appearing at
most once, and so a tensor-network weighting vector in this
space can efficiently select out the most relevant correlations
from this exponentially large set. The factor a can be used to
scale the data and avoid numerical overflow. Unfortunately,
this map does not satisfy the condition in Eq. (2) and so is not
suitable for application on quantum hardware. We can define
a generalization of Eq. (3) as

φ0(x) = cos
(

a
x

xmax

)
, φ1(x) = sin

(
a

x
xmax

)
, (5)

with a ∼ O(0.1), which satisfies Eq. (2) and so is suitable
for quantum discriminative applications. Noting that a x

xmax
&

1 ∀ x, we can use the small-angle approximation to find

φ0(x) = 1 + O(a2), φ1(x) = a
x

xmax
+ O(a3), (6)

and so this map has the same essential features as Eq. (4). A
comparison of model performance utilizing the maps (5) and
(4) will be given in Sec. III.

B. Construction of unsupervised feature extractor

We now turn to building an unsupervised feature extractor
as a TTN acting on the encoded quantum data description,
following Ref. [29]. This procedure is depicted graphically by
the dotted blue box in Fig. 1. We assume that we have a collec-
tion of M training data vectors {xm}, m = 1, . . . , M, that has
been encoded into a collection of training states {|!(xm)〉}.
Using this map and these states, we would like to build a
model f (x) = 〈W |!(x)〉 parametrized by a weight vector |W 〉
in the many-body Hilbert space, to perform some machine
learning task (e.g., classification). Given our collection of
training vectors, the optimal weights for a given task can be
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Tensor Regression Networks

Figure 3: We propose to first reduce the dimensionality of the activation tensor by applying
tensor contraction before performing tensor regression. We then replace flattening operators
and fully connected layers by a TRL. The output is a product between the activation tensor
and a low-rank weight tensor W . For clarity, we illustrate the case of a binary classification,
where y is a scalar. For multiclass, y becomes a vector and the regression weights would
become a 4th order tensor.

Number of parameters Considering an activation tensor X of size (S0, I0, I1, · · · , IN ),
a size–(R0, R1, · · · , RN ) TCL parameterized by weight factors V(0)

, · · · ,V(N) and taking X
as input will have a total of

P
N

k=0 Ik ⇥Rk parameters.

This is to contrast with an equivalent fully connected layer (as presented above),

parametrized a weight matrix W =
�
V(0) ⌦ · · ·⌦V(N)

�>
, which would have a total ofQ

k = 0NIk ⇥Rk parameters.

Notice how the product in number of parameters of the fully connected layer becomes a
sum when using a TCL. In other words, in addition to preserving the topological structure
in the activation tensor, the TCL has significantly less parameters than a corresponsing fully
connected layer.

4. Tensor Regression Layer

In this section, we introduce the Tensor Regression Layer, a new di↵erentiable neural network
layer. In order to generate outputs, CNNs typically either flatten the activations or apply
a spatial pooling operation. In either case, they discard all multimodal structure and
subsequently apply a fully-connected output layer. Instead, we propose leveraging that
multilinear structure in the activation tensor and formulate the output as lying in a low-rank
subspace that jointly models the input and the output. We do this by means of a low-rank
tensor regression, where we enforce a low multilinear rank of the regression weight tensor.

4.1. Tensor regression as a layer

Let us denote by X 2 RS⇥I0⇥I1⇥···⇥IN the input activation tensor corresponding to a
batch of S samples (X1, · · · ,XS) and Y 2 RS⇥O the O corresponding labels for each
sample. We are interested in the problem of estimating the regression weight tensor
W 2 RI0⇥I1⇥···⇥IN⇥O under some fixed low rank (R0, · · · , RN , RN+1) and a bias b 2 RO,
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Carlo tree search (MCTS) planning procedure. The network takes as 
input a state (that is, a tensor tS  to decompose), and outputs a policy 
and a value. The policy provides a distribution over potential actions. 
As the set of potential actions (u(t), v(t), w(t)) in each step is enormous, 
we rely on sampling actions rather than enumerating them21,22. The 
value provides an estimate of the distribution z of returns (cumulative 
reward) starting from the current state tS . With the above reward 
scheme, the distribution z models the agent’s belief about the rank of 
the tensor St. To play a game, AlphaTensor starts from the target tensor 
( nT ) and uses the MCTS planner at each step to choose the next action. 
Finished games are used as feedback to the network to improve the 
network parameters.

Overcoming the challenges posed by TensorGame—namely, an enor-
mous action space, and game states described by large 3D tensors 
representing an abstract mathematical operation—requires multiple 
advances. All these components, described briefly below,  substantially 

improve the overall performance over a plain AlphaZero agent (see 
Methods and Supplementary Information for details).

Neural network architecture
We propose a transformer-based23 architecture that incorporates 
inductive biases for tensor inputs. We first project the S × S × S input 
tensor into three S × S grids of feature vectors by using linear layers 
applied to the three cyclic transpositions of the tensor. The main part of 
the model comprises a sequence of attention operations, each applied 
to a set of features belonging to a pair of grids (Extended Data Figs. 3 
and 4). This generalizes axial attention24 to multiple grids, and is both 
more efficient and yields better results than naive self-attention. The 
proposed architecture, which disregards the order of rows and columns 
in the grids, is inspired by the invariance of the tensor rank to slice 
reordering. The final feature representation of the three matrices is 
passed both to the policy head (an autoregressive model) and the value 
head (a multilayer perceptron).

Synthetic demonstrations
Although tensor decomposition is NP-hard, the inverse task of con-
structing the tensor from its rank-one factors is elementary. Hence, 
we generate a large dataset of tensor-factorization pairs (synthetic 
demonstrations) by first sampling factors u v w{( , , )}r r r

r
R( ) ( ) ( )

=1 at random, 
and then constructing the tensor = ∑ ⊗ ⊗r

R r r r
=1

( ) ( ) ( )D u v w . We train the 
network on a mixture of supervised loss (that is, to imitate synthetic 
demonstrations) and standard reinforcement learning loss (that is, 
learning to decompose a target tensor nT ) (Fig. 2). This mixed training 
strategy—training on the target tensor and random tensors— substan-
tially outperforms each training strategy separately. This is despite 
randomly generated tensors having different properties from the tar-
get tensors.

Change of basis
 nT  (Fig. 1a) is the tensor representing the matrix multiplication bilinear 
operation in the canonical basis. The same bilinear operation can be 
expressed in other bases, resulting in other tensors. These different 

Algorithm 1
A meta-algorithm parameterized by =u v w{ , , }r r r( ) ( ) ( )

r
R

1 for computing 
the matrix product C = AB. It is noted that R controls the number of 
multiplications between input matrix entries.

Parameters: =u v w{ , , }r r r( ) ( ) ( )
r
R

1: length-n2 vectors such that 
Tn

r r r( ) ( ) ( )
r
R

1= ∑ ⊗ ⊗= u v w
Input: A, B: matrices of size n × n
Output: C = AB
(1) for r = 1, …, R do
(2)     ← + + + +! !m u a u a v b v b( ) ( )r n n1 1

r
n
r r

n
r

1
( ) ( )

1
( ) ( )2 22 2

(3) for i = 1, …, n2 do
(4)     !c w m w mi R1i i

R(1) ( )← + +
return C

Change of basis

Pre-generated 
synthetic 

demonstrations

Played games
buffer

Played
game

Sample
random state

Neural network

Policy head

Value head

Acting

...

LearningUpdated 
model

Network inputTraining labels

(u, v, w)

(u(1), v(1), w(1)) (u(2), v(2), w(2)) (u(3), v(3), w(3))

Fig. 2 | Overview of AlphaTensor. The neural network (bottom box) takes  
as input a tensor St, and outputs samples (u, v, w) from a distribution  
over potential next actions to play, and an estimate of the future returns  
(for example, of S−Rank ( )t ). The network is trained on two data sources: 

previously played games and synthetic demonstrations. The updated network 
is sent to the actors (top box), where it is used by the MCTS planner to generate 
new games.Discovering faster matrix multiplication 

(AlphaTensor, Fawzi et al., Nature’22)2



Vision: Diversity of Tensor Networks

What is the most suitable TN model for our task?

How can we efficiently select the structure-related parameters?
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Modeling entanglement 
between A and B

A

B
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‣Formulating TN-SS as discrete optimization

‣Solving TN-SS with less computational cost 

‣Theoretical Analysis

‣Future works

Steps to Attain the Goal

‣ TNGA: Genetic Algorithm (Li and Sun, ICML’20)
‣ TNLS: Stochastic Search (Li et al., ICML’22)
‣ TnALE: Alternating Enumeration (Li et al., ICML’23)

‣ Symmetry of TN structures
‣ Search Dynamic in TNLS/TnALE
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What is TN-SS?



Tensor and TN’s Graphical Representation

Order-0
Tensor

Order-1
Tensor

Order-2
Tensor

Order-3
Tensor

Order-5
Tensor

scalar vector matrix

TENSOR is a multi-way number array. CONTRACTION: “tensor-tensor” multiplication.

matrix decomposition CP decomposition
[Hitchcock, 1927]

A TENSOR NETWORK (TN) is modeled as an edge-labeled graph depicting a 
sequence of contractions among many tensors.

J
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K
<latexit sha1_base64="yQchR/vGmI1FWVj1ElrvAcWIZUI=">AAAB93icbVA9SwNBEN2LXzF+RS1tFoNgFe6ioGXQRrBJwHxAcoS9zVyyZHfv2N0TjiO/wFZrO7H151j6T9wkV5jEBwOP92aYmRfEnGnjut9OYWNza3unuFva2z84PCofn7R1lCgKLRrxSHUDooEzCS3DDIdurICIgEMnmNzP/M4zKM0i+WTSGHxBRpKFjBJjpebjoFxxq+4ceJ14OamgHI1B+ac/jGgiQBrKidY9z42NnxFlGOUwLfUTDTGhEzKCnqWSCNB+Nj90ii+sMsRhpGxJg+fq34mMCK1TEdhOQcxYr3oz8T+vl5jw1s+YjBMDki4WhQnHJsKzr/GQKaCGp5YQqpi9FdMxUYQam83SlkBMbSbeagLrpF2relfVWvO6Ur/L0ymiM3SOLpGHblAdPaAGaiGKAL2gV/TmpM678+F8LloLTj5zipbgfP0CRcCTaQ==</latexit>

AB
<latexit sha1_base64="PPCkjOkrnSVQ1Z4QUirmGsykYQg=">AAACC3icbVDLSsNAFL3xWesr2qWbwSK4KkkVdFnrxmUF+4A2lMl00g6dScLMRAiln+A3uNW1O3HrR7j0T5y0EWzrgQuHc+7lHo4fc6a043xZa+sbm1vbhZ3i7t7+waF9dNxSUSIJbZKIR7LjY0U5C2lTM81pJ5YUC5/Ttj++zfz2I5WKReGDTmPqCTwMWcAI1kbq26WewHrkB+gG/bJ63y47FWcGtErcnJQhR6Nvf/cGEUkEDTXhWKmu68Tam2CpGeF0WuwlisaYjPGQdg0NsaDKm8zCT9GZUQYoiKSZUKOZ+vdigoVSqfDNZhZQLXuZ+J/XTXRw7U1YGCeahmT+KEg40hHKmkADJinRPDUEE8lMVkRGWGKiTV8LX3wxNZ24yw2skla14l5UqveX5Vo9b6cAJ3AK5+DCFdTgDhrQBAIpPMMLvFpP1pv1bn3MV9es/KYEC7A+fwBbzZqC</latexit>

B
<latexit sha1_base64="futOwDfv0EATwUk9NtBVM1D4uvk=">AAAB/3icbVDLSgMxFL3js9ZX1aWbYBFclZkq6LLUjcsK9iHtUDJppg1NMkOSEcrQhd/gVtfuxK2f4tI/MdPOwrYeCBzOuZd7coKYM21c99tZW9/Y3Nou7BR39/YPDktHxy0dJYrQJol4pDoB1pQzSZuGGU47saJYBJy2g/Ft5refqNIskg9mElNf4KFkISPYWOmxJ7AZBSGq90tlt+LOgFaJl5My5Gj0Sz+9QUQSQaUhHGvd9dzY+ClWhhFOp8VeommMyRgPaddSiQXVfjoLPEXnVhmgMFL2SYNm6t+NFAutJyKwk1lAvexl4n9eNzHhjZ8yGSeGSjI/FCYcmQhlv0cDpigxfGIJJorZrIiMsMLE2I4WrgRiajvxlhtYJa1qxbusVO+vyrV63k4BTuEMLsCDa6jBHTSgCQQEvMArvDnPzrvz4XzOR9ecfOcEFuB8/QIKgJae</latexit>

A
<latexit sha1_base64="94tL1q9O9cS77J172E010NqOwHQ=">AAAB/3icbVC7TsMwFL3hWcqrwMhiUSExVUlBgrHAwlgk+kBtVDmu01q1nch2kKqoA9/ACjMbYuVTGPkTnDYDbTmSpaNz7tU9PkHMmTau++2srK6tb2wWtorbO7t7+6WDw6aOEkVog0Q8Uu0Aa8qZpA3DDKftWFEsAk5bweg281tPVGkWyQczjqkv8ECykBFsrPTYFdgMgxBd90plt+JOgZaJl5My5Kj3Sj/dfkQSQaUhHGvd8dzY+ClWhhFOJ8VuommMyQgPaMdSiQXVfjoNPEGnVumjMFL2SYOm6t+NFAutxyKwk1lAvehl4n9eJzHhlZ8yGSeGSjI7FCYcmQhlv0d9pigxfGwJJorZrIgMscLE2I7mrgRiYjvxFhtYJs1qxTuvVO8vyrWbvJ0CHMMJnIEHl1CDO6hDAwgIeIFXeHOenXfnw/mcja44+c4RzMH5+gUI7Zad</latexit>

(I ⇥K)
<latexit sha1_base64="M//2C6WLxtNTfHKeYcKIzygckwU=">AAACAXicbVDLSgMxFM34rPVVdekmWIS6KTNV0GXRjeKmgn3AdCiZNG1Dk8mQ3BHK0JXf4FbX7sStX+LSPzFtZ2FbDwQO59zLuTlhLLgB1/12VlbX1jc2c1v57Z3dvf3CwWHDqERTVqdKKN0KiWGCR6wOHARrxZoRGQrWDIc3E7/5xLThKnqEUcwCSfoR73FKwEp+6a4NXDKD7886haJbdqfAy8TLSBFlqHUKP+2uoolkEVBBjPE9N4YgJRo4FWycbyeGxYQOSZ/5lkbE5gTp9OQxPrVKF/eUti8CPFX/bqREGjOSoZ2UBAZm0ZuI/3l+Ar2rIOVRnACL6CyolwgMCk/+j7tcMwpiZAmhmttbMR0QTSjYluZSQjm2nXiLDSyTRqXsnZcrDxfF6nXWTg4doxNUQh66RFV0i2qojihS6AW9ojfn2Xl3PpzP2eiKk+0coTk4X7/bVpcF</latexit>

K
<latexit sha1_base64="yQchR/vGmI1FWVj1ElrvAcWIZUI=">AAAB93icbVA9SwNBEN2LXzF+RS1tFoNgFe6ioGXQRrBJwHxAcoS9zVyyZHfv2N0TjiO/wFZrO7H151j6T9wkV5jEBwOP92aYmRfEnGnjut9OYWNza3unuFva2z84PCofn7R1lCgKLRrxSHUDooEzCS3DDIdurICIgEMnmNzP/M4zKM0i+WTSGHxBRpKFjBJjpebjoFxxq+4ceJ14OamgHI1B+ac/jGgiQBrKidY9z42NnxFlGOUwLfUTDTGhEzKCnqWSCNB+Nj90ii+sMsRhpGxJg+fq34mMCK1TEdhOQcxYr3oz8T+vl5jw1s+YjBMDki4WhQnHJsKzr/GQKaCGp5YQqpi9FdMxUYQam83SlkBMbSbeagLrpF2relfVWvO6Ur/L0ymiM3SOLpGHblAdPaAGaiGKAL2gV/TmpM678+F8LloLTj5zipbgfP0CRcCTaQ==</latexit>

I
<latexit sha1_base64="6MgDcebxBw4AHPTGRkLXsNY4hn8=">AAAB93icbVA9SwNBEN2LXzF+RS1tFoNgFe6ioGXQRrsEzAckR9jbzCVLdveO3T3hOPILbLW2E1t/jqX/xE1yhUl8MPB4b4aZeUHMmTau++0UNja3tneKu6W9/YPDo/LxSVtHiaLQohGPVDcgGjiT0DLMcOjGCogIOHSCyf3M7zyD0iySTyaNwRdkJFnIKDFWaj4OyhW36s6B14mXkwrK0RiUf/rDiCYCpKGcaN3z3Nj4GVGGUQ7TUj/REBM6ISPoWSqJAO1n80On+MIqQxxGypY0eK7+nciI0DoVge0UxIz1qjcT//N6iQlv/YzJODEg6WJRmHBsIjz7Gg+ZAmp4agmhitlbMR0TRaix2SxtCcTUZuKtJrBO2rWqd1WtNa8r9bs8nSI6Q+foEnnoBtXRA2qgFqII0At6RW9O6rw7H87norXg5DOnaAnO1y9CmpNn</latexit>

J
<latexit sha1_base64="iPKhNFSPiDW86sRcCxgyDM+uv8o=">AAAB93icbVA9SwNBEN2LXzF+RS1tFoNgFe6ioGXQRqwSMB+QHGFvM5cs2d07dveE48gvsNXaTmz9OZb+EzfJFSbxwcDjvRlm5gUxZ9q47rdT2Njc2t4p7pb29g8Oj8rHJ20dJYpCi0Y8Ut2AaOBMQssww6EbKyAi4NAJJvczv/MMSrNIPpk0Bl+QkWQho8RYqfk4KFfcqjsHXideTiooR2NQ/ukPI5oIkIZyonXPc2PjZ0QZRjlMS/1EQ0zohIygZ6kkArSfzQ+d4gurDHEYKVvS4Ln6dyIjQutUBLZTEDPWq95M/M/rJSa89TMm48SApItFYcKxifDsazxkCqjhqSWEKmZvxXRMFKHGZrO0JRBTm4m3msA6adeq3lW11ryu1O/ydIroDJ2jS+ShG1RHD6iBWogiQC/oFb05qfPufDifi9aCk8+coiU4X79ELZNo</latexit>

