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Tensor Network (TN)

TN is an efficient framework for modeling complex systems by decomposing
it into simpler, interconnected parts.
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Representation for complex quantum systems
(Orus, Nature Phys.’19)

Discovering faster matrix multiplication
o (AlphaTensor, Fawzi et al., Nature’22)



Vision: Diversity of Tensor Networks

oYetelelete

matrix product state /

tensor train
PEPS network

Modelmg entanglement
é § é § between A and B

tree tensor network / MERA network
hierarchical Tucker

R. Orus, Ann. of Phys. 349, 117-158 (2014)

What is the most suitable TN model for our task?

How can we efficiently select the structure-related parameters?



Steps to Attain the Goal

> Formulating TN-SS as discrete optimization

> Solving TN-SS with less computational cost
» TNGA: Genetic Algorithm (Li and Sun, ICML’20)
» TNLS: Stochastic Search (Li et al., ICML22)
» TnALE: Alternating Enumeration (Li et al., ICML’23)

> Theoretical Analysis

» Symmetry of TN structures
» Search Dynamic in TNLS/TnALE

» Future works



What is TN-SS?



Tensor and TN’s Graphical Representation

Tensor is the foundational building block of TNs.

TENSOR is a multi-way number array. = CONTRACTION: “tensor-tensor” multiplication.
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A TE£OR$:‘TWORK (TN) is modeled as an edge-labeled graph depicting a
sequence of contractions among many tensors.
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The TN structures include TN-ranks, vertex-permutation, and TN-
topology.

*The dangling edges are ignored.
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TN-SS refers to a process of exploring and identifying the optimal combination
of those structures to represent the complex system using a tensor network.

Tensor Network Structure Search (TN-SS)

Rank Selection Topology Search
(TN-RS) (TN-TS)

The goal is to reduce the computational cost in the search process.




Solving TN-SS is challenging!

* “Most tensor problems are NP-hard.” (CJ Hillar and LH Lim, JACM’13)

* TN-SS suffers from the combinatorial explosion issue.
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Max Noether: Tensors

Matrices were created by God. Tensors were created by the Deuvil.
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Solving TN-SS via Discrete Optimization

Mathematically, TN-SS is to solve the following optimization problem:

( )

min o(G,r) +A-  min  7wx(2) |,
(G,r)EGXFG H/—/ ZETNS(G,I’)
model complexity h ~—
\ model expressivity

® (G — graphs associated to TN topology and permutation;
® [ — positive-integer vectors associated to the TN-rank;
® TN-RS/TS/PS tasks correspond to setting different G and F¢ in the formula.
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TN ranks and topology: adjacency matrix
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How to solve TN-SS?
with discrete optimization
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Big Picture

search space A bunch of TN structures
A collection of TN structures
( ) {G ’ T}t

(QLFP)
\/

Fithess scores (loss values)

{G,r, L},

The sampling distribution is “Markov”: [ ({G y T }t ‘ {G7 T, L}t—l)

> TNGA: Genetic Algorithm (Li and Sun, ICML’20)
> TNLS: Stochastic Search (Li et al., ICML22)
> ThALE: Alternating Enumeration (Li et al., ICML’23)



Solution 1: Genetic Algorithm

(Li and Sun, ICML’20)

TNGA: Encoding the TN structures into fixed-length strings.

Permutation matrix: vertex permutation
A =PAP'

Adjacency Matrix
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Random key trick
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1. Parent selection

0.3

Fixed Point

spin the
roulette
wheel
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3. Mutation

Parents{ L

[ETi[oTofo]1] "> MITIolo T

Pros:
» Global convergence

> Multiobjective friendly

» Parallel computation

2. Crossover

" Recombination Children
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4. Elimination

high Cl
2
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cons:

> Low sample efficiency
> No theoretical guarantee

» Too many tuning parameters.
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Solution 2: Local Stochastic Search

(Li et al., ICML’22)

* TNLS:“steepest searching direction” by random
sampling.

g

* No free lunch: the optimization landscape should
be smooth. §

1. Constructing a neighborhood

N

2. Random sampling

3. Find the optimal sample

4. Updating the neighborhood




Theoretical Results

Let Go be a simple graph and Gg be the search space. The function dg, : Go X Gg — R is a
predefined semi-metric on Gg. Furthermore, let I, (G) be a set constructed as follows:

d
Iy (G) = {G/ c G0|G/ = qH ti- Go,qg € g- Aut(Go), tie Ty, I € [d]} (10)
=1

Then Np (G) = Uc[l):O [4(G) is the neighborhood of G = g - Gy € Gy induced by the word
metric, with the radius D € Z* U {0}.

