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2.3 TensorFaces

The multilinear analysis of facial image ensembles leads to
the TensorFaces representation. We illustrate the technique
using a portion of the Weizmann face image database: 28
male subjects photographed in 5 viewpoints, 4 illumina-
tions, and 3 expressions. Using a global rigid optical flow
algorithm, we aligned the original 512 × 352 pixel images
relative to one reference image. The images were then dec-
imated by a factor of 3 and cropped as shown in Fig. 2,
yielding a total of 7943 pixels per image within the ellipti-
cal cropping window.

Our facial image data tensor D is a 28×5×4×3×7943
tensor (Fig. 2(c)). Applying multilinear analysis to D, using
our N -mode SVD algorithm with N = 5, we obtain

D = Z×1 Upeople ×2 Uviews ×3 Uillums ×4 Uexpres ×5 Upixels, (4)

where the 28× 5× 3× 3× 7943 core tensor Z governs the
interaction between the factors represented in the 5 mode
matrices: The 28 × 28 mode matrix Upeople spans the space
of people parameters, the 5×5 mode matrix Uviews spans the
space of viewpoint parameters, the 4×4 mode matrix Uillums

spans the space of illumination parameters and the 3 × 3
mode matrix Uexpres spans the space of expression parame-
ters. The 7943 × 1680 mode matrix Upixels orthonormally
spans the space of images. Reference [13] discusses the at-
tractive properties of this analysis, some of which we now
summarize.

Multilinear analysis subsumes linear, PCA analysis. As
shown in Fig. 3, each column of Upixels is an “eigenimage”.
Since they were computed by performing an SVD of the
matrix D(pixels) obtained as the mode-5 flattened data ten-
sor D, these eigenimages are identical to the conventional
eigenfaces [6, 10]. Eigenimages represent only the principal
axes of variation over all the images. The big advantage of
multilinear analysis beyond linear PCA is that TensorFaces
explicitly represent how the various factors interact to pro-
duce facial images. Tensorfaces are obtained by forming
the product Z ×5 Upixels (Fig. 4(a)).

The facial image database comprises 60 images per per-
son that vary with viewpoint, illumination, and expression.
PCA represents each person as a set of 60 vector-valued co-
efficients, one from each image in which the person appears.
The length of each PCA coefficient vector is 28×5×4×3 =
1680. By contrast, multilinear analysis enables us to repre-
sent each person, regardless of viewpoint, illumination, and
expression, with the same coefficient vector of dimension
28 relative to the bases comprising the 28×5×4×3×7943
tensor

B = Z ×2 Uviews ×3 Uillums ×4 Uexpres ×5 Upixels, (5)

some of which are shown in Fig. 4(b). This many-to-one
mapping is useful for face recognition. Each column in the
figure is a basis matrix that comprises 28 eigenvectors. In
any column, the first eigenvector depicts the average person
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Figure 2: The facial image database (28 subjects, 60 images per
subject). (a) The 28 subjects shown in expression 2 (smile), view-
point 3 (frontal), and illumination 2 (frontal). (b) Part of the image
set for subject 1. Left to right, the three panels show images cap-
tured in illuminations 1, 2, and 3. Within each panel, images of
expressions 1, 2, and 3 (neural, smile, yawn) are shown horizon-
tally while images from viewpoints 1, 2, 3, 4, and 5 are shown
vertically. The image of subject 1 in (a) is the image situated at
the center of (b). (c) The 5th-order data tensor D for the image
ensemble; only images in expression 1 (neutral) are shown.

. . .

Figure 3: Upixels contains the PCA eigenvectors (eigenfaces),
which are the principal axes of variation across all images.
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Multidimensional structured data

• Data ensemble affected by multiple factors

• Facial images (expression x people x 
illumination x views)

• Collaborative filtering (user x item x 
time)

• Multidimensional structured data, e.g., 

• EEG, ECoG (channel x time x 
frequency)

• fMRI (3D volume indexed by cartesian 
coordinate) 

• Video sequences (width x height x 
frame)
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Tensor Representation of EEG Signals
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  Matricization causes loss of useful multiway information.


  It is favorable to analyze multi-dimensional data in their own domain.
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Outline

• Tensor Regression and Classification

• TensorNets for Deep Neural Networks Compression

• (Multi-)Tensor Completion

• Tensor Denoising
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Machine Learning Tasks
• Supervised (and semi-supervised) learning predict a target y from an input x 

✓ classification target y represents a category or class 

✓ regression target y is real-value number

• Unsupervised learning no explicit prediction target y 

✓ density estimation model the probability distribution of input x

✓ clustering, dimensionality reduction discover underlying structure in input x
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Figure 2.1: Graphical illustration of three fundamental learning approaches: Su-
pervised, unsupervised and semi-supervised learning.

Such simple linear models can be applied not only for regression but
also for feature selection and classification. In all the cases, those models
approximate the target variable y by a weighted linear combination of
input variables, wTx b.