(1⇥ 1⇥ 1)
<latexit sha1_base64="xPJ872JvyatRpZQAUPNv3i1Wxnc=">AAACC3icbVDLSsNAFJ3UV62vaJduBotQNyWpgi6LblxWsA9oQ5lMJ+3QmSTM3Agh9BP8Bre6didu/QiX/onTNoi2HhjmcM69nMvxY8E1OM6nVVhb39jcKm6Xdnb39g/sw6O2jhJFWYtGIlJdn2gmeMhawEGwbqwYkb5gHX9yM/M7D0xpHoX3kMbMk2QU8oBTAkYa2OWq2wcumcY//9nArjg1Zw68StycVFCO5sD+6g8jmkgWAhVE657rxOBlRAGngk1L/USzmNAJGbGeoSExOV42P36KT40yxEGkzAsBz9XfGxmRWqfSN5OSwFgvezPxP6+XQHDlZTyME2AhXQQFicAQ4VkTeMgVoyBSQwhV3NyK6ZgoQsH09SfFl1PTibvcwCpp12vuea1+d1FpXOftFNExOkFV5KJL1EC3qIlaiKIUPaFn9GI9Wq/Wm/W+GC1Y+U4Z/YH18Q3BmJoj</latexit>

X ⇥1 a⇥2 b⇥3 c
<latexit sha1_base64="Mdj9E+YBNnyEN8zwAEnvpiuL0nQ=">AAACN3icbZDLSsNAFIYn9VbrLerSzWARXJWkFXRn0Y3LCvYCbQiT6aQdOpOEmYlQQh7Hh/AZ3OrClbgRt76BkzQF23pg4Oc75/Cf+b2IUaks690ora1vbG6Vtys7u3v7B+bhUUeGscCkjUMWip6HJGE0IG1FFSO9SBDEPUa63uQ263cfiZA0DB7UNCIOR6OA+hQjpZFrXg84UmOMWNJLB4pyIl07R54PUQHqcE68gjTmALtm1apZecFVYReiCopquebnYBjimJNAYYak7NtWpJwECUUxI2llEEsSITxBI9LXMkDaz0nyj6bwTJMh9EOhX6BgTv9uJIhLOeWenswOlMu9DP7X68fKv3ISGkSxIgGeGfkxgyqEWWpwSAXBik21QFhQfSvEYyQQVjrbBRePpzoTezmBVdGp1+xGrX5/UW3eFOmUwQk4BefABpegCe5AC7QBBk/gBbyCN+PZ+DC+jO/ZaMkodo7BQhk/v61NrX4=</latexit>

X
<latexit sha1_base64="gJU+xKS8gcd+TGzfn1VAZmamC10=">AAACAXicbVDLSgMxFL3js9ZX1aWbYBFclZkq6LLoxmUF+4DpUDJppg1NMkOSEcrQld/gVtfuxK1f4tI/MdPOwrYeCBzOuZd7csKEM21c99tZW9/Y3Nou7ZR39/YPDitHx20dp4rQFol5rLoh1pQzSVuGGU67iaJYhJx2wvFd7neeqNIslo9mktBA4KFkESPYWMnvCWxGBPOsO+1Xqm7NnQGtEq8gVSjQ7Fd+eoOYpIJKQzjW2vfcxAQZVoYRTqflXqppgskYD6lvqcSC6iCbRZ6ic6sMUBQr+6RBM/XvRoaF1hMR2sk8ol72cvE/z09NdBNkTCapoZLMD0UpRyZG+f/RgClKDJ9YgoliNisiI6wwMbalhSuhyDvxlhtYJe16zbus1R+uqo3bop0SnMIZXIAH19CAe2hCCwjE8AKv8OY8O+/Oh/M5H11zip0TWIDz9Qt3B5gI</latexit>

a
<latexit sha1_base64="lARkly2hBl77atLgnGdkxY/CRV8=">AAAB/3icbVDLSgMxFL1TX7W+qi7dBIvgqsxUQZdFNy4r2Ie0Q8mkmTY0yQxJRihDF36DW127E7d+ikv/xEw7C9t6IHA4517uyQlizrRx3W+nsLa+sblV3C7t7O7tH5QPj1o6ShShTRLxSHUCrClnkjYNM5x2YkWxCDhtB+PbzG8/UaVZJB/MJKa+wEPJQkawsdJjT2AzCkKE++WKW3VnQKvEy0kFcjT65Z/eICKJoNIQjrXuem5s/BQrwwin01Iv0TTGZIyHtGupxIJqP50FnqIzqwxQGCn7pEEz9e9GioXWExHYySygXvYy8T+vm5jw2k+ZjBNDJZkfChOOTISy36MBU5QYPrEEE8VsVkRGWGFibEcLVwIxtZ14yw2sklat6l1Ua/eXlfpN3k4RTuAUzsGDK6jDHTSgCQQEvMArvDnPzrvz4XzORwtOvnMMC3C+fgE7TZa9</latexit>

b
<latexit sha1_base64="DNGegz3UpEy/SoVyc/0rjZStnVY=">AAAB/3icbVDLSgMxFL1TX7W+qi7dBIvgqsxUQZdFNy4r2Ie0Q0nSTBuazAxJRihDF36DW127E7d+ikv/xEw7C9t6IHA4517uySGx4Nq47rdTWFvf2Nwqbpd2dvf2D8qHRy0dJYqyJo1EpDoEayZ4yJqGG8E6sWJYEsHaZHyb+e0npjSPwgcziZkv8TDkAafYWOmxJ7EZkQCRfrniVt0Z0CrxclKBHI1++ac3iGgiWWiowFp3PTc2foqV4VSwaamXaBZjOsZD1rU0xJJpP50FnqIzqwxQECn7QoNm6t+NFEutJ5LYySygXvYy8T+vm5jg2k95GCeGhXR+KEgEMhHKfo8GXDFqxMQSTBW3WREdYYWpsR0tXCFyajvxlhtYJa1a1buo1u4vK/WbvJ0inMApnIMHV1CHO2hAEyhIeIFXeHOenXfnw/mcjxacfOcYFuB8/QI84Ja+</latexit>

c
<latexit sha1_base64="KRj5Yh3W8hsYBioRpujyXxO60FU=">AAAB/3icbVDLSgMxFL1TX7W+qi7dBIvgqsxUQZdFNy4r2Ie0Q8mkmTY0yQxJRihDF36DW127E7d+ikv/xEw7C9t6IHA4517uyQlizrRx3W+nsLa+sblV3C7t7O7tH5QPj1o6ShShTRLxSHUCrClnkjYNM5x2YkWxCDhtB+PbzG8/UaVZJB/MJKa+wEPJQkawsdJjT2AzCkJE+uWKW3VnQKvEy0kFcjT65Z/eICKJoNIQjrXuem5s/BQrwwin01Iv0TTGZIyHtGupxIJqP50FnqIzqwxQGCn7pEEz9e9GioXWExHYySygXvYy8T+vm5jw2k+ZjBNDJZkfChOOTISy36MBU5QYPrEEE8VsVkRGWGFibEcLVwIxtZ14yw2sklat6l1Ua/eXlfpN3k4RTuAUzsGDK6jDHTSgCQQEvMArvDnPzrvz4XzORwtOvnMMC3C+fgE+c5a/</latexit>

Tensor

Contraction

I
<latexit sha1_base64="6MgDcebxBw4AHPTGRkLXsNY4hn8=">AAAB93icbVA9SwNBEN2LXzF+RS1tFoNgFe6ioGXQRrsEzAckR9jbzCVLdveO3T3hOPILbLW2E1t/jqX/xE1yhUl8MPB4b4aZeUHMmTau++0UNja3tneKu6W9/YPDo/LxSVtHiaLQohGPVDcgGjiT0DLMcOjGCogIOHSCyf3M7zyD0iySTyaNwRdkJFnIKDFWaj4OyhW36s6B14mXkwrK0RiUf/rDiCYCpKGcaN3z3Nj4GVGGUQ7TUj/REBM6ISPoWSqJAO1n80On+MIqQxxGypY0eK7+nciI0DoVge0UxIz1qjcT//N6iQlv/YzJODEg6WJRmHBsIjz7Gg+ZAmp4agmhitlbMR0TRaix2SxtCcTUZuKtJrBO2rWqd1WtNa8r9bs8nSI6Q+foEnnoBtXRA2qgFqII0At6RW9O6rw7H87norXg5DOnaAnO1y9CmpNn</latexit>

(I ⇥ 1)
<latexit sha1_base64="CdDEFOmD07BOoEI/ujiP3GVwNE8=">AAACAXicbVDLSgMxFL1TX7W+qi7dBItQN2WmCrosutFdBfuA6VAyaaYNTTJDkhFK6cpvcKtrd+LWL3Hpn5i2s7CtBwKHc+7l3Jww4Uwb1/12cmvrG5tb+e3Czu7e/kHx8Kip41QR2iAxj1U7xJpyJmnDMMNpO1EUi5DTVji8nfqtJ6o0i+WjGSU0ELgvWcQINlbyy/cdwwTVyDvvFktuxZ0BrRIvIyXIUO8Wfzq9mKSCSkM41tr33MQEY6wMI5xOCp1U0wSTIe5T31KJbU4wnp08QWdW6aEoVvZJg2bq340xFlqPRGgnBTYDvexNxf88PzXRdTBmMkkNlWQeFKUcmRhN/496TFFi+MgSTBSztyIywAoTY1taSAnFxHbiLTewSprVindRqT5clmo3WTt5OIFTKIMHV1CDO6hDAwjE8AKv8OY8O+/Oh/M5H8052c4xLMD5+gWyTpbr</latexit>

Vector

J
<latexit sha1_base64="iPKhNFSPiDW86sRcCxgyDM+uv8o=">AAAB93icbVA9SwNBEN2LXzF+RS1tFoNgFe6ioGXQRqwSMB+QHGFvM5cs2d07dveE48gvsNXaTmz9OZb+EzfJFSbxwcDjvRlm5gUxZ9q47rdT2Njc2t4p7pb29g8Oj8rHJ20dJYpCi0Y8Ut2AaOBMQssww6EbKyAi4NAJJvczv/MMSrNIPpk0Bl+QkWQho8RYqfk4KFfcqjsHXideTiooR2NQ/ukPI5oIkIZyonXPc2PjZ0QZRjlMS/1EQ0zohIygZ6kkArSfzQ+d4gurDHEYKVvS4Ln6dyIjQutUBLZTEDPWq95M/M/rJSa89TMm48SApItFYcKxifDsazxkCqjhqSWEKmZvxXRMFKHGZrO0JRBTm4m3msA6adeq3lW11ryu1O/ydIroDJ2jS+ShG1RHD6iBWogiQC/oFb05qfPufDifi9aCk8+coiU4X79ELZNo</latexit>

I
<latexit sha1_base64="6MgDcebxBw4AHPTGRkLXsNY4hn8=">AAAB93icbVA9SwNBEN2LXzF+RS1tFoNgFe6ioGXQRrsEzAckR9jbzCVLdveO3T3hOPILbLW2E1t/jqX/xE1yhUl8MPB4b4aZeUHMmTau++0UNja3tneKu6W9/YPDo/LxSVtHiaLQohGPVDcgGjiT0DLMcOjGCogIOHSCyf3M7zyD0iySTyaNwRdkJFnIKDFWaj4OyhW36s6B14mXkwrK0RiUf/rDiCYCpKGcaN3z3Nj4GVGGUQ7TUj/REBM6ISPoWSqJAO1n80On+MIqQxxGypY0eK7+nciI0DoVge0UxIz1qjcT//N6iQlv/YzJODEg6WJRmHBsIjz7Gg+ZAmp4agmhitlbMR0TRaix2SxtCcTUZuKtJrBO2rWqd1WtNa8r9bs8nSI6Q+foEnnoBtXRA2qgFqII0At6RW9O6rw7H87norXg5DOnaAnO1y9CmpNn</latexit>

(I ⇥ J)
<latexit sha1_base64="iPTNFxUONcbVk7ikbpNWDPrDMUc=">AAACAXicbVDLSgMxFM34rPVVdekmWIS6KTNV0GXRjbqqYB8wHUomTdvQZDIkd4QydOU3uNW1O3Hrl7j0T0zbWdjWA4HDOfdybk4YC27Adb+dldW19Y3N3FZ+e2d3b79wcNgwKtGU1akSSrdCYpjgEasDB8FasWZEhoI1w+HNxG8+MW24ih5hFLNAkn7Ee5wSsJJfumsDl8zg+7NOoeiW3SnwMvEyUkQZap3CT7uraCJZBFQQY3zPjSFIiQZOBRvn24lhMaFD0me+pRGxOUE6PXmMT63SxT2l7YsAT9W/GymRxoxkaCclgYFZ9Cbif56fQO8qSHkUJ8AiOgvqJQKDwpP/4y7XjIIYWUKo5vZWTAdEEwq2pbmUUI5tJ95iA8ukUSl75+XKw0Wxep21k0PH6ASVkIcuURXdohqqI4oUekGv6M15dt6dD+dzNrriZDtHaA7O1y/ZwpcE</latexit>

Matrix

I1
<latexit sha1_base64="O/m4HxTLUmr6XSW2cPgdyWfZvck=">AAAB+XicbVA9SwNBEJ2LXzF+RS1tFoNgFe6ioGXQRruI5gOSI+xt9pIlu3vH7p4QjvwEW63txNZfY+k/cS+5wiQ+GHi8N8PMvCDmTBvX/XYKa+sbm1vF7dLO7t7+QfnwqKWjRBHaJBGPVCfAmnImadMww2knVhSLgNN2ML7N/PYzVZpF8slMYuoLPJQsZAQbKz3e971+ueJW3RnQKvFyUoEcjX75pzeISCKoNIRjrbueGxs/xcowwum01Es0jTEZ4yHtWiqxoNpPZ6dO0ZlVBiiMlC1p0Ez9O5FiofVEBLZTYDPSy14m/ud1ExNe+ymTcWKoJPNFYcKRiVD2NxowRYnhE0swUczeisgIK0yMTWdhSyCmNhNvOYFV0qpVvYtq7eGyUr/J0ynCCZzCOXhwBXW4gwY0gcAQXuAV3pzUeXc+nM95a8HJZ45hAc7XL3AylAs=</latexit>

IN
<latexit sha1_base64="EveJdKz84u2uWiserDCk67TI7c4=">AAAB+XicbVA9SwNBEJ2LXzF+RS1tFoNgFe5iQMugjTYS0XxAcoS9zV6yZHfv2N0TwpGfYKu1ndj6ayz9J26SK0zig4HHezPMzAtizrRx3W8nt7a+sbmV3y7s7O7tHxQPj5o6ShShDRLxSLUDrClnkjYMM5y2Y0WxCDhtBaObqd96pkqzSD6ZcUx9gQeShYxgY6XHu959r1hyy+4MaJV4GSlBhnqv+NPtRyQRVBrCsdYdz42Nn2JlGOF0UugmmsaYjPCAdiyVWFDtp7NTJ+jMKn0URsqWNGim/p1IsdB6LALbKbAZ6mVvKv7ndRITXvkpk3FiqCTzRWHCkYnQ9G/UZ4oSw8eWYKKYvRWRIVaYGJvOwpZATGwm3nICq6RZKXsX5cpDtVS7ztLJwwmcwjl4cAk1uIU6NIDAAF7gFd6c1Hl3PpzPeWvOyWaOYQHO1y+d2ZQo</latexit>

Ik
<latexit sha1_base64="dnHEp4lgdA4li6dUWQoii/vavnY=">AAAB+XicbVA9SwNBEJ2LXzF+RS1tFoNgFe6ioGXQRruI5gOSI+xt9pIlu3vH7p4QjvwEW63txNZfY+k/cS+5wiQ+GHi8N8PMvCDmTBvX/XYKa+sbm1vF7dLO7t7+QfnwqKWjRBHaJBGPVCfAmnImadMww2knVhSLgNN2ML7N/PYzVZpF8slMYuoLPJQsZAQbKz3e98f9csWtujOgVeLlpAI5Gv3yT28QkURQaQjHWnc9NzZ+ipVhhNNpqZdoGmMyxkPatVRiQbWfzk6dojOrDFAYKVvSoJn6dyLFQuuJCGynwGakl71M/M/rJia89lMm48RQSeaLwoQjE6HsbzRgihLDJ5Zgopi9FZERVpgYm87ClkBMbSbecgKrpFWrehfV2sNlpX6Tp1OEEziFc/DgCupwBw1oAoEhvMArvDmp8+58OJ/z1oKTzxzDApyvX8uAlEU=</latexit>

(I1 ⇥ I2 ⇥ · · ·⇥ IN )
<latexit sha1_base64="RlY4qj8aJU3bHXR0cym/vC92qLw=">AAACHXicbVDLSgMxFM3UV62vUZdugqVQN2WmCrosurEbqWAf0JYhk8m0oZnMkNwRSukX+BF+g1tduxO34tI/MX0g2nogcDjnXs7N8RPBNTjOp5VZWV1b38hu5ra2d3b37P2Dho5TRVmdxiJWLZ9oJrhkdeAgWCtRjES+YE1/cDXxm/dMaR7LOxgmrBuRnuQhpwSM5NmFYtVzO8AjpnHVK89YhwYx6B/15sSz807JmQIvE3dO8miOmmd/dYKYphGTQAXRuu06CXRHRAGngo1znVSzhNAB6bG2oZKYpO5o+p0xLhglwGGszJOAp+rvjRGJtB5GvpmMCPT1ojcR//PaKYQX3RGXSQpM0llQmAoMMZ50gwOuGAUxNIRQxc2tmPaJIhRMg39S/GhsOnEXG1gmjXLJPS2Vb8/ylct5O1l0hI5REbnoHFXQNaqhOqLoAT2hZ/RiPVqv1pv1PhvNWPOdQ/QH1sc3LISh5A==</latexit>

order-N Tensor

Tensor is the foundational building block of TNs.

6



The TN structures include TN-ranks, vertex-permutation, and TN-
topology.

4th-order tensor
X,Y,Z-axis and T (time)

Image source: https://staffwww.dcs.shef.ac.uk/people/H.Lu/feeler.html

5 7

26
TN-ranks

X

Y Z

T

X

Y Z

T

3 4

56

X

Y Z

T

2 7

56

TN-Topology

X

Y Z

T

X Y ZT
X Y Z

T

*The dangling edges are ignored.

X

Y Z

T

V-Permutation

Y

X Z

T

Z

Y X

T
Y

X

Z

T
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Tensor Network Structure Search (TN-SS)

Rank Selection 
(TN-RS)

Permutation Search 
(TN-PS)

Topology Search 
(TN-TS)

TN-SS refers to a process of exploring and identifying the optimal combination 
of those structures to represent the complex system using a tensor network.