Theorem (convergence rate when p* is known)

Suppose several assumptions are satisfied, the operator p of (3) is fixed to be p*, and
0 <6 < 1. Then, for any x with ||x — x*||oc < ¢, we can find a neighborhood B.(x, ry) where
rk > 60c + % such that there exists an element'y € B, (x, ry) satisfying

for (¥) = Foe (") < (1= 0)(Fr (%) — fpr (")) £ K

.

(5)

7
8

n
0
-1
|

Curse of dimensionality for TNLS (informally)

¢ 1
Theoretically, O(2K /€) samples are required for achieving the probability Pr > € for decreasing
the loss functior in ore’ iteration.
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Solution 3: Alternating Local Enumeration

(Li et al., ICML’23)

In the new algorithm, called ThALE, we follow the fundamental
scheme of TNLS, but the random sampling is replaced by
alternating enumeration.

Random sampling

| 2. Opt. in neighborhood

~
~
~
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Alternating enumeration

+-

| 3.0pt.in TN decomp.
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A &
In each neighborhood, the alternating
. % enumeration strongly relates to TT-OPT/cross
W | (Sozykin et al., Neurips’22, Oseledets, 2010)
1

Theorem (A suitable y can be estimated by TT-cross with O(KIr) samples)

Let B € R!*!>xI pe 3 tensor of order-K constructed using Buo(x, ) as above. Then there
exists its T T-cross approximation of rank-r as in (Oseledets, 2010), denoted BB, such that
f (X +imax — (] +1)) = minyecp(x.r) (V) for imax = argmax; B(i), provided that

4.r)|_|0g2 K—| _
4r — 1

f(y") < f(z)/ (1 + 2( 1(r—I— 1)251‘(2)) ,Vz € Boo(x,1x), Zz £ Y7, (7)

where y* = argmin,cp_(xr) f(y), and § denotes the error between B and its best
approximation of TT-rank r in terms of || - ||. Note that the inequality (7) holds trivially if
B is exactly of the.T.J format of rank-r, and (Oseledets, 2010) shows that the f(y*) can be

recovered fronlt O(KIr) fentries from B.
i i

No free lunch: the landscape should be low-rank.
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Low-Rank Nature in Landscape

(Li et al., ICML’23)

Data: Synthetic tensors in tensor-ring (TR) format.
Setting: order 4~8; mode dimension 3; unknown ranks (in random);

1

Loss: F(G,r) = A ' x—Z|?/x|?
(G,r) (G A | 1=/ 110",
. vV . ~ WV -

compression ratio (CR) relative square error (RSE)
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Averaged singular values Landscape visualization
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Cont’d: Rank Identification

. 7 ., C ’
Conditions: order 8; lower-ranks 1~4; higher-ranks 5~8 (Hretal, ICME2S)

The ranks are identified if Eff.>=1.
[#Eva.] = Number of evaluations (samples)

200

EETNGA
TITNLS
TITnALE.

—h
&)
o

Tensor of order 8

Running time (x100s)
S
o

Methods lower-ranks higher-ranks 50
EffT Eff1
TR-SVD 0.6540.46 0.1340.20 0 N |
TR-BALS 1.1540.14 0.1940.22 Lower ranks  Higher ranks
TR-LM 1.15+0.14 0.15+0.02 Running time
TRAR 0.55+0.10 0.6340.06 S Higher ranks
-1 — C —

Efft [#Eva.l]  Efft [#Eva.l] 2 otme SToALe
TNGA 1.08+0.06 [552] ~ 1.004:0.00 [900] 24 £
TNLS 1.0840.06 [492]  1.00£0.00 [588]  S. £
TTOpt (R =1) 1.0840.06 [104] 1.00+£0.00 [178] g+ E
TTOpt (R =2) 1.02:40.02.[314]....1.0020.00.[752] 5 * ~
Ours 1.08£0.06 [80]  1.00+0.00 [119] Yo a0 400 600 0 200 400 600 800

Evaluations Evaluations

Random sampling vs. ALE
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Permutation Search for Various TNs

Goal: How many samples are evaluated to identify the permutations?
Data: Synthetic tensors of order four in various topologies.