The goal is to reduce the computational cost in the search process. 

8
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Solving TN-SS is challenging!
• “Most tensor problems are NP-hard.” (CJ Hillar and LH Lim, JACM’13)

• TN-SS suffers from the combinatorial explosion issue.

Solving TN-SS is hard!

• ”Most tensor problems are NP-hard”. (CJ Hillar and LH Lim, JACM’13);

• TN-SS is a high-dimensional discrete optimization problem, i.e., combinatorial explosion;

N The number of TN-Structure candidates
2 5
3 125
4 15625
5 9765625
6 30517578125
7 476837158203125
8 37252902984619139072
9 14551915228366852423942144
10 28421709430404005438427049754624
11 2775557561562891379467096831824976936962

2
The number is larger 10

20
times than the total seconds since the birth of the universe.

6 / 30

Matrices were created by God. Tensors were created by the Devil. 
Max Noether:

Matrices

Tensors



Solving TN-SS via Discrete Optimization
A general model for TN-SS

Mathematically, TN-SS is to solve the following optimization problem:

min
(G ,r)2G⇥FG

0

BBBB@
�(G , r)| {z }

model complexity

+� · min
Z2TNS(G ,r)

⇡X (Z)

| {z }
model expressivity

1

CCCCA
, (1)

• G — graphs associated to TN topology and permutation;

• FG — positive-integer vectors associated to the TN-rank;

• TN-RS/TS/PS tasks correspond to setting di↵erent G and FG in the formula.

10 / 29
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Adjacency matrix: TN ranks and topology

I1
<latexit sha1_base64="O/m4HxTLUmr6XSW2cPgdyWfZvck=">AAAB+XicbVA9SwNBEJ2LXzF+RS1tFoNgFe6ioGXQRruI5gOSI+xt9pIlu3vH7p4QjvwEW63txNZfY+k/cS+5wiQ+GHi8N8PMvCDmTBvX/XYKa+sbm1vF7dLO7t7+QfnwqKWjRBHaJBGPVCfAmnImadMww2knVhSLgNN2ML7N/PYzVZpF8slMYuoLPJQsZAQbKz3e971+ueJW3RnQKvFyUoEcjX75pzeISCKoNIRjrbueGxs/xcowwum01Es0jTEZ4yHtWiqxoNpPZ6dO0ZlVBiiMlC1p0Ez9O5FiofVEBLZTYDPSy14m/ud1ExNe+ymTcWKoJPNFYcKRiVD2NxowRYnhE0swUczeisgIK0yMTWdhSyCmNhNvOYFV0qpVvYtq7eGyUr/J0ynCCZzCOXhwBXW4gwY0gcAQXuAV3pzUeXc+nM95a8HJZ45hAc7XL3AylAs=</latexit>

I2
<latexit sha1_base64="Eo0ma+UOe+TgbgwvBOtGvsWH0oA=">AAAB+XicbVA9SwNBEJ2LXzF+RS1tFoNgFe6ioGXQRruI5gOSI+xt9pIlu3vH7p4QjvwEW63txNZfY+k/cS+5wiQ+GHi8N8PMvCDmTBvX/XYKa+sbm1vF7dLO7t7+QfnwqKWjRBHaJBGPVCfAmnImadMww2knVhSLgNN2ML7N/PYzVZpF8slMYuoLPJQsZAQbKz3e92v9csWtujOgVeLlpAI5Gv3yT28QkURQaQjHWnc9NzZ+ipVhhNNpqZdoGmMyxkPatVRiQbWfzk6dojOrDFAYKVvSoJn6dyLFQuuJCGynwGakl71M/M/rJia89lMm48RQSeaLwoQjE6HsbzRgihLDJ5Zgopi9FZERVpgYm87ClkBMbSbecgKrpFWrehfV2sNlpX6Tp1OEEziFc/DgCupwBw1oAoEhvMArvDmp8+58OJ/z1oKTzxzDApyvX3HFlAw=</latexit>

G1
<latexit sha1_base64="pYi4WJk7jSecnWGY1T+9Z/pCQ/Y=">AAACA3icbVC7SgNBFL3rM8ZX1NJmMAhWYTcKWgYttIxgHpAsYXYymwyZmV1nZoWwpPQbbLW2E1s/xNI/cTbZwiQeuHA4517u4QQxZ9q47rezsrq2vrFZ2Cpu7+zu7ZcODps6ShShDRLxSLUDrClnkjYMM5y2Y0WxCDhtBaObzG89UaVZJB/MOKa+wAPJQkawsZLfFdgMCebp7aTn9Uplt+JOgZaJl5My5Kj3Sj/dfkQSQaUhHGvd8dzY+ClWhhFOJ8VuommMyQgPaMdSiQXVfjoNPUGnVumjMFJ2pEFT9e9FioXWYxHYzSykXvQy8T+vk5jwyk+ZjBNDJZk9ChOOTISyBlCfKUoMH1uCiWI2KyJDrDAxtqe5L4GY2E68xQaWSbNa8c4r1fuLcu06b6cAx3ACZ+DBJdTgDurQAAKP8AKv8OY8O+/Oh/M5W11x8psjmIPz9QuSS5ib</latexit>

G2
<latexit sha1_base64="vr70X2ljgj5Ik+S62HsF7i7pHcI=">AAACA3icbVC7SgNBFL3rM8ZX1NJmMAhWYTcKWgYttIxgHpAsYXYySYbMzK4zs0JYtvQbbLW2E1s/xNI/cTbZwiQeuHA4517u4QQRZ9q47rezsrq2vrFZ2Cpu7+zu7ZcODps6jBWhDRLyULUDrClnkjYMM5y2I0WxCDhtBeObzG89UaVZKB/MJKK+wEPJBoxgYyW/K7AZEcyT27RX7ZXKbsWdAi0TLydlyFHvlX66/ZDEgkpDONa647mR8ROsDCOcpsVurGmEyRgPacdSiQXVfjINnaJTq/TRIFR2pEFT9e9FgoXWExHYzSykXvQy8T+vE5vBlZ8wGcWGSjJ7NIg5MiHKGkB9pigxfGIJJorZrIiMsMLE2J7mvgQitZ14iw0sk2a14p1XqvcX5dp13k4BjuEEzsCDS6jBHdShAQQe4QVe4c15dt6dD+dztrri5DdHMAfn6xeT3pic</latexit>

order-6 Tensor Ring
(Free legs) or zeros

G1
<latexit sha1_base64="pYi4WJk7jSecnWGY1T+9Z/pCQ/Y=">AAACA3icbVC7SgNBFL3rM8ZX1NJmMAhWYTcKWgYttIxgHpAsYXYymwyZmV1nZoWwpPQbbLW2E1s/xNI/cTbZwiQeuHA4517u4QQxZ9q47rezsrq2vrFZ2Cpu7+zu7ZcODps6ShShDRLxSLUDrClnkjYMM5y2Y0WxCDhtBaObzG89UaVZJB/MOKa+wAPJQkawsZLfFdgMCebp7aTn9Uplt+JOgZaJl5My5Kj3Sj/dfkQSQaUhHGvd8dzY+ClWhhFOJ8VuommMyQgPaMdSiQXVfjoNPUGnVumjMFJ2pEFT9e9FioXWYxHYzSykXvQy8T+vk5jwyk+ZjBNDJZk9ChOOTISyBlCfKUoMH1uCiWI2KyJDrDAxtqe5L4GY2E68xQaWSbNa8c4r1fuLcu06b6cAx3ACZ+DBJdTgDurQAAKP8AKv8OY8O+/Oh/M5W11x8psjmIPz9QuSS5ib</latexit>

G2
<latexit sha1_base64="vr70X2ljgj5Ik+S62HsF7i7pHcI=">AAACA3icbVC7SgNBFL3rM8ZX1NJmMAhWYTcKWgYttIxgHpAsYXYySYbMzK4zs0JYtvQbbLW2E1s/xNI/cTbZwiQeuHA4517u4QQRZ9q47rezsrq2vrFZ2Cpu7+zu7ZcODps6jBWhDRLyULUDrClnkjYMM5y2I0WxCDhtBeObzG89UaVZKB/MJKK+wEPJBoxgYyW/K7AZEcyT27RX7ZXKbsWdAi0TLydlyFHvlX66/ZDEgkpDONa647mR8ROsDCOcpsVurGmEyRgPacdSiQXVfjINnaJTq/TRIFR2pEFT9e9FgoXWExHYzSykXvQy8T+vE5vBlZ8wGcWGSjJ7NIg5MiHKGkB9pigxfGIJJorZrIiMsMLE2J7mvgQitZ14iw0sk2a14p1XqvcX5dp13k4BjuEEzsCDS6jBHdShAQQe4QVe4c15dt6dD+dztrri5DdHMAfn6xeT3pic</latexit>

G1
<latexit sha1_base64="pYi4WJk7jSecnWGY1T+9Z/pCQ/Y=">AAACA3icbVC7SgNBFL3rM8ZX1NJmMAhWYTcKWgYttIxgHpAsYXYymwyZmV1nZoWwpPQbbLW2E1s/xNI/cTbZwiQeuHA4517u4QQxZ9q47rezsrq2vrFZ2Cpu7+zu7ZcODps6ShShDRLxSLUDrClnkjYMM5y2Y0WxCDhtBaObzG89UaVZJB/MOKa+wAPJQkawsZLfFdgMCebp7aTn9Uplt+JOgZaJl5My5Kj3Sj/dfkQSQaUhHGvd8dzY+ClWhhFOJ8VuommMyQgPaMdSiQXVfjoNPUGnVumjMFJ2pEFT9e9FioXWYxHYzSykXvQy8T+vk5jwyk+ZjBNDJZk9ChOOTISyBlCfKUoMH1uCiWI2KyJDrDAxtqe5L4GY2E68xQaWSbNa8c4r1fuLcu06b6cAx3ACZ+DBJdTgDurQAAKP8AKv8OY8O+/Oh/M5W11x8psjmIPz9QuSS5ib</latexit>

G2
<latexit sha1_base64="vr70X2ljgj5Ik+S62HsF7i7pHcI=">AAACA3icbVC7SgNBFL3rM8ZX1NJmMAhWYTcKWgYttIxgHpAsYXYySYbMzK4zs0JYtvQbbLW2E1s/xNI/cTbZwiQeuHA4517u4QQRZ9q47rezsrq2vrFZ2Cpu7+zu7ZcODps6jBWhDRLyULUDrClnkjYMM5y2I0WxCDhtBeObzG89UaVZKB/MJKK+wEPJBoxgYyW/K7AZEcyT27RX7ZXKbsWdAi0TLydlyFHvlX66/ZDEgkpDONa647mR8ROsDCOcpsVurGmEyRgPacdSiQXVfjINnaJTq/TRIFR2pEFT9e9FgoXWExHYzSykXvQy8T+vE5vBlZ8wGcWGSjJ7NIg5MiHKGkB9pigxfGIJJorZrIiMsMLE2J7mvgQitZ14iw0sk2a14p1XqvcX5dp13k4BjuEEzsCDS6jBHdShAQQe4QVe4c15dt6dD+dztrri5DdHMAfn6xeT3pic</latexit>

(Augmented) Adjacency matrix

Ranks

vertex permutation: permutation matrix
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G1
<latexit sha1_base64="pYi4WJk7jSecnWGY1T+9Z/pCQ/Y=">AAACA3icbVC7SgNBFL3rM8ZX1NJmMAhWYTcKWgYttIxgHpAsYXYymwyZmV1nZoWwpPQbbLW2E1s/xNI/cTbZwiQeuHA4517u4QQxZ9q47rezsrq2vrFZ2Cpu7+zu7ZcODps6ShShDRLxSLUDrClnkjYMM5y2Y0WxCDhtBaObzG89UaVZJB/MOKa+wAPJQkawsZLfFdgMCebp7aTn9Uplt+JOgZaJl5My5Kj3Sj/dfkQSQaUhHGvd8dzY+ClWhhFOJ8VuommMyQgPaMdSiQXVfjoNPUGnVumjMFJ2pEFT9e9FioXWYxHYzSykXvQy8T+vk5jwyk+ZjBNDJZk9ChOOTISyBlCfKUoMH1uCiWI2KyJDrDAxtqe5L4GY2E68xQaWSbNa8c4r1fuLcu06b6cAx3ACZ+DBJdTgDurQAAKP8AKv8OY8O+/Oh/M5W11x8psjmIPz9QuSS5ib</latexit>

G2
<latexit sha1_base64="vr70X2ljgj5Ik+S62HsF7i7pHcI=">AAACA3icbVC7SgNBFL3rM8ZX1NJmMAhWYTcKWgYttIxgHpAsYXYySYbMzK4zs0JYtvQbbLW2E1s/xNI/cTbZwiQeuHA4517u4QQRZ9q47rezsrq2vrFZ2Cpu7+zu7ZcODps6jBWhDRLyULUDrClnkjYMM5y2I0WxCDhtBeObzG89UaVZKB/MJKK+wEPJBoxgYyW/K7AZEcyT27RX7ZXKbsWdAi0TLydlyFHvlX66/ZDEgkpDONa647mR8ROsDCOcpsVurGmEyRgPacdSiQXVfjINnaJTq/TRIFR2pEFT9e9FgoXWExHYzSykXvQy8T+vE5vBlZ8wGcWGSjJ7NIg5MiHKGkB9pigxfGIJJorZrIiMsMLE2J7mvgQitZ14iw0sk2a14p1XqvcX5dp13k4BjuEEzsCDS6jBHdShAQQe4QVe4c15dt6dD+dztrri5DdHMAfn6xeT3pic</latexit>

G1
<latexit sha1_base64="pYi4WJk7jSecnWGY1T+9Z/pCQ/Y=">AAACA3icbVC7SgNBFL3rM8ZX1NJmMAhWYTcKWgYttIxgHpAsYXYymwyZmV1nZoWwpPQbbLW2E1s/xNI/cTbZwiQeuHA4517u4QQxZ9q47rezsrq2vrFZ2Cpu7+zu7ZcODps6ShShDRLxSLUDrClnkjYMM5y2Y0WxCDhtBaObzG89UaVZJB/MOKa+wAPJQkawsZLfFdgMCebp7aTn9Uplt+JOgZaJl5My5Kj3Sj/dfkQSQaUhHGvd8dzY+ClWhhFOJ8VuommMyQgPaMdSiQXVfjoNPUGnVumjMFJ2pEFT9e9FioXWYxHYzSykXvQy8T+vk5jwyk+ZjBNDJZk9ChOOTISyBlCfKUoMH1uCiWI2KyJDrDAxtqe5L4GY2E68xQaWSbNa8c4r1fuLcu06b6cAx3ACZ+DBJdTgDurQAAKP8AKv8OY8O+/Oh/M5W11x8psjmIPz9QuSS5ib</latexit>

G2
<latexit sha1_base64="vr70X2ljgj5Ik+S62HsF7i7pHcI=">AAACA3icbVC7SgNBFL3rM8ZX1NJmMAhWYTcKWgYttIxgHpAsYXYySYbMzK4zs0JYtvQbbLW2E1s/xNI/cTbZwiQeuHA4517u4QQRZ9q47rezsrq2vrFZ2Cpu7+zu7ZcODps6jBWhDRLyULUDrClnkjYMM5y2I0WxCDhtBeObzG89UaVZKB/MJKK+wEPJBoxgYyW/K7AZEcyT27RX7ZXKbsWdAi0TLydlyFHvlX66/ZDEgkpDONa647mR8ROsDCOcpsVurGmEyRgPacdSiQXVfjINnaJTq/TRIFR2pEFT9e9FgoXWExHYzSykXvQy8T+vE5vBlZ8wGcWGSjJ7NIg5MiHKGkB9pigxfGIJJorZrIiMsMLE2J7mvgQitZ14iw0sk2a14p1XqvcX5dp13k4BjuEEzsCDS6jBHdShAQQe4QVe4c15dt6dD+dztrri5DdHMAfn6xeT3pic</latexit>

Switch G1 and G5
Switch

TN ranks and topology: adjacency matrix
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How to solve TN-SS?
with discrete optimization



Big Picture

‣ TNGA: Genetic Algorithm (Li and Sun, ICML’20)
‣ TNLS: Stochastic Search (Li et al., ICML’22)
‣ TnALE: Alternating Enumeration (Li et al., ICML’23)

The sampling distribution is “Markov”:

search space

(A collection of TN structures)

EvaluationSampling

A bunch of TN structures

Fitness scores (loss values)



Solution 1: Genetic Algorithm
TNGA: Encoding the TN structures into fixed-length strings. 

Permutation Search of Tensor Network Structures via Local Sampling

random-key

concatenation

encoded strings
(Chromosomes)

integer vector

(Search space)

Figure 5. Illustration of how the TN structures for TN-PS are encoded by TNGA+.
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Figure 6. RSE and Eff. values by TNLS with the varying of the tuning parameter �, averaged over the synthetic TT/TR data.

finished. We initialize the vertices (core tensors) with each element i.i.d. sampled from Gaussian distribution N(0, 0.1).
We set the learning rate of the Adam optimizer (Kingma & Ba, 2014) to 0.001. The decomposition for each individual is
repeated 4 times.

Experiment setup of Figure 4 in the manuscript. In this experiment, the order-8 tensor is selected from the TR structure
search experiment. For the order-12 data, we uniformly choose TR-ranks from {1, 2, 3, 4} and set the dimension of all
tensor modes to 3. The values of vertices are drawn from Gaussian distribution N(0, 1). After contracting all vertices, we
finally uniformly permute the tensor modes in random. For TNGA+ and TNLS, all the parameters are set the same as in the
TR structure search experiment, except that the population of TNGA+ and the sample number of TNLS are set to be 60 or
100.

Trade off between model complexity and approximation accuracy. In the experiment, the tuning parameter � given
in (9) balances the influence of model complexity and approximation accuracy in the searching process. Figure 6 shows how
RSE and Eff. values change with the varying of �. In more details, we choose the values of � from {0.1, 1, 10, 100, 1000}
and calculate the RSE and Eff. averaged over the data used in the synthetic TT/TR data experiments of the order {4, 6, 8},
respectively. Other experiment configuration remains the same as used in the experiment. We can see from Figure 6 that the
Eff. values are larger than 1 consistently with a wide range of � in all the three orders. It implies that the TNLS method is
relatively stable with the varying of the parameter � if the tensor is generated with TN models. The result is expected since
in this case the RSE will decrease dramatically once a good TN structure is found, so the value � ·RSE, the second term of
the objective function in (9), is neglected compared with the first term corresponding to the model complexity. However,
note that the stability would be not held if the tensor is not in low-rank TN formats such as those tensorized natural images.

B.3. Synthetic Data in Other TN Format

Data Generation. For the synthetic data generation of TTree (order-7) (Ye & Lim, 2019), PEPS (order-6) (Verstraete &
Cirac, 2004), hierarchical Tucker (HT, order-6) (Hackbusch & Kühn, 2009) and multi-scale entanglement renormalization
ansatz (MERA, order-8) (Cincio et al., 2008; Reyes & Stoudenmire, 2020) which the structures are demonstrated in Figure
7, we first set the dimensions of each tensor mode to 3 and uniformly randomly generate the TN-ranks from {1, 2, 3, 4}.
Then, each element of the cores is generated i.i.d. from Gaussian distribution N(0, 0.1). After contracting all vertices, we
finally uniformly permute the tensor modes in random.

Encoded TN-ranks and topology

Encoding permutations

(Li and Sun, ICML’20)
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2    0   1 3    0 4
Chromosomes (Population)

Adjacency Matrix

2    0   5 3    0 4
Gene (Allele=0)

Random key trick (Bean, 1994)

Permutation matrix: vertex permutation

Adjac



1. Parent selection

15

2. Crossover

Genetic Operators: Recombination

3-1: Parent selection (Russian roulette process)

Fixed Point 8.2
4.2

3.2

1.4
1.2

0.3

A B C D E F

spin the 
roulette
wheel

Pr = max
;

0.01, ln
3

–

eps + — · rank

4<
,

where –, — > 0 denote tuning param-
eters.

3-2: Crossover:
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Genetic Operators: Recombination

3-1: Parent selection (Russian roulette process)

Fixed Point 8.2
4.2

3.2

1.4
1.2

0.3

A B C D E F

spin the 
roulette
wheel

Pr = max
;

0.01, ln
3

–

eps + — · rank

4<
,

where –, — > 0 denote tuning param-
eters.

3-2: Crossover:

0 1 1 0 0 1

01 10 01
Parents

0

1

1

0

0

1

01 1

0 01

ChildrenRecombination
(crossover)
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3. Mutation

1 0 10 01 Mutation 1 0 10 11

Genetic Operators: Fitness and Elimination

1. Fitness score:

F (‚A) =
...D(‚A) · log(‚A)

...
1

+ ⁄ · min
‚V

...X ≠ TN(‚V; ‚A)
...

2

F
/ ÎX Î

2
F

¸ ˚˙ ˝
relative square error (RSE)

, (3)

The fitness scores are used to rank the individuals.

2. Elimination

high

low

C1
C2

C100
C99 !"##$

Chao Li (RIKEN-AIP) chao.li@riken.jp June 20 12 / 18

4. Elimination

‣ Global convergence

‣ Multiobjective friendly 

‣ Parallel computation

Pros: Cons:
‣ Low sample efficiency

‣ No theoretical guarantee

‣ Too many tuning parameters.



Solution 2: Local Stochastic Search

1. Constructing a neighborhood

2. Random sampling

4. Updating the neighborhood

3. Find the optimal sample

• TNLS:“steepest searching direction” by random 
sampling.

(Li et al., ICML’22)
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• No free lunch: the optimization landscape should 
be smooth.



Theoretical Results

Ine�ciency of TNLS and its analysis

The local sampling scheme illustrated significant improvement in the sampling e�ciency than
the previously proposed genetic algorithm (TNGA, Li and Sun, ICML’20), but it still su↵ers
from the curse of dimensionality, i.e., the scalability of TNLS is no good.

Curse of dimensionality for TNLS (informally)

Theoretically, O(2K/✏) samples are required for achieving the probability Pr � ✏ for decreasing
the loss function in one iteration.

Below, I will introduce a new search algorithm, which is simple and similar to TNLS, but the
required number of samples in each iteration is ideally reduced from O(2K/✏) to O(KIr),
where I denotes the mode dimension associated to the radius of the neighborhood and r is
practically a small value, which reflects the low-rankness of the neighborhood.

12 / 30

Main results

Lemma (convex combination with finite gradient)

Suppose q = ✓x + (1� ✓)y , 8✓ 2 [0, 1], and there is q̂ 2 Z
+,K where ⇤ = q � q̂. If f is

↵-strongly convex in Z
+,K as defined above, then

✓f (x) + (1� ✓)f (y) � f (q̂)+
D
�f (q̂)�

↵

2
1,⇤

E
+

↵

2
k⇤k2 (4)

Theorem (convergence rate when p⇤ is known)

Suppose several assumptions are satisfied, the operator p of (3) is fixed to be p⇤, and
0  ✓  1. Then, for any x with kx� x⇤k1  c , we can find a neighborhood B1(x, rx) where
rx � ✓c + 1

2 , such that there exists an element y 2 B1(x, rx) satisfying

fp⇤(y)� fp⇤(x
⇤)  (1� ✓)(fp⇤(x)� fp⇤(x

⇤)) +
7

8
K . (5)
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Frame Title

Neighborhood of permutations

Let G0 be a simple graph and G0 be the search space. The function dG0 : G0 ⇥G0 ! R is a
predefined semi-metric on G0. Furthermore, let Id (G ) be a set constructed as follows:

Id (G ) = {G 0
2 G0|G

0 = q
dY

i=1

ti · G0, q 2 g · Aut(G0), ti 2 TN , i 2 [d ]}. (10)

Then ND (G ) =
SD

d=0 Id(G ) is the neighborhood of G = g · G0 2 G0 induced by the word
metric, with the radius D 2 Z

+
[ {0}.

30 / 30



Solution 3: Alternating Local Enumeration

TN-SS via local (random) sampling

TN-SS via local sampling (TNLS, Li et al., ICML’22) is a meta-heuristic algorithm, which
updates the structure candidate by evaluating the information of its neighborhood.

X

Y

!"#$%&"#'()#&*+#,+-&+).

/"#$%&"#0-#-+01*2()*((3

4"#$%&"#0-#56#3+,(7%"

$%&0789#%(0-&#0-#&*+#-+01*2()*((3

1. The candidate would be updated if there exists better structures in the neighborhood;

2. The optimal structure is reached if the the candidate is the optimal in the neighborhood;

3. The optimization in the neighborhood (the 2nd layer opt.) is done by random sampling.
11 / 30

In the new algorithm, called TnALE, we follow the fundamental 
scheme of TNLS, but the random sampling is replaced by 
alternating enumeration. Random sampling 

Alternating enumeration

(Li et al., ICML’23)

18



Relationship between TnALS and TT-OPT/cross (Sozykin et

al., Neurips’22, Oseledets, 2010)

Construct a tensor B 2 R
I⇥I⇥···⇥I , whose entries equal 1/f (z) for all z 2 B1(x , rx), where

I = 2⇥ brxc+ 1 and its ith entry equals B(i) = 1/f (x + i� (brxc+ 1)). Then the introduced
TnALS method is the same as TT-OPT with the TT-ranks equalling 1.

Figure: The alternating sampling of our method is equivalent to TT-OPT.
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In each neighborhood, the alternating 
enumeration strongly relates to TT-OPT/cross 
(Sozykin et al., Neurips’22, Oseledets, 2010)

Sampling e�ciency for TnALS

Theorem (A suitable y can be estimated by TT-cross with O(KIr) samples)

Let B 2 R
I⇥I⇥···⇥I be a tensor of order-K constructed using B1(x , rx) as above. Then there

exists its TT-cross approximation of rank-r as in (Oseledets, 2010), denoted B̂, such that
f (x + imax � (brxc+ 1)) = miny2B1(x ,rx ) f (y) for imax = argmaxi B̂(i), provided that

f (y⇤)  f (z)/

 
1 + 2

(4r)d log2 Ke
� 1

4r � 1
(r + 1)2⇠f (z)

!
, 8z 2 B1(x , rx), z 6= y⇤, (7)

where y⇤ = argminy2B1(x ,rx ) f (y), and ⇠ denotes the error between B and its best
approximation of TT-rank r in terms of k · k1. Note that the inequality (7) holds trivially if
B is exactly of the TT format of rank-r , and (Oseledets, 2010) shows that the f (y⇤) can be
recovered from O(KIr) entries from B .
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No free lunch: the landscape should be low-rank.
19



Low-Rank Nature in Landscape
Data: Synthetic tensors in tensor-ring (TR) format.
Setting: order 4~8; mode dimension 3; unknown ranks (in random); 
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TnALE: Solving Tensor Network Structure Search with Fewer Evaluations

C. Experiment details
C.1. Low-rank structure of the optimization landscape

To verify the low-rank structure of the optimization landscape of (1), we empirically check the singular values of the
landscape tensor using the synthetic data. To be specific, we re-use the fourth-order tensor in the experiment for TN-PS, i.e.,
TR (order-4) in Table 5. Here we remove the influence of unknown permutations and calculate the objective for all possible
combinations of values of the TN-ranks. As a result, for each data, we have a landscape tensor (a tensor whose entries are
values of the objective function) of order-4, and the modes of the tensor corresponding to the four TN-ranks. Figure 3 (a)
shows the singular values of the landscape tensor unfolded along different modes on average. We see that the landscape
tensor provides a significant low-rank structure in these data. We also depict the complete landscape (contour line, unfolded
along the first two modes) with respect to Data A in Figure 3 (b). We can see that the obviously repeated pattern shown in
the figure is the main reason leading to the low-rank structure of the landscape.
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(a) Averaged singular values for the 4th-order landscape tensor.
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(b) Optimization landscapes (the inverse 1/f (x)) wrt. the
tensor of order-4 and correct permutation.

Figure 3. Averaged singular values and Optimization landscapes for the tensor of order-4.

C.2. Details for the experiment of TN-PS (w.r.t., Table 1).

Goal. In this experiment, we intend to verify the superiority of TnALE in solving TN-PS problem.

Data generation. For the synthetic data of TR (order-4, order-6, order-8), PEPS (order-6), HT (order-6) and MERA
(order-8) topology, we re-use the data from (Li et al., 2022). For the generation of data with TW (order-5) structure, we
set the dimension of each tensor mode to be 3, meanwhile, the TN-ranks are randomly selected from {1, 2, 3}. Then we
i.i.d. draw samples from Gaussian distribution N(0, 1) as the values of core tensors. After contracting these core tensors
according to the tensor wheel topology, we uniformly permute the tensor modes at random.

Settings. In the experiment, we implement TNGA and TNLS for comparison. For all the methods, we use the same objective
function as in Li & Sun (2020). Specifically, in the experiment the obejctive function of (1) is as follows:

F (G, r) =
1

✏(G, r)| {z }
compression ratio (CR)

+� · min
Z2TNS(G,r)

kX � Zk2 / kXk2

| {z }
relative square error (RSE)

, (46)

where X denotes the synthetic tensor, and ✏(G, r) represents the compression ratio equalling to

✏(G, r) =
Dimension of X

Dimension sum of core tensors of the TN under (G, r)
.

We set the trade-off parameter in (46) to be 200 and for the solver of the inner minimization, we select the Adam optimizer
Kingma & Ba (2014) with the learning rate of 0.001 and use Gaussian distribution N(0, 0.1) to initialize the core tensors.

Loss: 

(Li et al., ICML’23)
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C. Experiment details
C.1. Low-rank structure of the optimization landscape

To verify the low-rank structure of the optimization landscape of (1), we empirically check the singular values of the
landscape tensor using the synthetic data. To be specific, we re-use the fourth-order tensor in the experiment for TN-PS, i.e.,
TR (order-4) in Table 5. Here we remove the influence of unknown permutations and calculate the objective for all possible
combinations of values of the TN-ranks. As a result, for each data, we have a landscape tensor (a tensor whose entries are
values of the objective function) of order-4, and the modes of the tensor corresponding to the four TN-ranks. Figure 3 (a)
shows the singular values of the landscape tensor unfolded along different modes on average. We see that the landscape
tensor provides a significant low-rank structure in these data. We also depict the complete landscape (contour line, unfolded
along the first two modes) with respect to Data A in Figure 3 (b). We can see that the obviously repeated pattern shown in
the figure is the main reason leading to the low-rank structure of the landscape.
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Figure 3. Averaged singular values and Optimization landscapes for the tensor of order-4.

C.2. Details for the experiment of TN-PS (w.r.t., Table 1).

Goal. In this experiment, we intend to verify the superiority of TnALE in solving TN-PS problem.

Data generation. For the synthetic data of TR (order-4, order-6, order-8), PEPS (order-6), HT (order-6) and MERA
(order-8) topology, we re-use the data from (Li et al., 2022). For the generation of data with TW (order-5) structure, we
set the dimension of each tensor mode to be 3, meanwhile, the TN-ranks are randomly selected from {1, 2, 3}. Then we
i.i.d. draw samples from Gaussian distribution N(0, 1) as the values of core tensors. After contracting these core tensors
according to the tensor wheel topology, we uniformly permute the tensor modes at random.

Settings. In the experiment, we implement TNGA and TNLS for comparison. For all the methods, we use the same objective
function as in Li & Sun (2020). Specifically, in the experiment the obejctive function of (1) is as follows:

F (G, r) =
1

✏(G, r)| {z }
compression ratio (CR)

+� · min
Z2TNS(G,r)

kX � Zk2 / kXk2

| {z }
relative square error (RSE)

, (46)

where X denotes the synthetic tensor, and ✏(G, r) represents the compression ratio equalling to

✏(G, r) =
Dimension of X

Dimension sum of core tensors of the TN under (G, r)
.

We set the trade-off parameter in (46) to be 200 and for the solver of the inner minimization, we select the Adam optimizer
Kingma & Ba (2014) with the learning rate of 0.001 and use Gaussian distribution N(0, 0.1) to initialize the core tensors.

Averaged singular values Landscape visualization



Cont’d: Rank Identification
Conditions: order 8; lower-ranks 1~4; higher-ranks 5~8
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Table 2. Experimental results of TN-RS (rank-selection) in 8th-
order TR topology. The columns of “lower-ranks” and “higher-
ranks” indicate two regimes from which the TN-ranks are randomly
selected, respectively. Each Eff. and [#Eva.] value is averaged
using five tensors.

Methods lower-ranks higher-ranks
Eff." Eff."

TR-SVD 0.65±0.46 0.13±0.20
TR-BALS 1.15±0.14 0.19±0.22
TR-LM 1.15±0.14 0.15±0.02
TRAR 0.55±0.10 0.63±0.06

Eff." [#Eva.#] Eff." [#Eva.#]
TNGA 1.08±0.06 [552] 1.00±0.00 [900]
TNLS 1.08±0.06 [492] 1.00±0.00 [588]
TTOpt (R = 1) 1.08±0.06 [104] 1.00±0.00 [178]
TTOpt (R = 2) 1.02±0.02 [314] 1.00±0.00 [752]
Ours 1.08±0.06 [80] 1.00±0.00 [119]

2020), and TRAR (Sedighin et al., 2021). In addition, the
TTOpt algorithm (Sozykin et al., 2022) with ranks 5 equal-
ing {1, 2} is also employed as a baseline.

The experimental results are shown in Table 2. We see that
most of the methods can successfully identify the TN-ranks
(implied by Eff.� 1) in the “lower-ranks” class, but in the
“higher-ranks” class only the methods at the bottom of the
table manage to find the ranks. Furthermore, TnALE costs
the fewest evaluations on average compared with TNGA,
TNLS and TTOpt.

5.2. Real-world data

We apply now the proposed method to real-world data to
compress the learnable parameters of the tensorial Gaussian
process (TGP, Izmailov et al. 2018) and natural images.
In TGP compression, we consider the regression task by
TGPs for three datasets, including CCPP (Tüfekci, 2014),
MG (Flake & Lawrence, 2002), and Protein (Dua & Graff,
2017), and compress the variational mean of the process
with the TT/TR decomposition using the same setting as
in Li et al. (2022). The goal of the experiment is to search
good TN-ranks and permutations for using fewer parameters
to achieve the same mean square error (MSE) in regression.
The experimental results are shown in Table 3. We can see
that TnALE achieves the same compression ratio as TNGA
and TNLS but costs significantly fewer evaluations than the
counterparts in factor up to 14 (3901/276).

Last, we consider the TN-PS and TN-TS tasks for com-
pressing natural images. In TN-TS, we search for good
TN-ranks and topologies for image compression. In the ex-
periment, we randomly select four images (A, B, C, D) from
the dataset BSD500 (Arbelaez et al., 2010). Each image

5Here the ranks are tuning parameters in the TTOpt algorithm.

Table 3. Number of parameters (⇥1000, #) and MSE (in round
brackets) for TGP model compression, where the values in [square
brackets] show the number of evaluations required in each method.

CCPP MG Protein

TGP 2.64 (0.06) [N/A] 3.36 (0.33) [N/A] 2.88 (0.74) [N/A]
TNGA 2.24 (0.06) [1500] 3.01 (0.33) [4900] 2.03 (0.74) [3900]
TNLS 2.24 (0.06) [1051] 3.01 (0.33) [3901] 1.88 (0.74) [3601]
Ours 2.24 (0.06) [124] 3.01 (0.33) [276] 1.88 (0.74) [1053]

Table 4. Results for natural image compression. The underlined
values show the best compression ratio achieved in the same RSE.

Tasks Methods
Data - compression ratio (log, ") (RSE #) [#Eva. #]

A B C D

TN-PS
TNGA 1.10 (0.15)

[8400]
1.37 (0.17)
[6300]

1.77 (0.08)
[4800]

1.47 (0.10)
[5100]

TNLS 1.09 (0.16)
[1351]

1.41 (0.17)
[1501]

1.71 (0.08)
[2551]

1.47 (0.10)
[2101]

Ours 1.14 (0.16)
[647]

1.39 (0.17)
[666]

1.80 (0.08)
[394]

1.49 (0.10)
[444]

TN-TS

Greedy 0.81 (0.16) 0.97 (0.17) 1.44 (0.08) 0.68 (0.10)

TNGA 1.16 (0.16)
[2100]

1.48 (0.17)
[1800]

1.81 (0.08)
[1900]

1.48 (0.09)
[1000]

TNLS 1.15 (0.16)
[1300]

1.40 (0.17)
[1100]

1.80 (0.08)
[1700]

1.50 (0.10)
[1700]

Ours 1.10 (0.15)
[177]

1.46 (0.17)
[153]

1.81 (0.08)
[237]

1.51 (0.10)
[246]

is resized by 256⇥ 256 and then reshaped into an order-8
tensor. For comparison, we also implement the “Greedy”
method (Hashemizadeh et al., 2020) for TN-TS. Table 4
shows the results, including the compression ratio, RSE
and the evaluation cost in both tasks. We see that TnALE
achieves the closest compression ratio and RSE to TNGA
and TNLS but it required much fewer evaluations.