N\
,
Topology Methods Data - #Eva. | /o\/ \/o\
A B C D IR
TTree
TNGA 2850 2250 3900 1950
TR TNLS 1020....960....1320....780 & 5500 -
Ours 231 308 308 231 9
(qv)
TNGA+ 1560 - 840 1080 = 5000
PEPS TNLS 781....781....421.....661 ©
Ours 407 465 233 175 ...q_)
TNGA 960 1320 840 1080 © 1500
HT TNLS 841....841.....781.....721 Q
Ours 211 281 211 211 g 1000 |
TNGA _ 960 2800 3240 <
MERA  TNLS 1561.....841....1441....721 B 500
Ours 1450 484 323 323 g \ O O
TNGA 1920 1440 600 720 o x x x J
TW TNLS 661....601.....601.....481 < 4 5 6 7 8
Ours 285 143 285 214 TR Order
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Real-World Data: Topology Search

Goal: Search for better TN topologies for natural images using TNGA
Data: 10 images random selected from BSD500 (Sheikh et al., 2006)

(Oseledets, 2011)

matrix product state /
tensor train

(Zhao et al, 2016) (Tucker, 1966)

What is the most suitable TN model for our task?




Summary of the Three Algorithms

1. Trade-off between exploration and exploitation

Global Local
(e.g., TNGA) (e.g., TNLS, TnALE)
global but slow local but fast
convergence convergence

2. The search acceleration requires additional structural
prior to the optimization landscape.




Prior Arts

. [Razin et al., 2021, 2022]

Time line in TN-SS Time

evolving

Fixed structures [Zheng et al., 2023

. [Li et al., 2021]

, [Hawkins & Zhang, 2021] [Li et al., 2023]

PR

. [Nie et al., 2021]

Rank selection , [Cai &Li, 2021]

* . [Cheng et al., 2020]

.[Mickelin & Karaman, 2016 . [Kodryan et al., 2020}

Topology search (2019) Zhao et al., 2016]

TN-RS
Learnable

, [Hashemizadeh et al., 2020]
, [Yokota et al., 2013]

Rank+Topology (2020) ,[Zhao et al., 2015]

[Hayashi et al., 2019]

PR

Permutation search (2022)

Lots of works here! . [Li & Sun, 2020]

Fixed

fime

TN-5S evoling
Fixed Learnable
TN-TS
TN-PS
. [Li et al., 2022] . [Li et al., 2023]
[Chen et al., 2022]
Time *

evoling ,[Acharya et al., 2022]



Techniques in TN-SS

2° Spectrum methods: SVD on unfoldings
dotving 7L}V_Sgaigk search: (Oseledets, 2011, Zhao et al., 2016, Yin et al., AAAI'22);
continuoud doapelogy search’: (Nie et al., BMVC'21)

: 3. permutation search: (Chen et al., arXiv'22)

® Regularization-based methods: sparsity/Implicit regularization
1. rank search: (Razin et al., ICML'21,22)

2. topology search: (Kodryan et al., AISTATS'23, Zheng et al., arXiv'23)
3. permutation search: N/A

®* Bayesian methods: ARD/MGP priors
1. rank search: (Tao and Zhao, IJCAI W20, Long et al., 2021)
2. topology search: (Zeng et al., ongoing)
3. permutation search: N/A
® Discrete optimization: deterministic, stochastic or RL
1. rank search: (Li et al., 2021, Hashemizadel et al., arXiv'20)
2. topology search: (Hayashi et al., Neurips'19, Li and Sun, ICML’20)

3. permutation search (Li et al., ICML'22, 23)
*Most of TN-TS algorithms can solve TN-RS as well.




Comparison within different techniques

Efficiency Precision Flexibility Scalability Guarantees

Spectrum good bad bad good good

Regularization good bad good bad good
Bayesian bad good medium medium medium

Discrete opt. bad good good good bad

2 “Flexibility” evaluates if the methods adopt different TNs, tasks, loss, etc..

> “Scalability” evaluates if the methods can be deployed for higher-order tensors.
* “Guarantees” evaluates if there exist theory on error bounds or convergence, etc..

Long-term goal (contributions)

Our works improve the efficiency (bad—(medium)—good) and theoretical understanding
(bad—(medium)—good) for the discrete optimization methods in TN-SS.




Theoretical analysis

» Symmetry in TN-SS
» Convergence analysis in TN-SS
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Symmetry in Permutation Search (TN-PS)

the same TN model

X -” ~ :
e 3 min _ : ¢(pGy, ),
Switch X->Z->T->Y->X (p;r) €SN XFay
! Z mmmmmmmepd . s.t. X e TNS(pGo,r)
01 0 0
T b |00 1o ‘
(1)88(1) = dp #e, s.t.pGo = Gy

We can construct a smaller search space (neighborhood) than Sy

We require a quantitative analysis tool for this property.