6. Concluding Remarks
Extensive experimental results demonstrate that the pro-
posed TnALE approach can greatly reduce the evaluation
cost, up to 10⇥ fewer evaluations, compared with TNLS (Li
et al., 2022) and other methods for the task of tensor network
structure search (TN-SS). The theoretical results in this pa-
per provide a rigorous analysis of the convergence rate and
the evaluation efficiency for both TNLS and TnALE.

Limitation. The main limitation of TnALE is the local con-
vergence issue. In particular, we empirically found in the
TN-TS experiment (see Table (4)) multiple local minima,
which are poor in compression ratio, and TnALE can easily
drop in them. Instead, the methods TNGA (Li & Sun, 2020)
and TNLS (Li et al., 2022) seem to better avoid local min-
ima, owing to their stochastic essence. Solving this issue
will be the direction of our future work.

Tensor of order 8

Classic rank-selection methods

Solution 1

Solution 2

Solution 3
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The ranks are identified if Eff.>=1.
[#Eva.] = Number of evaluations (samples)

(Li et al., ICML’23)
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& Karaman, 2020), TRAR (Sedighin et al., 2021). In addition, the TTOpt algorithm (Sozykin et al., 2022) with ranks 8

equaling 1, 2 is also employed as a baseline. to verify the superiority of the “local-searching” scheme used in TnALE (ours).
In more detail, for TR-SVD, TR-rSVD, TR-ALSAR, TR-BALS, and TR-BALS2 (Zhao et al., 2016), the available codes
have been used.9 In these algorithms, in order to obtain a larger Eff. value, we adjust the parameters tol and MaxIter so that
the value of RSE is less than but much closer to 10�4. For TR-LM (Alg. 2 and Alg. 3) (Mickelin & Karaman, 2020), the
available codes have been used.10 and we use the default parameter settings but adjust the value of prec to obtain a larger Eff.
value. For TRAR (Sedighin et al., 2021), we replace the TR-ALS (Wang et al., 2017) of the Algorithm 1 in Mickelin &
Karaman (2020) with the same decomposition method used in TTOpt. It is because the initialization method of TR-ALS
is not suitable for the case of higher ranks. For TTOpt (Sozykin et al., 2022), the objective function is the same as that in
the TN-PS experiment and the trade-off parameter � = 200. For the lower ranks group, the rank searching range is set to
be [1, 7], while for the higher ranks group, the range is lifted to [1, 10]. For the initialization part, we i.i.d. draw samples
from Gaussian distribution N (0, 1) as the values of core tensors. For the proposed method, we set rank-related radius
r1 = 3, r2 = 2 and r1 = 2, r2 = 1 for the higher ranks group and lower ranks group respectively. The number of iterations
in the initialization phase, the number of iterations in the searching phase and the number of the round-trips of ALE are set
to 1, 30 and 1 respectively throughout the experiments. For other parameters of TnALE, we set them the same as TTOpt. For
TNGA, we set the population in each generation to be 60, and the searching ranges and core tensors initialization scheme
are similar to TTOpt, for the other parameters of TNGA we set them the same as the TN-PS experiment. For TNLS, we set
the sample numbers in each local sampling stage to be 60 and c1 = 0.9, and the other parameters are set the same as TTOpt.
The stop condition is RSE  10�4 and Eff. � 1. In the experiment, we force all approaches to achieve RSE 10�4 and the
Eff.� 1, otherwise, we say the approach fails in rank selection.
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Figure 7. Objective (in the log form) with varying the number of evaluations.
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Figure 8. Running time in TN-RS experiment

Results. As shown in Table 7 and Table 8, in the lower rank regime, TR-BALS, TR-LM (Alg. 2), TTOpt, TNGA, TNLS
and TnALE (ours) can successfully select the right TR-ranks (implied by Eff.� 1 and RSE 10�4), while in the higher rank
regime, only TTOpt, TNGA, TNLS and TnALE (ours) manage to find the ranks. Furthermore, TnALE (ours) costs the

8Here the ranks are tuning parameters in the TTOpt algorithm.
9https://qibinzhao.github.io/

10https://github.com/oscarmickelin/tensor-ring-decomposition
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& Karaman, 2020), TRAR (Sedighin et al., 2021). In addition, the TTOpt algorithm (Sozykin et al., 2022) with ranks 8

equaling 1, 2 is also employed as a baseline. to verify the superiority of the “local-searching” scheme used in TnALE (ours).
In more detail, for TR-SVD, TR-rSVD, TR-ALSAR, TR-BALS, and TR-BALS2 (Zhao et al., 2016), the available codes
have been used.9 In these algorithms, in order to obtain a larger Eff. value, we adjust the parameters tol and MaxIter so that
the value of RSE is less than but much closer to 10�4. For TR-LM (Alg. 2 and Alg. 3) (Mickelin & Karaman, 2020), the
available codes have been used.10 and we use the default parameter settings but adjust the value of prec to obtain a larger Eff.
value. For TRAR (Sedighin et al., 2021), we replace the TR-ALS (Wang et al., 2017) of the Algorithm 1 in Mickelin &
Karaman (2020) with the same decomposition method used in TTOpt. It is because the initialization method of TR-ALS
is not suitable for the case of higher ranks. For TTOpt (Sozykin et al., 2022), the objective function is the same as that in
the TN-PS experiment and the trade-off parameter � = 200. For the lower ranks group, the rank searching range is set to
be [1, 7], while for the higher ranks group, the range is lifted to [1, 10]. For the initialization part, we i.i.d. draw samples
from Gaussian distribution N (0, 1) as the values of core tensors. For the proposed method, we set rank-related radius
r1 = 3, r2 = 2 and r1 = 2, r2 = 1 for the higher ranks group and lower ranks group respectively. The number of iterations
in the initialization phase, the number of iterations in the searching phase and the number of the round-trips of ALE are set
to 1, 30 and 1 respectively throughout the experiments. For other parameters of TnALE, we set them the same as TTOpt. For
TNGA, we set the population in each generation to be 60, and the searching ranges and core tensors initialization scheme
are similar to TTOpt, for the other parameters of TNGA we set them the same as the TN-PS experiment. For TNLS, we set
the sample numbers in each local sampling stage to be 60 and c1 = 0.9, and the other parameters are set the same as TTOpt.
The stop condition is RSE  10�4 and Eff. � 1. In the experiment, we force all approaches to achieve RSE 10�4 and the
Eff.� 1, otherwise, we say the approach fails in rank selection.
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Figure 7. Objective (in the log form) with varying the number of evaluations.
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Figure 8. Running time in TN-RS experiment

Results. As shown in Table 7 and Table 8, in the lower rank regime, TR-BALS, TR-LM (Alg. 2), TTOpt, TNGA, TNLS
and TnALE (ours) can successfully select the right TR-ranks (implied by Eff.� 1 and RSE 10�4), while in the higher rank
regime, only TTOpt, TNGA, TNLS and TnALE (ours) manage to find the ranks. Furthermore, TnALE (ours) costs the

8Here the ranks are tuning parameters in the TTOpt algorithm.
9https://qibinzhao.github.io/

10https://github.com/oscarmickelin/tensor-ring-decomposition

Random sampling vs. ALE



Permutation Search for Various TNs
Goal: How many samples are evaluated to identify the permutations?
Data: Synthetic tensors of order four in various topologies.
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TnALE: Solving Tensor Network Structure Search with Fewer Evaluations

Prop. 4.10) in Theorem 4.5 is reachable by only O(KIR)
samples once B is of TT with rank-R. Even though B is
not low-rank, the y can still be located if the inequality (7)
is satisfied. For the three TN-SS sub-problems for TNs
of order-N , the number of the required samples can be
specified as O(KIR) for TN-RS, O(KIR +N

2
R/2) for

TN-PS, and O(N2
IR) for TN-TS, respectively.

Prop. 4.10 shows the O(KIR) evaluation advantage com-
pared with TNLS that requires ⌦(2K/✏) evaluations in
the neighborhoods, but it remains open to prove the low-
rankness of the optimization landscape in the TN-SS tasks.
We empirically verify this with five synthetic tensors of or-
der four. We calculate their complete optimization landscape
associated with the l2 loss, observing that the multidimen-
sional landscape is indeed low-rank under all possible un-
foldings (see Figure 3 in Appendix). We thus conjecture that
in practice the low-rank structure of the landscape should be
preserved, at least in neighborhoods. In the next section, the
evaluation advantage by TnALE will be empirically verified
with both synthetic and real-world data.

5. Experimental Results
In this section, we present numerical results to verify the
superiority of TnALE in terms of evaluation cost. Due to
the page limit, the experimental settings will be presented at
the minimum level for clarity. Additional details are given
in Appendix C.

5.1. Synthetic data

First of all, we verify the superiority of TnALE by solving
the TN-PS problem, in which both the optimal TN-ranks
and permutations of synthetic tensors are searched for the
tensor decomposition task.

In the experiment, we re-use from Li et al. (2022) the syn-
thetic tensors, which are randomly generated in the topolo-
gies including TR (order-8), PEPS (order-6, Verstraete &
Cirac, 2004), hierarchical Tucker (HT, Hackbusch & Kühn,
2009), and MERA (order-8, Cincio et al., 2008). Addi-
tionally, we also consider the tensor wheel model (TW of
order-5, Wu et al., 2022). Since the mode dimension is
typically irrelevant to the difficulty of TN-SS, we set them
equalling 3 for all tensors. For each topology, there are
four tensors (A, B, C, D), the TN-ranks and permutations
are randomly selected and they remain unknown. The goal
of this experiment is to compare different approaches to
find the TN-ranks and permutations for each tensor, so that
the conditions RSE 10�4 and the Eff.� 1 are satisfied4.

4RSE means the relative squared error, and the Eff. index (Li
& Sun, 2020) denotes the ratio of the parameter number of TNs
between the searched structure and the one used in data generation.
Eff.� 1 implies that the algorithm finds a TN structure identical or

Table 1. Number of evaluations for the rank and permutation iden-
tification, where the symbol “-” in the table means the failure of
the approach.

Topology Methods Data – #Eva. #
A B C D

TR
TNGA 2850 2250 3900 1950
TNLS 1020 960 1320 780
Ours 231 308 308 231

PEPS
TNGA+ 1560 - 840 1080
TNLS 781 781 421 661
Ours 407 465 233 175

HT
TNGA 960 1320 840 1080
TNLS 841 841 781 721
Ours 211 281 211 211

MERA
TNGA - 960 2800 3240
TNLS 1561 841 1441 721
Ours 1450 484 323 323

TW
TNGA 1920 1440 600 720
TNLS 661 601 601 481
Ours 285 143 285 214

Otherwise, we say the approach fails in the experiment.

We implemented three algorithms, TNGA (Li & Sun, 2020),
TNLS and TnALE (ours). For a fair comparison, the three
approaches use the same objective and solver for the inner
minimization of (1). Furthermore, TNLS and TnALE are
initialized with the same TN structures. The rest of the
experimental settings remain as Li et al. (2022).

The experimental results are shown in Table 1. We see
that both TNLS and TnALE (ours) successfully identify
the ranks and permutations for all tensors. Furthermore,
TnALE requires significantly fewer evaluations than both
TNGA and TNLS. Figure 4 in Appendix further illustrates
the objective (in log, averaged) versus the number of evalu-
ations for TNLS and TnALE. It confirms the consistency of
evaluation advantage of TnALE.

Next, we evaluate the performance of TnALE for solving the
classic rank selection problem, i.e., TN-RS, for TR decom-
position. To be specific, we randomly generate synthetic TR-
tensors of order 8, and consider two configurations: “lower-
ranks” and “higher-ranks”. In the “lower-ranks” class, the
TN-ranks are randomly chosen in the interval [1, 4], while
in the “higher-ranks” class the selection interval is lifted
to [5, 8], so that the ranks would be larger than the ten-
sors’ mode dimension (which equals 3 in this experiment).
This situation commonly happens in practice for high-order
TNs. For comparison, we implement various rank-adaptive
TR decomposition methods, including TR-SVD and TR-
BALS (Zhao et al., 2016), TR-LM (Mickelin & Karaman,

more compact than the one used in data generation.
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Figure 5. Objective (in the log form) with varying the number of evaluations: an observation of the local convergence of TnALE (Data A).

permutation of the data with the Eff.� 1 which highlight the structure searching ability in the TN-PS task. While compared
with TNLS, TnALE achieves the same results with significantly fewer evaluation requirements and it demonstrates the
superiority of the TnALE in solving the TN-PS problem. In Figure 4, we illustrate the averaged log objective curves with
varying evaluation numbers of TNLS and TnALE. From the figures, we can see that in most cases, TnALE has a faster
descending trend and has a lower objective value given the same amount of evaluation numbers. These results imply the
advantage of the proposed method in practice, where we have restricted computational resources and can only afford a
certain amount of evaluations. For the results of MERA, we further draw the objective curves of each data in Figure 5, from
the MERA-Data A curve, we can see that TnALE descends very slowly until around 1000 evaluations while TNLS keeps
descending, and the main reason is that TnALE falls into the local optimal and struggles to jump out by restarting the ALE
algorithm with a new random center, while TNLS may jump out of it more easily due to its stochastic essence. Moreover, to
illustrate how different TN-PS methods scale with tensor order, we draw an average number of evaluations curves with TR
order and the results are shown in Figure 6. From the results, we can see that the proposed method increases slower with
tensor order compared with other methods, and these results highlight its scalability to tensor order.
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Figure 6. Number of evaluations with varying TR orders.

C.3. Details for the experiment of TN-RS (w.r.t. Table 2).

Goal. In this experiment, we consider the classic rank-selection problem, i.e., TN-RS, for TR decomposition.

Data Generation. We generate the synthetic tensors in TR topology and consider two configurations: “lower-ranks” and
“higher-ranks”. For both configurations, five tensors are generated by randomly choosing ranks and values of vertices (core
tensor). The order of each tensor is equal to 8 and the dimensions for each tensor mode are set to equal 3. We i.i.d. draw
samples from Gaussian distribution N (0, 1) as the values of vertices. In the “lower-ranks” group, we uniformly select the
TN-ranks from the interval [1, 4] in random, while in the “higher-ranks” group, the rank interval is lifted to [5, 8] so that
the ranks would be larger than the tensors’ mode dimension. It aims to simulate the scenario of the over-determined ranks,
which happens commonly in practice for high-order TNs but is rarely studied in the existing works.

Settings. In the experiment, we implement various rank-adaptive TR decomposition methods for comparison, including
TR-SVD, TR-rSVD, TR-ALSAR, TR-BALS and TR-BALS2 (Zhao et al., 2016), TR-LM (Alg. 2 and Alg. 3) (Mickelin

Permutation Search of Tensor Network Structures via Local Sampling

TTree PEPS HT MERA

Figure 7. Illustration of the TN structures applied in the synthetic experiment. The blue nodes with an outer indices indicate the external
cores and the orange nodes indicate the internal cores.

Figure 8. Illustration of the employed images in image completion experiment.

Configuration of the comparing methods. For TNGA+ and TNLS, the parameters are set as same as the TR structure
search experiment, except that for TNGA+ the population in each generation is increased to be 120. Moreover, the coding
schemes for HT and MERA are different from TTree and PEPS, which only contain external cores (vertices of color blue).
Specifically, for HT and MERA, we fix the permutation of the internal cores (vertices of color orange), and therefore only
encode the permutation of the external cores. The experimental results including the evaluation numbers of TNGA+ and
TNLS are shown in Table 3.

B.4. Real-World Data

Image completion. In this experiment, we consider uniformly random missing with the missing rates 70% and 90%. In
specific, we firstly use Matlab command “randperm” to generate random integer sequence with length that equals to the
number of image elements. Then, according to the missing rate, we select a subset of this sequence to generate a binary
mask tensor with the same size as the image. Finally, using this mask, we can generate the missing image. For recovery
performance evaluation, we use the RSE of predicted values on the missing entries.

For the proposed TNLS, we set the the maximum iteration #Iter = 30, and tuning parameters c1 = 0.95, c2 = 0.9, and
the number of sampling #Sample = 150. Moreover, the rank bound, the learning rate of Adam, and the variance of the
Gaussian distribution for core tensors initialization are set to 14, 0.001, 0.1 respectively. For the trade-off parameter �, we
set it as 0.0008, 0.0007 for missing rate 0.7, 0.9. For TNGA+, the maximum number of the generations is set to be 30. The
population in each generation are set to be 300. The elimination rate is 10% and the reproduction number is set to be 1.
Moreover, we set ↵ = 20 and � = 1. The chance for each gene to mutate after the recombination is 24%. Other settings,
including �, Gaussian distribution for initialization, the rank bound and the learning rate, are the same with TNLS.

Image compression. In the experiment, we randomly select 10 natural images from the BSD500 (Arbelaez et al., 2010)1.
1https://www2.eecs.berkeley.edu/Research/Projects/CS/vision/bsds/BSDS300/html/dataset/

images.html
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Real-World Data: Topology Search
Goal: Search for better TN topologies for natural images using TNGA
Data: 10 images random selected from BSD500 (Sheikh et al., 2006)

Numerical Experiments on Natural Images

10 natural images are randomly selected from LIVE dataset [Sheikh et al.,
2006], and reshaped as order-8 tensors.

The learned topology have more complex structures than simple ones like
line, tree or cycles.

Chao Li (RIKEN-AIP) chao.li@riken.jp June 20 16 / 18

(Tucker, 1966)

(Oseledets, 2011)

(Zhao et al, 2016)
What is the most suitable TN model for our task?

23



1. Trade-off between exploration and exploitation

Global 
(e.g., TNGA)

Local 
(e.g., TNLS, TnALE)

global but slow 
convergence

local but fast 
convergence

2. The search acceleration requires additional structural 
prior to the optimization landscape.

Summary of the Three Algorithms
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[Zhao et al., 2015]

[Yokota et al., 2015]
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[Mickelin & Karaman, 2016]

[Cai & Li, 2021]

[Hawkins & Zhang, 2021]
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[Cheng et al., 2020]

[Razin et al., 2021, 2022]

Rank  selection

[Hayashi et al., 2019]

[Li & Sun, 2020]

Topology search (2019)
[Hashemizadeh et al., 2020]

[Kodryan et al., 2020]

[Nie et al., 2021]

[Zheng et al., 2023]

[Li et al., 2023]

Rank+Topology (2020)

Permutation search (2022)

[Li et al., 2022]

[Chen et al., 2022]

[Acharya et al., 2022]

TN-SS

[Li et al., 2023]



Techniques in TN-SSPrior Arts

• Spectrum methods: SVD on unfoldings
1. rank search: (Oseledets, 2011, Zhao et al., 2016, Yin et al., AAAI’22);
2. topology search3: (Nie et al., BMVC’21)
3. permutation search: (Chen et al., arXiv’22)

• Regularization-based methods: sparsity/Implicit regularization
1. rank search: (Razin et al., ICML’21,22)
2. topology search: (Kodryan et al., AISTATS’23, Zheng et al., arXiv’23)
3. permutation search: N/A

• Bayesian methods: ARD/MGP priors
1. rank search: (Tao and Zhao, IJCAI W’20, Long et al., 2021)
2. topology search: (Zeng et al., ongoing)
3. permutation search: N/A

• Discrete optimization: deterministic, stochastic or RL
1. rank search: (Li et al., 2021, Hashemizadel et al., arXiv’20)
2. topology search: (Hayashi et al., Neurips’19, Li and Sun, ICML’20)
3. permutation search (Li et al., ICML’22, 23)

3
Most of TN-TS algorithms can solve TN-RS as well.

7 / 30

Solving TN-SS in
continuous domain



Comparison within different techniquesComparison

E�ciency Precision Flexibility Scalability Guarantees

Spectrum good bad bad good good
Regularization good bad good bad good

Bayesian bad good medium medium medium
Discrete opt. bad good good good bad

2
“Flexibility” evaluates if the methods adopt di↵erent TNs, tasks, loss, etc..

3
“Scalability” evaluates if the methods can be deployed for higher-order tensors.

4
“Guarantees” evaluates if there exist theory on error bounds or convergence, etc..

Contributions

Our works improve the e�ciency (bad!medium) and theoretical understanding
(bad!medium) for the discrete optimization methods in TN-SS.

8 / 30

Comparison

E�ciency Precision Flexibility Scalability Guarantees

Spectrum good bad bad good good
Regularization good bad good bad good

Bayesian bad good medium medium medium
Discrete opt. bad good good good bad

2
“Flexibility” evaluates if the methods adopt di↵erent TNs, tasks, loss, etc..

3
“Scalability” evaluates if the methods can be deployed for higher-order tensors.

4
“Guarantees” evaluates if there exist theory on error bounds or convergence, etc..

Long-term goal (contributions)

Our works improve the e�ciency (bad!(medium)!good) and theoretical understanding
(bad!(medium)!good) for the discrete optimization methods in TN-SS.

8 / 30
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Theoretical analysis

‣Symmetry in TN-SS
‣Convergence analysis in TN-SS



Complexity measure
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Symmetry in Permutation Search (TN-PS)
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A Group-Theoretic Framework

30

Permutation Search of Tensor Network Structures via Local Sampling

the mapping if it is unambiguous. For convenience, we use
[N ] ✓ Z+ to denote a set of positive integers from 1 to N ,
where ✓ represents the subset relation.

A graph G = (V,E) consists of a vertex set V and an edge

set E. For a graph G of N vertices, the set of its automor-

phisms, written Aut(G), is a collection of vertex permuta-
tions, under which the edges are preserved, and equivalent
to a subgroup of the symmetric group, i.e., Aut(G)  SN .
We call H = (VH ,EN ) a (spanning) subgraph of G if
VH = V and EH ✓ E. Let KN = (V,EKN ) be a complete

graph with N vertices and GN be the set containing all sub-
graphs of KN . We then know that any simple graphs of N
vertices are elements of GN . The minimum and maximum

degree of a graph G are denoted by � and �, respectively.

2.1. Tensor and Tensor Networks (TNs)

We consider an order-N tensor as a multi-
dimensional array of real numbers represented
by Xi1,i2,...,iN 2 RI1⇥I2⇥···⇥IN , where the indices
in, n 2 [N ] correspond to the RIn -associated tensor mode.
Sometimes we ignore the indices by representing the same
tensor as X for notational simplicity. Tensor contraction

roughly refers to the process of summing over a pair of
repeated indices between two tensors, which is though of as
a natural extension of matrix multiplication into high-order
tensors. An explicit calculation of tensor contraction used in
this paper follows the definition in (Cichocki et al., 2016).

We consider tensor network (TN) as defined by Ye & Lim
(2019). Suppose a sequence of vector spaces RIi , i 2 [N ]
and an edge-labelled simple graph (G, r) = (V,E, r),
where r : E ! Z+ represents the function labelling edges
with positive integers. TN is thus intuitively defined as a set
of tensors, whose elements are of the form of a sequence
of tensor contraction of “core tensors” corresponding to
vertices of G. See (Ye & Lim, 2019) for an explicit defi-
nition of a TN. In the paper we refer to those core tensors
as vertices, to the unlabelled graph G as TN format, and to
the function r as TN-(model)-ranks. Being consistent with
(Ye & Lim, 2019), we use the same mathematical expres-
sion TNS(G, r,RI1 ,RI2 . . . ,RIN ) to represent a TN in
our analysis. The expression is also rewritten as TNS(G, r)
for shorthand if RIn , n 2 [N ] are unimportant in the con-
text. Let FG be the set consisting of all possible functions of
r’s associated to G. Then note that FG is equivalent to a pos-
itive cone except zero of dimension |E|, i.e., FG = Z+,|E|.

2.2. TN Structure Search (TN-SS)

Let X 2 RI1⇥I2⇥···⇥IN be an order-N tensor. TN-SS with-

out noise is to solve an optimization problem as follows:

min
r2FKN

� (KN , r) , s.t.X 2 TNS(KN , r), (1)

where � : GN ⇥ FKN ! R represents a loss function mea-
suring the model complexity of a TN. Note that, although
in (1) the first term of � is fixed to be KN , the TN format
can degenerate into any simple graphs of N vertices, as the
edges of labeling with “1”, i.e., {e 2 EKN |r(e) = 1}, can
be harmlessly discarded from the format (Ye & Lim, 2019;
Hashemizadeh et al., 2020). We see that solving (1) is an
integer programming problem, generally NP-complete (Pa-
padimitriou & Yannakakis, 1982). Nevertheless, thanks to
the fact FKN = Z+,|EKN

|, some practical algorithms have
been proposed (Hashemizadeh et al., 2020; Kodryan et al.,
2020; Li & Sun, 2020), as Z+,|EKN

| is a well-defined metric
space with the isotropic property. However, we will see next
that such good properties do not hold for TN-PS anymore
in general.

3. Tensor-Network Permutation
Search (TN-PS)

In this section, we first make precise the problem of TN-PS
and then prove the properties involving counting, metric,
and neighborhood, which are crucial for both understanding
the problem and deriving efficient algorithms.

3.1. Problem Setup

Recall the example illustrated in Figure 1. Suppose a tensor
X of order N and a simple graph G0, , dubbed template, of
N vertices. Apart from the TN-ranks, the primary goal of
TN-PS is to find the optimal mappings in some sense from
the modes of X onto vertices of G0. We thus easily see that
the problem amounts to searching the optimal permutation

of vertices of a graph. More precisely, solving TN-PS is
to repeatedly index the vertices of G0 consecutively from 1
to N , and then to seek the optimal index sequence in some
sense from all possibilities. Since the permutations are
bijective to each other, the TN structures arising from these
permutations naturally form an equivalence class, of which
all elements preserve the same “diagram” as G0. Formally,
such the equivalence class to the template G0 = (V,E0)
can be written as follows:

G0 = {G 2 GN |G ⇠= G0} , (2)

where ⇠= denotes the relation of graph isomorphism, mean-
ing that for each G 2 G0 there exists a vertex permu-
tation gG 2 SN such that G = (gG (V) ,E0) holds, or
G = gG · G0 for shorthand. TN-PS (without noise) is
thus defined by restricting the search space of (1) to G0 as
follows:

min
(G,r)2G0⇥FG0

� (G, r) , s.t.X 2 TNS(G, r). (3)

Compared to TN-SS, we search TN structures from a new
space consisting of two ingredients: a non-trivial graph set

Construct the isomorphism graph set:
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the mapping if it is unambiguous. For convenience, we use
[N ] ✓ Z+ to denote a set of positive integers from 1 to N ,
where ✓ represents the subset relation.

A graph G = (V,E) consists of a vertex set V and an edge

set E. For a graph G of N vertices, the set of its automor-

phisms, written Aut(G), is a collection of vertex permuta-
tions, under which the edges are preserved, and equivalent
to a subgroup of the symmetric group, i.e., Aut(G)  SN .
We call H = (VH ,EN ) a (spanning) subgraph of G if
VH = V and EH ✓ E. Let KN = (V,EKN ) be a complete

graph with N vertices and GN be the set containing all sub-
graphs of KN . We then know that any simple graphs of N
vertices are elements of GN . The minimum and maximum

degree of a graph G are denoted by � and �, respectively.

2.1. Tensor and Tensor Networks (TNs)

We consider an order-N tensor as a multi-
dimensional array of real numbers represented
by Xi1,i2,...,iN 2 RI1⇥I2⇥···⇥IN , where the indices
in, n 2 [N ] correspond to the RIn -associated tensor mode.
Sometimes we ignore the indices by representing the same
tensor as X for notational simplicity. Tensor contraction

roughly refers to the process of summing over a pair of
repeated indices between two tensors, which is though of as
a natural extension of matrix multiplication into high-order
tensors. An explicit calculation of tensor contraction used in
this paper follows the definition in (Cichocki et al., 2016).

We consider tensor network (TN) as defined by Ye & Lim
(2019). Suppose a sequence of vector spaces RIi , i 2 [N ]
and an edge-labelled simple graph (G, r) = (V,E, r),
where r : E ! Z+ represents the function labelling edges
with positive integers. TN is thus intuitively defined as a set
of tensors, whose elements are of the form of a sequence
of tensor contraction of “core tensors” corresponding to
vertices of G. See (Ye & Lim, 2019) for an explicit defi-
nition of a TN. In the paper we refer to those core tensors
as vertices, to the unlabelled graph G as TN format, and to
the function r as TN-(model)-ranks. Being consistent with
(Ye & Lim, 2019), we use the same mathematical expres-
sion TNS(G, r,RI1 ,RI2 . . . ,RIN ) to represent a TN in
our analysis. The expression is also rewritten as TNS(G, r)
for shorthand if RIn , n 2 [N ] are unimportant in the con-
text. Let FG be the set consisting of all possible functions of
r’s associated to G. Then note that FG is equivalent to a pos-
itive cone except zero of dimension |E|, i.e., FG = Z+,|E|.

2.2. TN Structure Search (TN-SS)

Let X 2 RI1⇥I2⇥···⇥IN be an order-N tensor. TN-SS with-

out noise is to solve an optimization problem as follows:

min
r2FKN

� (KN , r) , s.t.X 2 TNS(KN , r), (1)

where � : GN ⇥ FKN ! R represents a loss function mea-
suring the model complexity of a TN. Note that, although
in (1) the first term of � is fixed to be KN , the TN format
can degenerate into any simple graphs of N vertices, as the
edges of labeling with “1”, i.e., {e 2 EKN |r(e) = 1}, can
be harmlessly discarded from the format (Ye & Lim, 2019;
Hashemizadeh et al., 2020). We see that solving (1) is an
integer programming problem, generally NP-complete (Pa-
padimitriou & Yannakakis, 1982). Nevertheless, thanks to
the fact FKN = Z+,|EKN

|, some practical algorithms have
been proposed (Hashemizadeh et al., 2020; Kodryan et al.,
2020; Li & Sun, 2020), as Z+,|EKN

| is a well-defined metric
space with the isotropic property. However, we will see next
that such good properties do not hold for TN-PS anymore
in general.

3. Tensor-Network Permutation
Search (TN-PS)

In this section, we first make precise the problem of TN-PS
and then prove the properties involving counting, metric,
and neighborhood, which are crucial for both understanding
the problem and deriving efficient algorithms.

3.1. Problem Setup

Recall the example illustrated in Figure 1. Suppose a tensor
X of order N and a simple graph G0, , dubbed template, of
N vertices. Apart from the TN-ranks, the primary goal of
TN-PS is to find the optimal mappings in some sense from
the modes of X onto vertices of G0. We thus easily see that
the problem amounts to searching the optimal permutation

of vertices of a graph. More precisely, solving TN-PS is
to repeatedly index the vertices of G0 consecutively from 1
to N , and then to seek the optimal index sequence in some
sense from all possibilities. Since the permutations are
bijective to each other, the TN structures arising from these
permutations naturally form an equivalence class, of which
all elements preserve the same “diagram” as G0. Formally,
such the equivalence class to the template G0 = (V,E0)
can be written as follows:

G0 = {G 2 GN |G ⇠= G0} , (2)

where ⇠= denotes the relation of graph isomorphism, mean-
ing that for each G 2 G0 there exists a vertex permu-
tation gG 2 SN such that G = (gG (V) ,E0) holds, or
G = gG · G0 for shorthand. TN-PS (without noise) is
thus defined by restricting the search space of (1) to G0 as
follows:

min
(G,r)2G0⇥FG0

� (G, r) , s.t.X 2 TNS(G, r). (3)

Compared to TN-SS, we search TN structures from a new
space consisting of two ingredients: a non-trivial graph set

The TN-PS problem can be thus formulated as follows:

According to the Lagrange’s theorem (in group theory),

Permutation Search of Tensor Network Structures via Local Sampling

Figure 2. “Geometrical shape” of search spaces of TN-SS and TN-
PS, where the equivalence class G0 makes the “shape” for TN-PS
as a combination of flips of low-dimensional spaces.

G0 and FG0 = Z+,|E0| that corresponds to the TN-ranks.
We see that TN-PS is no longer an integer programming
problem as TN-SS due to the irregular geometry of G0.
Meanwhile, the size of the new search space varies with
different template G0. Figure 2 visualizes intuitively the
“geometrical shape” of the search space for TN-PS associ-
ated to a template of three vertices and two edges. We see
that the search space of TN-PS is more “collapsed” than the
original TN-SS. One immediate consequence of collapsing
is that the searching path and solutions for TN-SS would run
out of the TN-PS region, thereby failing to preserve the orig-
inal TN format. Next, we will establish formal statements
for these observations, and the results will help develop
feasible algorithms for resolving TN-PS.

3.2. Counting TN Structures

We begin by counting the size of the new search space,
proving that the graph degrees of the template G0 give a
universal bound for the size of the search space of TN-PS.

Suppose first a simple graph G0 = (V,E0) of N vertices
as the template, by which we then construct the set G0 as
Eq. (2). As mentioned above, we have known two facts: 1)

Aut(G0) forms a subgroup of SN , i.e., Aut(G0)  SN ,
such that G0 = a · G0 for any a 2 Aut(G0); and
2) for every G 2 G0 there exists gG 2 SN such that
G = gG · G0. By these facts, G = g

0
· G0 holds

for any g
0 = gG · a, implying that for each G 2 G0

there exists a left coset of Aut(G0), which is of the form
gG ·Aut(G0) := {gG · a|a 2 Aut(G0)}. According to the
Lagrange’s theorem in group theory, we thus obtain the
following equation with respect to the size of G0:

|SN | = |G0| · |Aut(G0)|. (4)

Table 1 lists the values of |Aut(G0)| associated with several
commonly used TNs. The size of G0 for those TNs can be
therefore derived by (4), shown in the last row of Table 1.

However, counting the automorphisms for a general graph
is difficult (Chang et al., 1995). Blow we prove that the
size of the search space of TN-PS is controlled by the the
minimum and maximum degree of G0. For convenience,
we further assume that TN-ranks are only searched within a

Table 1. Illustration of several counting-related properties for com-
monly used TNs of order N > 3, including tensor train (TT,
Oseledets 2011), tensor tree (TTree, Ye & Lim 2019), TR and
projected entangled pair states (PEPS, Verstraete & Cirac 2004),
where G0 = (V,E0), and �0 and �0 denote the minimum and
maximum degree of G0, respectively.

TT TTree TR PEPS

G0 Path Tree Cycle Lattice
�0 1 1 2 2

�0 2 [2, N � 1] 2 2, 3, 4

|E0| N � 1 N � 1 N  N

|Aut(G0)| 2 [2, (N � 1)!] 2N  N

|G0| N !/2 [N,N !/2] (N � 1)!/2  N !/4

finite range FG0,R ⇢ FG0 , meaning that the rank r(e)  R

holds for any r 2 FG0,R and e 2 E0. We then have the
following counting bounds.
Theorem 3.1. Assume G0 to be a simple and connected

graph of N vertices, and G0 is constructed as (2). Let

� = N/d1 and � = N/d2, d1 � d2 > 1, be the minimum

and maximum degree of G0, respectively. The size of the

search space of (3), written LG0,R := G0 ⇥ FG0,R, is

bounded as follows:

R
N2

2d2 ·N ! � |LG0,R| � R
N2

2d1 · e
�(d2)·N� 1

2 log d2�1/24,

(5)

where �(d) = log d+ 1
d
�1 is a positive and monotonically

increasing function for d > 1.

Proving the above theorem requires the following lemma
about an upper-bound of the size of Aut(G0), of which the
proof is given in Appendix A.
Lemma 3.2. Let G0 be a simple graph of N vertices, and

Aut(G0) be the set containing automorphisms of G0. As-

sume that G0 is connected and its maximum degree � satis-

fies N/� = d > 1, then the inequality

|Aut(G0)|  N ! · e��(d)·N+ 1
2 log d+1/24 (6)

holds, where �( · ) is defined in Theorem 3.1.

As shown in (5), the bounds of |LG0,R| are determined by
three factors: the number of vertices N , the searching range
of TN-ranks R, and the graph degrees of G0 parameterized
by d1 and d2. Figure 3 shows the bounds in (5) with varying
these factors. We see from the left panel that the upper and
lower bounds go closer with increasing the value of d (where
we assume d1 = d2 = d for brevity). It implies that the
bounds are tight for graphs with small degrees. We also see
from the middle panel that |LG0,R| grows fast with N , even
though the graph degree d been sufficiently small such as in
TT/TR, while the growth is relatively slow with increasing
R, the search range for TN-ranks.

Automorphism

Table 1: Graphs corresponding to different tensor networks (TNs). In the table, |V | |E0|, |Aut(G0)|
denotes the number of vertices, edges and automorphisms of G0 respectively, and�G0 denotes the
maximum degree of G0. The last row illustrates examples of graphical diagrams for each TN model.
For brevity, we omit the “free-legs” from the tensor diagram.