The metric between permutations required to be re-defined.
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A Group-Theoretic Framework

Construct the isomorphism graph set:
GOZ{GEGN’GgGO}, (2)
The TN-PS problem can be thus formulated as follows:

| t.X €TN |
(G,r)glé?xlﬁ‘go¢(G’T)’ st.X € TNS(G,r).  (3)

According to the Lagrange’s theorem (in group theory),

Sn| = [Gol - |Aut(Go)|. (4)
TNs TT T-Tree TR PEPS CTN
Graphs Go  Path Py Tree Ty Cycle Cn Lattice L, n Complete K
V| N N N mn N
| Eo| N -1 N -1 N (m—1)(n—-1) N(N-1)/2 _ _
Ao 9 2, N — 1] 9 2,3, 4 N —1 What if arbltrary TN-tOpology?

do 1 1 2 2 N1
< mn N

2 2, (N — 1)!] 2N
Examples ‘ ‘ ‘ : I:I I:I:L E




Lemma. Upper bound of |Aut(Gy)| for any graph.

Let Gy be a simple graph of N vertices, and Aut(Gp) be the set containing automorphisms of
Go. Assume that Gy is connected and its maximum degree A satisfies N/A = d > 1, then the
following inequality holds:

|Aut(Gg)| < N! - e~ /(d):N+3 log d-+1/24-

where v(d) = logd + & — 1 is a positive and monotonically increasing function for d > 1.
v d

Theorem. Bounding # T N-structures

Assume Gy to be a simple and connected graph of N vertices, and Gg is constructed as (2).
Let 6 = N/d; and A = N/d, di > d» > 1, be the minimum and maximum degree of G,
respectively. The size of the search space of (3), written L, gr := Go X Fg, r, is bounded as
follows:

J o 1
R - NI > g, p| > R¥ - ()N~} logch1/24,

where v(d) = logd + & — 1 is defined as the lemma above.
d




Distance of Vertex Permutation

Suppose Gi=giGo for i=1,2, We construct the following function:

da. (G1,Go) = d 7
GO( 1 2) piégi-A’{LYt](lgo),izl,Z TN(p17p2)7 ()

Lemma. Metric and neighborhood

Let Go be a simple graph and Gg be the set defined as (2). The function dg, : Go x Gog — R
defined by (7) is a semi-metric on Gg. Furthermore, let 5 (G) be a set constructed as follows:

d
I4(G) ={G €GylG'=q]]ti G,
=1
qg e g-Aut(Gy), ti € Ty, i € [d]}

Then Np (G) = 5:0 [4(G) is the neighborhood of G = g - Gy € Gg induced by (7), with the
radius D € Z* U {0}.

o

Sampling all possible g is computationally hard (NP-intermediate).

g is omitted in our algorithm, since “most graphs are not symmetric”.



Searching Dynamic for Local sampling

Local sampling is deployed in both TNLS and TnALE.

[ ) ( ]
.‘.2*. .
r ( ]
L
*o BN
o.z‘v.‘
.?.

The convergence is unknown due to
the discrete nature of the problem.

1 How do sampling strategies affect the
1 search efficiency?

Convex analysis in discrete domain



Problem Reformulation

We consider a general form for optimization in TN-SS:

f:ZéO%R—l—

min Ffu(x) ;= f ¢ pix)
XEZf,pEIP’:f??'g ) f p\ /Y

XEfo

p:Zf%Zéo

Any TN-structures (edge-labelled graph) can be represented by p(x) .
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Gradient in Discrete Domain

Definition (finite gradient)

For any function f : Zéo — R, its finite gradient Af : Zéo — R’ at the point x is defined as
the vector

Af(x) = [f(x +e1) — F(x),.... Fix+e) — FX)]T . (2)

where e;Vi € [L] denote the unit vectors with the i-th entry being one and other entries being
Zeros.
v

Finite gradient

p 2 N
P “~~
’ N

K' ~~‘
Strong convexity Smoothness



Convexity in Discrete Domain

Definition (a-strong convexity with finite gradient)