TNs TT T-Tree TR PEPS CTN

Graphs G0 Path PN Tree TN Cycle CN Lattice Lm,n Complete KN

|V | N N N mn N

|E0| N � 1 N � 1 N (m� 1)(n� 1) N(N � 1)/2

�0 2 [2, N � 1] 2 2, 3, 4 N � 1

�0 1 1 2 2 N � 1

|Aut(G0)| 2 [2, (N � 1)!] 2N  mn N !

Examples

where H
w
0 denotes the adjacency matrix of G0 weighted by fR, which with  is defined in Lemma30

2 and can be constructed by lR. Let FR be the set containing all fR under G0, we then construct a31

bijective mapping g : F ! (ZR)
|E0|, in which we sequentially put the weight on each edge in E032

into each entry of a vector in (ZR)
|E0| following a following a subtraction by one. It is apparent that33

the mapping g is bijective. Therefore we have34

H = P �1 (G0, fR)P
> = P �1

�
G0, g

�1(z)
�
P

>, (2)

where z 2 Z
|E0|
R . Since both the  and g are biejctive, their composition ⌦: z 7!  �1

�
G0, g�1(z)

�
35

is also bijective. The result is therefore proved.36

Proof of Proposition 6. The idea to prove the first claim is based on the fact that the adjacency37

matrices of isomorphic graphs are the same up to permutation. Let H0 be the adjacency matrix of G0.38

Since the graph or its complement is not complete, there is a pair of indices (ik, jk), ik 6= jk, i, j 239

[N ], k = 1, 2 such that H0(i1, j1) = 0 and H0(i2, j2) 6= 0. Because of the definition of HG0,R we40

know that all the isomorphisms of G0 are contained in HG0,R. Thus there is a permutation mapping41

⇡ : [N ] ! [N ] and its corresponding H1 2 HG0,R such that H1(i1, j1) = H1(⇡(i2),⇡(j2)) =42

H0(i2, j2). In this case, nz(H0 + H1) 6= 0 > nz(H0 6= 0), where X 6= 0 represents the logic43

operation to check if the entries of X equal zero, and nz( · ) denotes the function to have the number44

of non-zero entries of a matrix. It can be infered from the inequality that the number of edges of45

the graph G induced by H0 + H1 is larger than G0. Then G is not isomorphic to G0. Therefore46

H0 +H1 /2 HG0,R. The proof for the first claim is complete.47

The basic idea to prove the second claim is to have the joint probability of the perturabtion and the48

element from HG0,R such that their addition is not in HG0,R. In particular, assuming we draw the49

elements from HG0,R at a uniform random distribution we have50

Pr ({B 2 B,H 2 HG0,R|B+H /2 HG0,R})

� Pr ({B 2 B,H 2 HG0,R�1|B+H /2 HG0,R}) .
(3)

The inequality is held since we shrink the size of the event. By some basic rules on probability we51

further have52

Pr ({B,H 2 HG0,R�1|B+H /2 HG0,R})

= Pr (H 2 HG0,R�1)Pr ({B|B+H /2 HG0,R} |H 2 HG0,R�1)

=

✓
1�

1

R

◆|E0|
0

@1�

✓
1

2

◆ |V |2�|V |�2|E0|
2

1

A .

(4)

2

What if arbitrary TN-topology?

TN topology 



Lemma. Upper bound of |Aut(G0)| for any graph.

Let G0 be a simple graph of N vertices, and Aut(G0) be the set containing automorphisms of
G0. Assume that G0 is connected and its maximum degree � satisfies N/� = d > 1, then the
following inequality holds:

|Aut(G0)|  N! · e��(d)·N+
1

2
log d+1/24,

where �(d) = log d + 1

d � 1 is a positive and monotonically increasing function for d > 1.

1 / 3

Theorem. Bounding #TN-structures

Assume G0 to be a simple and connected graph of N vertices, and G0 is constructed as (2).
Let � = N/d1 and � = N/d2, d1 � d2 > 1, be the minimum and maximum degree of G0,
respectively. The size of the search space of (3), written LG0,R := G0 ⇥ FG0,R , is bounded as
follows:

R
N2

2d2 · N! � |LG0,R | � R
N2

2d1 · e�(d2)·N� 1

2
log d2�1/24,

where �(d) = log d + 1

d � 1 is defined as the lemma above.

2 / 3



Distance of Vertex Permutation
Suppose Gi=giG0 for i=1,2, We construct the following function:
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Figure 3. Illustration of bounds given in Theorem 3.1 with varying
the parameters d, N and R, where “U.b.” and “L.b.” denote the
upper and lower bounds, respectively, and d1 = d2 = d.

3.3. Semi-Metric and Neighborhood

The notion of metric and neighborhood of the search space
are fundamental for most steepest-descent-based optimiza-
tion methods. We have seen that they are well-defined for
TN-SS but remain unknown for TN-PS. To address the issue,
we establish below a new (semi-)metric and neighborhood
for TN-PS with rigorous proofs using group-theoretic in-
struments. The application of these results to developing
efficient algorithms for TN-PS will be introduced in the next
section.

We begin by establishing the semi-metric, a relaxation of
metric satisfying separation and symmetry except possibly
for the triangle inequality, over the graph set G0. Although
there has been much literature in which different definitions
of the graph metric or similarity are proposed, most of them
are computationally hard (Koutra et al., 2011). Unlike those
works, we construct the semi-metric over G0 based on the
equivalence property of its elements given in (2), so it can
be built up by graph isomorphisms in a simple fashion.

Recall the symmetric group SN . Let TN ✓ SN be the set
consisting of its all adjacent transpositions, the operations
of swapping adjacent two integers in [N ] and fixing all other
integers. We thus know from group theory that TN gener-
ates SN . Furthermore, let dTN : SN ⇥SN ! R be the word

metric (Lück, 2008) of SN induced by TN . Intuitively, the
value of dTN (p1, p2), p1, p2 2 SN reflects the minimum
number of adjacent swapping operations required for trans-
forming the permutation from p1 to p2. Since we saw in
Section 3.1 that for each G 2 G0 there is a permutation
gG 2 SN such that G = gG ·G0, we thus construct a func-
tion dG0 : G0 ⇥ G0 ! R using the word metric dTN as
follows:

dG0 (G1, G2) = min
pi2gi·Aut(G0),i=1,2

dTN (p1, p2), (7)

where G1, G2 2 G0 and g1, g2 2 SN are permutations
satisfying Gi = gi · G0, i = 1, 2. The following lemma
shows that (7) is in fact a semi-metric function, followed by
the construction of the corresponding neighborhood in G0.

Lemma 3.3. Let G0 be a simple graph and G0 be the set

defined as (2). The function dG0 : G0 ⇥ G0 ! R defined

by (7) is a semi-metric on G0. Furthermore, let Id (G) be a

Algorithm 1 Random sampling over Id(G)

Input: Center: G 2 G0 with N vertices; Radius: d.
Initialize: G0 = G where G

0 = (V0
,E0).

for k = 1 to d do
Uniformly draw i, j 2 [N ], i 6= j in random.
Choose vi, vj 2 V0 and swap them.

end for
Output: G0.

set constructed as follows:

Id (G) = {G
0
2 G0|G

0 = q

dY

i=1

ti ·G0,

q 2 g ·Aut(G0), ti 2 TN , i 2 [d]}

. (8)

Then ND (G) =
S

D

d=0 Id(G) is the neighborhood of

G = g ·G0 2 G0 induced by (7), with the radius D 2

Z+
[ {0}.

We see from (8) that ND (G) consists of combinations of
two sets: Aut(G0) and TN , followed by the permutation
representative g associated to the center graph G. It thus
suggests a straightforward sampling method over ND (G),
that is, combinatorially sampling over Aut(G0) and TN

from some distributions. However, obtaining all elements of
Aut(G0) is computationally hard (NP-intermediate, Gold-
wasser et al. 1989) in general. To avoid this, we prove
that sampling using Alg. 1 can cover all elements of Id(G)
without sampling directly over Aut(G0).
Theorem 3.4. For every G

0
2 Id(G) with G 2 G0 and

d � 1, the probability that the output of Alg. 1 equals G
0

is

positive.

The (semi-)metric and neighborhood for the overall search
space of TN-PS, i.e., G0 ⇥ FG0,R, can be thus derived by
composing the Euclidean metric of FG0,R ✓ Z+,|E0|. In the
next section, Alg. 1 will be applied to the new algorithm, by
which the searching efficiency is significantly improved.

4. Meta-Heuristic via Local Sampling
We present now a new meta-heuristic algorithm for search-
ing TN structures. Unlike the existing methods such as (Li
& Sun, 2020), we exploit the information of the “steepest-
descent” direction, estimated by sampling over a neigh-
borhood of the search space, to accelerate the searching
procedure.

Suppose a tensor X of order N . For the practical purpose,
we take the influence of noise into (3), which is given by

min
G,r,Z

� (G, r) + � ·RSE(X ,Z)

s.t. (G, r) 2 G0 ⇥ FG0,R, and Z 2 TNS(G, r)
, (9)

word metric

Lemma. Metric and neighborhood

Let G0 be a simple graph and G0 be the set defined as (2). The function dG0
: G0 ⇥G0 ! R

defined by (7) is a semi-metric on G0. Furthermore, let Id (G ) be a set constructed as follows:

Id (G ) = {G 0 2 G0|G 0 = q
dY

i=1

ti · G0,

q 2 g · Aut(G0), ti 2 TN , i 2 [d ]}

.

Then ND (G ) =
SD

d=0
Id(G ) is the neighborhood of G = g · G0 2 G0 induced by (7), with the

radius D 2 Z+ [ {0}.
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Sampling all possible q is computationally hard (NP-intermediate).

q is omitted in our algorithm, since “most graphs are not symmetric”.
(C Godsil, GF Royle, 2001)



Searching Dynamic for Local sampling
Local sampling is deployed in both TNLS and TnALE.

The convergence is unknown due to 
the discrete nature of the problem.

How do sampling strategies affect the 
search efficiency?

Convex analysis in discrete domain



Problem Reformulation

TnALE: Solving Tensor Network Structure Search with Fewer Evaluations

B. Theoretical analysis with proofs
In this section, we first give a rigorous convergence analysis for the algorithms using the local-sampling scheme. After that,
we compare the evaluation efficiency for TNLS (Li et al., 2022) and the new algorithm TnALE.

B.1. A quick review of tensor network (TN) structure search

Suppose we have the dataset D and a task-specific loss function ⇡D : RI1⇥I2⇥···⇥IN ! R+ associated to D. The tensor
network structure search (TN-SS) problem is to solve the following bi-level optimization problem (Li et al., 2022)

min
(G,r)2G⇥FG

✓
�(G, r) + � · min

Z2TNS(G,r)
⇡D(Z)

◆
, (8)

where G 2 G is a graph, which owns N vertices and K edges and corresponds to the TN-topology, r 2 FN ✓ ZK
+ is a

positive integer vector of K dimension corresponding to the TN-ranks, � : G⇥ZK
+ ! R+ represents the function measuring

the model complexity of a TN whose structure is modeled by (G, r), and � > 0 is a tuning parameter. As expected for
TN-SS, solving the problem (8) is intuitively to search for a TN structure modeled by (G, r), by which we can give the
optimal balance between the complexity and the expressibility of a TN in the task.

We remark that TN-SS can be specified as three sub-problems: permutation selection (TN-PS, Li et al. (2022)), rank selection
(TN-RS) and topology selection (TN-TS, Li & Sun (2020)), by specifying the feasible set G⇥ FG of (8) into different forms.
Specifically, in TN-PS, we set FG = ZK

+ and G is defined as the isomorphic graphs to a “template” G0, so that only the
ranks and vertex permutations are searched while the TN-topology is preserved. In TN-RS, however, we typically restrict
the graph G in (8), i.e., G = {G0} but consider searching for all possible ranks i.e., FG = ZK

+ . In TN-TS, we relax G to be
a set containing all possible simple graphs of order N and the set FN can be fixed (Li & Sun, 2020) or not (Hashemizadeh
et al., 2020). It is known from (Ye & Lim, 2019; Hashemizadeh et al., 2020) that the TN-PS problem with the rank searching
can be simplified as a TN-RS problem associated to a “fully-connected” TN (Zheng et al., 2021).

B.2. Analysis of descent steps

We start the analysis by rewriting (8) into a more general form:

min
x2ZK

+ ,p2P
fp(x) := f � p(x), (9)

where � denotes the function composition, f : ZL
�0 ! R+ is a generalization of the objective function of (8), x 2 ZK

+

corresponds to the rank-related variable r of (8), and the operator p : ZK
+ ! ZL

�0 and its feasible set P correspond to the
topology-related variable G and the set G of (8), respectively.

The relationship between p 2 P of (9) and G 2 G of (8) is demonstrated as follows. Since in (8) the entries of r can be
regarded as labels on the edges of G, the pair (G, r) can be described as a weighted adjacency matrix of N ⇥ N . For
example, a 4-th order tensor ring (TR, Zhao et al., 2016) of the ranks-{2, 3, 4, 5} can be described as

(G1, r) =

0

BB@

0

BB@

0 0 1 1
0 0 1 1
1 1 0 0
1 1 0 0

1

CCA ,

0

BB@

2
3
4
5

1

CCA

1

CCA =) A1 =

0

BB@

0 0 2 3
0 0 4 5
2 3 0 0
4 5 0 0

1

CCA , (10)

or

(G2, r) =

0

BB@

0

BB@

0 1 0 1
1 0 1 0
0 1 0 1
1 0 1 0

1

CCA ,

0

BB@

2
3
4
5

1

CCA

1

CCA =) A2 =

0

BB@

0 2 0 5
2 0 3 0
0 3 0 4
5 0 4 0

1

CCA . (11)

Here G1 and G2 correspond to the TR topology with different permutations of vertices. In the settings of TN-PS (Li et al.,
2022), we can prove that such the relationship is bijective. The operator p is thus to map the TN-ranks, denoted x 2 ZK

+

in (9), onto the vectorization of entries in the upper triangle part (except for the diagonal) of the adjacency matrix. For

14

We consider a general form for optimization in TN-SS:
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we compare the evaluation efficiency for TNLS (Li et al., 2022) and the new algorithm TnALE.

B.1. A quick review of tensor network (TN) structure search

Suppose we have the dataset D and a task-specific loss function ⇡D : RI1⇥I2⇥···⇥IN ! R+ associated to D. The tensor
network structure search (TN-SS) problem is to solve the following bi-level optimization problem (Li et al., 2022)

min
(G,r)2G⇥FG
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, (8)

where G 2 G is a graph, which owns N vertices and K edges and corresponds to the TN-topology, r 2 FN ✓ ZK
+ is a

positive integer vector of K dimension corresponding to the TN-ranks, � : G⇥ZK
+ ! R+ represents the function measuring

the model complexity of a TN whose structure is modeled by (G, r), and � > 0 is a tuning parameter. As expected for
TN-SS, solving the problem (8) is intuitively to search for a TN structure modeled by (G, r), by which we can give the
optimal balance between the complexity and the expressibility of a TN in the task.
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a set containing all possible simple graphs of order N and the set FN can be fixed (Li & Sun, 2020) or not (Hashemizadeh
et al., 2020). It is known from (Ye & Lim, 2019; Hashemizadeh et al., 2020) that the TN-PS problem with the rank searching
can be simplified as a TN-RS problem associated to a “fully-connected” TN (Zheng et al., 2021).

B.2. Analysis of descent steps

We start the analysis by rewriting (8) into a more general form:

min
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fp(x) := f � p(x), (9)

where � denotes the function composition, f : ZL
�0 ! R+ is a generalization of the objective function of (8), x 2 ZK
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corresponds to the rank-related variable r of (8), and the operator p : ZK
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�0 and its feasible set P correspond to the
topology-related variable G and the set G of (8), respectively.

The relationship between p 2 P of (9) and G 2 G of (8) is demonstrated as follows. Since in (8) the entries of r can be
regarded as labels on the edges of G, the pair (G, r) can be described as a weighted adjacency matrix of N ⇥ N . For
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Here G1 and G2 correspond to the TR topology with different permutations of vertices. In the settings of TN-PS (Li et al.,
2022), we can prove that such the relationship is bijective. The operator p is thus to map the TN-ranks, denoted x 2 ZK
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in (9), onto the vectorization of entries in the upper triangle part (except for the diagonal) of the adjacency matrix. For
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B. Theoretical analysis with proofs
In this section, we first give a rigorous convergence analysis for the algorithms using the local-sampling scheme. After that,
we compare the evaluation efficiency for TNLS (Li et al., 2022) and the new algorithm TnALE.

B.1. A quick review of tensor network (TN) structure search

Suppose we have the dataset D and a task-specific loss function ⇡D : RI1⇥I2⇥···⇥IN ! R+ associated to D. The tensor
network structure search (TN-SS) problem is to solve the following bi-level optimization problem (Li et al., 2022)

min
(G,r)2G⇥FG

✓
�(G, r) + � · min

Z2TNS(G,r)
⇡D(Z)

◆
, (8)

where G 2 G is a graph, which owns N vertices and K edges and corresponds to the TN-topology, r 2 FN ✓ ZK
+ is a

positive integer vector of K dimension corresponding to the TN-ranks, � : G⇥ZK
+ ! R+ represents the function measuring

the model complexity of a TN whose structure is modeled by (G, r), and � > 0 is a tuning parameter. As expected for
TN-SS, solving the problem (8) is intuitively to search for a TN structure modeled by (G, r), by which we can give the
optimal balance between the complexity and the expressibility of a TN in the task.

We remark that TN-SS can be specified as three sub-problems: permutation selection (TN-PS, Li et al. (2022)), rank selection
(TN-RS) and topology selection (TN-TS, Li & Sun (2020)), by specifying the feasible set G⇥ FG of (8) into different forms.
Specifically, in TN-PS, we set FG = ZK

+ and G is defined as the isomorphic graphs to a “template” G0, so that only the
ranks and vertex permutations are searched while the TN-topology is preserved. In TN-RS, however, we typically restrict
the graph G in (8), i.e., G = {G0} but consider searching for all possible ranks i.e., FG = ZK

+ . In TN-TS, we relax G to be
a set containing all possible simple graphs of order N and the set FN can be fixed (Li & Sun, 2020) or not (Hashemizadeh
et al., 2020). It is known from (Ye & Lim, 2019; Hashemizadeh et al., 2020) that the TN-PS problem with the rank searching
can be simplified as a TN-RS problem associated to a “fully-connected” TN (Zheng et al., 2021).