We say f is a-strongly convex for az > 0 if f(y) > f(x) + (Af(x) — $1,y — x) + $[ly — x||
for all x,y € Zéo' where 1 € RE denotes the vector with all entries being one. We simply say

f is convex if it is a-strongly convex and o = 0.
4

If f is a-strongly convex in Zéo, then the following inequalities are held:

1. g(x) = f(x) — Z||x||? is convex in the discrete scenario for all x € Zéo, and vice versa;
2. (Af(x) — Af(x),x —y) > a|x —y||* for any x,y € Zéof
3. ||Af(x) — Af(y)|| > a||x —y|| for any x,y € Zéof

Here || - || denotes the I, norm for vectors.
y




Smoothness in Discrete Domain

Definition ((51, 82)-smoothness with finite gradient)

We say f is (81, B2)-smooth for 51, 5> > 0 if

1. \f(x) — f(y)‘ < ﬁle — y|| for all X,y € Zéo; bound the changing rate of the function

2. The function /(X) L= %HXH2 — f(x) IS convex. bound the changing rate of the gradient
y

If |f(x) — f(y)| < B||lx—y]| forall x,y € Zéo, then the norm of the finite gradient with
respective to x is bounded, i.e., ||Af(Xx)|c < B.

Lemma

If I(x) = §Hx||2 — f(x) is convex, then for all x,y € Zéo
1. f(y) < f(x) 4+ ( Af(x) — gl,y — X> + gHy — x||? and vise versa;
2. (Af(x) — Af(y),x —y) < Bllx — y||*.

\




Properties for Strongly Convex, Smooth Function in
Discrete Domain

Lemma (convex combination in the discrete domain)

Suppose'q = 0x + (1 — 0)y, V0 € [0, 1], and there is § € Z& So where A =q—q. Iff is
a-strongly convex, then

0 (x) + (1= 0)F(y) = £(8) + (AF(@) = S1.A) + SN2 3)

A

Definition (sub-level set)

The level set of f at point x € Zéo is Ly(f) = {y € Z%, : f(y) = f(x)}. The sub-level set of
f at point x € ZL is Lx(f) = {y € Z4, : f(y) < f(x )}.

A\

Lemma (the sub-level cube)

Assume that f : Zéo — R is a-strongly convex, (B1, B2)-smooth, and its minimum, denoted
f(x*), satisfies H%l — Af(x*)|| < v where v is a constant and 0 <~ < «. Then, for all

x € 7%, there is a L-dimensional cube, which is of the edge length %Hx — x*||, tangent
— 2

at x, and inside the sub-level set L% (f).




Intuition in One-Dimensional Case




Convergence for Strongly Convex, Smooth Function
In Discrete Domain

Assume that f : Z5, — R, of is a-strongly convex, (31, 32)-smooth, and its minimum,

denoted (p*,x*) = arg min, x f o p(x), satisfies ||Afp(x*) — %IH < ~ where
0<yv<a<pi<p <1

A\

Theorem (convergence rate)

Suppose the Assumption above is satisfied, the operator p is fixed to be p*, and
0 <6 < 1. Then, for any x with ||x — x*||cc < ¢, we can find a neighborhood B..(x, rx) where
re > 0c + % such that there exist a element 'y € By (X, rx) satisfying

o () — For () < (1= 0)(Fpe(x) — o (")) + LK @

y

Corollary (convergence guarantee)

Suppose p* is known and a series {xp} -5, where xg is randomly chosen in 7X . and for each

n> 0, x, is equal to they in Theorem 10. Then we can achieve the following limit when
Q(1/K)<60<1,

lim_(fp+(xn) — fpx(x7)) = O(1) (5)




Curse of Dimensionality in TNLS

One-dimensional case:

Smoothness [ : Zéo — Ry

Strong convexity

{igher dimension:  ——————t—mbmlmele plet——————

1/4

1/8

1/2
The ratio of the overlapped area gets
smaller exponentially with increasing
the dimension.

Proposition (curse of dimensionality for TNLS)

Let the assumptions in the Theorem be satisfied. Furthermore, assume that x* is sufficiently
smaller (or larger) than x entry-wisely except for a constant number of entries. Then the
probability of achieving a suitable y as mentioned in Theorem 10 by uniformly randomly
sampling in Boo(x, rx) with re > fc + 5 equals O(27K).




Conclusion

> TN-SS can boost the performance of tensor learning.

chao.li@riken.jp

> TN-SS can be solved by genetic algorithm, stochastic search,
and alternating enumeration.

> TN-SS algorithms can explore unknown and more efficient
tensor networks than the ones proposed in the literature.
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