B.2. Analysis of descent steps

We start the analysis by rewriting (8) into a more general form:

min
x2ZK

+ ,p2P
fp(x) := f � p(x), (9)

where � denotes the function composition, f : ZL
�0 ! R+ is a generalization of the objective function of (8), x 2 ZK

+

corresponds to the rank-related variable r of (8), and the operator p : ZK
+ ! ZL

�0 and its feasible set P correspond to the
topology-related variable G and the set G of (8), respectively.

The relationship between p 2 P of (9) and G 2 G of (8) is demonstrated as follows. Since in (8) the entries of r can be
regarded as labels on the edges of G, the pair (G, r) can be described as a weighted adjacency matrix of N ⇥ N . For
example, a 4-th order tensor ring (TR, Zhao et al., 2016) of the ranks-{2, 3, 4, 5} can be described as
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B. Theoretical analysis with proofs
In this section, we first give a rigorous convergence analysis for the algorithms using the local-sampling scheme. After that,
we compare the evaluation efficiency for TNLS (Li et al., 2022) and the new algorithm TnALE.
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network structure search (TN-SS) problem is to solve the following bi-level optimization problem (Li et al., 2022)

min
(G,r)2G⇥FG

✓
�(G, r) + � · min

Z2TNS(G,r)
⇡D(Z)

◆
, (8)

where G 2 G is a graph, which owns N vertices and K edges and corresponds to the TN-topology, r 2 FN ✓ ZK
+ is a

positive integer vector of K dimension corresponding to the TN-ranks, � : G⇥ZK
+ ! R+ represents the function measuring

the model complexity of a TN whose structure is modeled by (G, r), and � > 0 is a tuning parameter. As expected for
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It is shown that p is essentially an operator produced by the permutation padding with several rows of zeros according to G.

The convergence analysis of this work is mainly inspired by Golovin et al. (2019), which establishes a convex framework for
the gradient-less optimization algorithms in the real domain. The challenge is, the TN-SS problem is essentially discrete, so
that many well-developed tools, such as convexity and smoothness, for convergence analysis turn invalid in the discrete
scenario.

To bridge the graph from Golovin et al. (2019) to TN-SS, we first re-define several important concepts, by which the
necessary tools for the analysis are re-derived. In doing so, we begin by introducing the finite gradient as the alternative to
the classic one defined in the continuous domain.
Definition B.1 (finite gradient). For any function f : ZL

�0 ! R, its finite gradient �f : ZL
�0 ! RL at the point x is

defined as the vector

�f(x) = [f(x+ e1)� f(x), . . . , f(x+ eL)� f(x)]> , (14)

where ei 8i 2 [L] denote the unit vectors with the i-th entry being one and other entries being zeros.

Applying the finite gradient defined in (14), we also re-define the strong convexity and smoothness for analysis in the
discrete domain.
Definition B.2 (↵-strong convexity with finite gradient). We say f is ↵-strongly convex for ↵ � 0 if f(y) � f(x) +⌦
�f(x)� ↵

2 1,y � x
↵
+ ↵

2 ky � xk2 for all x,y 2 ZL
�0, where 1 2 RL denotes the vector with all entries being one. We

simply say f is convex if it is ↵-strongly convex and ↵ = 0.

Compared to the definitions used in Golovin et al. (2019) and other literature for convex analysis, the additional term, ↵
2 1,

marked by the blue color, appears due to the discrepancy of the finite gradient and its counterpart in the continuous domain.
Below, we prove several basic results using the ↵-strong convexity with finite gradient.
Lemma B.3. If f is ↵-strongly convex in ZL

�0, then the following inequalities are held:

1. g(x) = f(x)� ↵
2 kxk

2 is convex in the discrete scenario for all x 2 ZL
�0, and vice versa;

2. h�f(x)��f(x),x� yi � ↵kx� yk2 for any x,y 2 ZL
�0;

3. k�f(x)��f(y)k � ↵kx� yk for any x,y 2 ZL
�0;

Here k · k denotes the l2 norm for vectors.

Proof. (1, )) According to Def. B.2, the first statement is equivalent to proving the inequality

g(y) � g(x) + h�g(x),y � xi (15)
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The convergence analysis of this work is mainly inspired by Golovin et al. (2019), which establishes a convex framework for
the gradient-less optimization algorithms in the real domain. The challenge is, the TN-SS problem is essentially discrete, so
that many well-developed tools, such as convexity and smoothness, for convergence analysis turn invalid in the discrete
scenario.

To bridge the graph from Golovin et al. (2019) to TN-SS, we first re-define several important concepts, by which the
necessary tools for the analysis are re-derived. In doing so, we begin by introducing the finite gradient as the alternative to
the classic one defined in the continuous domain.
Definition B.1 (finite gradient). For any function f : ZL
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�0 ! RL at the point x is
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�f(x) = [f(x+ e1)� f(x), . . . , f(x+ eL)� f(x)]> , (14)

where ei 8i 2 [L] denote the unit vectors with the i-th entry being one and other entries being zeros.

Applying the finite gradient defined in (14), we also re-define the strong convexity and smoothness for analysis in the
discrete domain.
Definition B.2 (↵-strong convexity with finite gradient). We say f is ↵-strongly convex for ↵ � 0 if f(y) � f(x) +⌦
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Below, we prove several basic results using the ↵-strong convexity with finite gradient.
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Gradient in Discrete Domain 

Preliminaries and definitions

Main idea
We first establish the analysis framework in the form, which is suitable for the general
local-sampling-based searching algorithm, The specific properties for TNLS and TnALS are
then deduced.

Definition (finite gradient)

For any function f : ZL
�0

! R, its finite gradient �f : ZL
�0

! R
L at the point x is defined as

the vector

�f (x) = [f (x+ e1)� f (x), . . . , f (x+ eL)� f (x)]> , (2)

where ei 8i 2 [L] denote the unit vectors with the i-th entry being one and other entries being
zeros.
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Convexity in Discrete Domain
Cont’d

Definition (↵-strong convexity with finite gradient)

We say f is ↵-strongly convex for ↵ � 0 if f (y) � f (x) +
⌦
�f (x)� ↵

2
1, y � x

↵
+ ↵

2
ky � xk2

for all x, y 2 Z
L
�0

, where 1 2 R
L denotes the vector with all entries being one. We simply say

f is convex if it is ↵-strongly convex and ↵ = 0.

Lemma

If f is ↵-strongly convex in Z
L
�0

, then the following inequalities are held:

1. g(x) = f (x)� ↵
2
kxk2 is convex in the discrete scenario for all x 2 Z

L
�0

, and vice versa;

2. h�f (x)��f (x), x� yi � ↵kx� yk2 for any x, y 2 Z
L
�0

;

3. k�f (x)��f (y)k � ↵kx� yk for any x, y 2 Z
L
�0

;

Here k · k denotes the l2 norm for vectors.
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Smoothness in Discrete Domain
Definition ((�1, �2)-smoothness with finite gradient)

We say f is (�1,�2)-smooth for �1,�2 > 0 if

1. |f (x)� f (y)|  �1kx� yk for all x, y 2 Z
L
�0

;

2. The function l(x) := �2

2
kxk2 � f (x) is convex.

Lemma

If l(x) = �
2
kxk2 � f (x) is convex, then for all x, y 2 Z

L
�0

1. f (y)  f (x) +
D
�f (x)� �

2
1, y � x

E
+ �

2
ky � xk2 and vise versa;

2. h�f (x)��f (y), x� yi  �kx� yk2.

Lemma

If |f (x)� f (y)|  �kx� yk for all x, y 2 Z
L
�0

, then the norm of the finite gradient with
respective to x is bounded, i.e., k�f (x)k1  �.
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bound the changing rate of the function

bound the changing rate of the gradient



Properties for Strongly Convex, Smooth Function in 
Discrete Domain 

Definition (sub-level set)

The level set of f at point x 2 Z
L
�0

is Lx(f ) =
�
y 2 Z

L
�0

: f (y) = f (x)
 
. The sub-level set of

f at point x 2 Z
L
�0

is L#
x(f ) =

�
y 2 Z

L
�0

: f (y)  f (x)
 
.

Lemma (the sub-level cube)

Assume that f : ZL
�0

! R is ↵-strongly convex, (�1,�2)-smooth, and its minimum, denoted

f (x⇤), satisfies k�2

2
1��f (x⇤)k  � where � is a constant and 0  � < ↵. Then, for all

x 2 Z
L
�0

, there is a L-dimensional cube, which is of the edge length 2(↵��)

�2

p
L
kx� x⇤k, tangent

at x, and inside the sub-level set L#
x(f ).
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Lemma (convex combination in the discrete domain)

Suppose q = ✓x+ (1� ✓)y, 8✓ 2 [0, 1], and there is q̂ 2 Z
L
�0

where ⇤ = q� q̂. If f is
↵-strongly convex, then

✓f (x) + (1� ✓)f (y) � f (q̂) +
D
�f (q̂)�

↵

2
1,⇤

E
+

↵

2
k⇤k2. (3)

Assumption

Assume that f : ZL
�0

! R+ of is ↵-strongly convex, (�1,�2)-smooth, and its minimum,

denoted (p⇤, x⇤) = argminp,x f � p(x), satisfies k�fp⇤(x⇤)�
�2

2
1k  � where

0  � < ↵  �1  �2  1.

20 / 35



Smoothness

Strong convexity

Intuition in One-Dimensional Case

TnALE: Solving Tensor Network Structure Search with Fewer Evaluations

B. Theoretical analysis with proofs
In this section, we first give a rigorous convergence analysis for the algorithms using the local-sampling scheme. After that,
we compare the evaluation efficiency for TNLS (Li et al., 2022) and the new algorithm TnALE.

B.1. A quick review of tensor network (TN) structure search

Suppose we have the dataset D and a task-specific loss function ⇡D : RI1⇥I2⇥···⇥IN ! R+ associated to D. The tensor
network structure search (TN-SS) problem is to solve the following bi-level optimization problem (Li et al., 2022)

min
(G,r)2G⇥FG

✓
�(G, r) + � · min

Z2TNS(G,r)
⇡D(Z)

◆
, (8)

where G 2 G is a graph, which owns N vertices and K edges and corresponds to the TN-topology, r 2 FN ✓ ZK
+ is a

positive integer vector of K dimension corresponding to the TN-ranks, � : G⇥ZK
+ ! R+ represents the function measuring

the model complexity of a TN whose structure is modeled by (G, r), and � > 0 is a tuning parameter. As expected for
TN-SS, solving the problem (8) is intuitively to search for a TN structure modeled by (G, r), by which we can give the
optimal balance between the complexity and the expressibility of a TN in the task.

We remark that TN-SS can be specified as three sub-problems: permutation selection (TN-PS, Li et al. (2022)), rank selection
(TN-RS) and topology selection (TN-TS, Li & Sun (2020)), by specifying the feasible set G⇥ FG of (8) into different forms.
Specifically, in TN-PS, we set FG = ZK

+ and G is defined as the isomorphic graphs to a “template” G0, so that only the
ranks and vertex permutations are searched while the TN-topology is preserved. In TN-RS, however, we typically restrict
the graph G in (8), i.e., G = {G0} but consider searching for all possible ranks i.e., FG = ZK

+ . In TN-TS, we relax G to be
a set containing all possible simple graphs of order N and the set FN can be fixed (Li & Sun, 2020) or not (Hashemizadeh
et al., 2020). It is known from (Ye & Lim, 2019; Hashemizadeh et al., 2020) that the TN-PS problem with the rank searching
can be simplified as a TN-RS problem associated to a “fully-connected” TN (Zheng et al., 2021).

B.2. Analysis of descent steps

We start the analysis by rewriting (8) into a more general form:

min
x2ZK

+ ,p2P
fp(x) := f � p(x), (9)

where � denotes the function composition, f : ZL
�0 ! R+ is a generalization of the objective function of (8), x 2 ZK

+

corresponds to the rank-related variable r of (8), and the operator p : ZK
+ ! ZL

�0 and its feasible set P correspond to the
topology-related variable G and the set G of (8), respectively.

The relationship between p 2 P of (9) and G 2 G of (8) is demonstrated as follows. Since in (8) the entries of r can be
regarded as labels on the edges of G, the pair (G, r) can be described as a weighted adjacency matrix of N ⇥ N . For
example, a 4-th order tensor ring (TR, Zhao et al., 2016) of the ranks-{2, 3, 4, 5} can be described as
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Here G1 and G2 correspond to the TR topology with different permutations of vertices. In the settings of TN-PS (Li et al.,
2022), we can prove that such the relationship is bijective. The operator p is thus to map the TN-ranks, denoted x 2 ZK

+

in (9), onto the vectorization of entries in the upper triangle part (except for the diagonal) of the adjacency matrix. For
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Convergence for Strongly Convex, Smooth Function 
in Discrete Domain 

Lemma (convex combination in the discrete domain)

Suppose q = ✓x+ (1� ✓)y, 8✓ 2 [0, 1], and there is q̂ 2 Z
L
�0

where ⇤ = q� q̂. If f is
↵-strongly convex, then

✓f (x) + (1� ✓)f (y) � f (q̂) +
D
�f (q̂)�

↵

2
1,⇤

E
+

↵

2
k⇤k2. (3)

Assumption

Assume that f : ZL
�0

! R+ of is ↵-strongly convex, (�1,�2)-smooth, and its minimum,

denoted (p⇤, x⇤) = argminp,x f � p(x), satisfies k�fp⇤(x⇤)�
�2

2
1k  � where

0  � < ↵  �1  �2  1.
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Theorem (convergence rate)

Suppose the Assumption above is satisfied, the operator p in (??) is fixed to be p⇤, and
0  ✓  1. Then, for any x with kx� x⇤k1  c , we can find a neighborhood B1(x, rx) where
rx � ✓c + 1

2
, such that there exist a element y 2 B1(x, rx) satisfying

fp⇤(y)� fp⇤(x
⇤)  (1� ✓)(fp⇤(x)� fp⇤(x

⇤)) +
7

8
K . (4)

Corollary (convergence guarantee)

Suppose p⇤ is known and a series {xn}
1
n=0

, where x0 is randomly chosen in Z
K
+, and for each

n > 0, xn is equal to the y in Theorem 10. Then we can achieve the following limit when
⌦(1/K )  ✓  1,

lim
n!1

(fp⇤(xn)� fp⇤(x
⇤)) = O(1) (5)
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Curse of Dimensionality in TNLS
One-dimensional case:

Strong convexity

Smoothness

TnALE: Solving Tensor Network Structure Search with Fewer Evaluations

B. Theoretical analysis with proofs
In this section, we first give a rigorous convergence analysis for the algorithms using the local-sampling scheme. After that,
we compare the evaluation efficiency for TNLS (Li et al., 2022) and the new algorithm TnALE.

B.1. A quick review of tensor network (TN) structure search

Suppose we have the dataset D and a task-specific loss function ⇡D : RI1⇥I2⇥···⇥IN ! R+ associated to D. The tensor
network structure search (TN-SS) problem is to solve the following bi-level optimization problem (Li et al., 2022)
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where G 2 G is a graph, which owns N vertices and K edges and corresponds to the TN-topology, r 2 FN ✓ ZK
+ is a

positive integer vector of K dimension corresponding to the TN-ranks, � : G⇥ZK
+ ! R+ represents the function measuring

the model complexity of a TN whose structure is modeled by (G, r), and � > 0 is a tuning parameter. As expected for
TN-SS, solving the problem (8) is intuitively to search for a TN structure modeled by (G, r), by which we can give the
optimal balance between the complexity and the expressibility of a TN in the task.

We remark that TN-SS can be specified as three sub-problems: permutation selection (TN-PS, Li et al. (2022)), rank selection
(TN-RS) and topology selection (TN-TS, Li & Sun (2020)), by specifying the feasible set G⇥ FG of (8) into different forms.
Specifically, in TN-PS, we set FG = ZK

+ and G is defined as the isomorphic graphs to a “template” G0, so that only the
ranks and vertex permutations are searched while the TN-topology is preserved. In TN-RS, however, we typically restrict
the graph G in (8), i.e., G = {G0} but consider searching for all possible ranks i.e., FG = ZK

+ . In TN-TS, we relax G to be
a set containing all possible simple graphs of order N and the set FN can be fixed (Li & Sun, 2020) or not (Hashemizadeh
et al., 2020). It is known from (Ye & Lim, 2019; Hashemizadeh et al., 2020) that the TN-PS problem with the rank searching
can be simplified as a TN-RS problem associated to a “fully-connected” TN (Zheng et al., 2021).

B.2. Analysis of descent steps

We start the analysis by rewriting (8) into a more general form:

min
x2ZK

+ ,p2P
fp(x) := f � p(x), (9)

where � denotes the function composition, f : ZL
�0 ! R+ is a generalization of the objective function of (8), x 2 ZK

+

corresponds to the rank-related variable r of (8), and the operator p : ZK
+ ! ZL

�0 and its feasible set P correspond to the
topology-related variable G and the set G of (8), respectively.

The relationship between p 2 P of (9) and G 2 G of (8) is demonstrated as follows. Since in (8) the entries of r can be
regarded as labels on the edges of G, the pair (G, r) can be described as a weighted adjacency matrix of N ⇥ N . For
example, a 4-th order tensor ring (TR, Zhao et al., 2016) of the ranks-{2, 3, 4, 5} can be described as
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Here G1 and G2 correspond to the TR topology with different permutations of vertices. In the settings of TN-PS (Li et al.,
2022), we can prove that such the relationship is bijective. The operator p is thus to map the TN-ranks, denoted x 2 ZK

+

in (9), onto the vectorization of entries in the upper triangle part (except for the diagonal) of the adjacency matrix. For

14
Proposition (curse of dimensionality for TNLS)

Let the assumptions in the Theorem be satisfied. Furthermore, assume that x⇤ is su�ciently
smaller (or larger) than x entry-wisely except for a constant number of entries. Then the
probability of achieving a suitable y as mentioned in Theorem 10 by uniformly randomly
sampling in B1(x, rx) with rx � ✓c + 1

2
equals O(2�K ).
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The ratio of the overlapped area gets 
smaller exponentially with increasing 
the dimension.

1/2
Higher dimension:

1/4

1/8



Conclusion
‣ TN-SS can boost the performance of tensor learning.

‣ TN-SS can be solved by genetic algorithm, stochastic search, 
and alternating enumeration. 

‣ TN-SS algorithms can explore unknown and more efficient 
tensor networks than the ones proposed in the literature.
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