Tensor representations are often very useful in mitigating the small
sample size problem in discriminative subspace selection, because the
information about the structure of objects is inherent in tensors and
is a natural constraint which helps reduce the number of unknown
parameters in the description of a learning model. In other words, when
the number of training measurements is limited, tensor-based learning
machines are expected to perform better than the corresponding vector-
based learning machines, as vector representations are associated with
several problems, such as loss of information for structured data and
over-fitting for high-dimensional data.



Classical Regression Models
• Regression models

✓ predict one or more responses (dependent variables, outputs) from a set of 

predictors (independent variables, inputs)

✓ identify the key predictors (independent variables, inputs)
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• Linear and nonlinear regression models

✓ linear model: simple regression, multiple regression, multivariate regression, 

generalized linear model, partial least squares (PLS)

✓ nonlinear model: Gaussian process (GP), artificial neural networks (ANN), 

support vector regression (SVR)

image credit Leard statistics



Basic Linear Regression Model

• A basic linear regression model in vector form is defined as 
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✓             is the input vector of independent variables

✓             is the vector of regression coefficients 

✓    is the bias 

✓    is the regression output or dependent/target variable

2
Supervised Learning with Tensors

Learning a statistical model that formulates a hypothesis for the data
distribution merely from multiple input data samples, x, without know-
ing the corresponding values of the response variable, y, is refereed to as
unsupervised learning. In contrast, supervised learning methods, when
seen from a probabilistic perspective, model either the joint distribution
p x, y or the conditional distribution p y x , for given training data
pair x, y . Supervised learning can be categorized into regression, if y
is continuous, or classification, if y is categorical (see also Figure 2.1).

Regression models can be categorized into linear regression and non-
linear regression. In particular, multiple linear regression is associated
with multiple smaller-order predictors, while multivariate regression
corresponds to a single linear regression model but with multiple pre-
dictors and multiple responses. Normally, multivariate regression tasks
are encountered when the predictors are arranged as vectors, matrices
or tensors of variables. A basic linear regression model in the vector
form is defined as

y f x; w, b x, w b wTx b, (2.1)

where x RI is the input vector of independent variables, w RI

the vector of regression coe�cients or weights, b the bias, and y the
regression output or a dependent/target variable.
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Tensor Data in Real-world Applications

• Medical imaging data analysis

✓ MRI data x-coordinate     y-coordinate    z-coordinate 

✓ fMRI data time    x-coordinate    y-coordinate    z-coordinate

• Neural signal processing 

✓ EEG data time    frequency    channel  

• Computer vision

✓ video data frame    x-coordinate    y-coordinate  

✓ face image data pixel    illumination    expression    viewpoint    identity

• Climate data analysis

✓ climate forecast data month    location    variable 

• Chemistry  

✓ fluorescence excitation-emission data sample    excitation    emission 
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Real-world Regression Tasks with Tensors

• Goal is to find association between brain images and clinical outcomes
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✓  predictor 3rd-order tensor MRI images

✓  response scaler clinical diagnosis indicating one has some disease or not



Real-world Regression Tasks with Tensors Cont

• Goal is to estimate 3D human pose positions from video sequences 
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✓  predictor  4th-order tensor RGB video (or depth video) 

✓  response 3rd-order tensor human motion capture data 



Real-world Regression Tasks with Tensors Cont

• Goal is to reconstruct motion trajectories from brain signals
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✓  predictor 4th-order tensor ECoG signals of monkey

✓  response 3rd-order tensor limb movement trajectories 



Motivations from New Regression Challenges 

• Classical regression models transform tensors into vectors via vectorization 

operations, then feed them to two-way data analysis techniques for solutions

✓ vectorizing operations destroy underlying multiway structures 

  i.e. spatial and temporal correlations are ignored among pixels in a fMRI

✓  ultrahigh tensor dimensionality produces huge parameters

       i.e. a fMRI of size 100    256    256    256 yields 167 millions!

✓  difficulty of interpretation, sensitivity to noise, absence of uniqueness

�13

• Tensor-based regression models directly model tensors using multiway factor 

models and multiway analysis techniques

✓ naturally preserve multiway structural knowledge which is useful in mitigating 

small sample size problem

✓ compactly represent regression coefficients using only a few parameters

✓ ease of interpretation, robust to noise, uniqueness property

⇥ ⇥ ⇥



Basic Tensor Regression Model

• A basic linear tensor regression model can be formulated as 

�14

✓                    is the input tensor predictor or tensor regressor

✓                    is the regression coefficients tensor

✓    is the bias 

✓    is the regression output or dependent/target variable
✓                                     is the inner product of two tensors
✓ sparse regularization like lasso penalty on     further improves the performance
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2.1. Tensor Regression 483

2.1 Tensor Regression

Regression is at the very core of signal processing and machine learning,
whereby the output is typically estimated based on a linear combina-
tion of regression coe�cients and the input regressor, which can be a
vector, matrix, or tensor. In this way, regression analysis can be used
to predict dependent variables (responses, outputs, estimates), from a
set of independent variables (predictors, inputs, regressors), by explor-
ing the correlations among these variables as well as explaining the
inherent factors behind the observed patterns. It is also often conve-
nient, especially regarding ill-posed cases of matrix inversion, which is
inherent to regression to jointly perform regression and dimensionality
reduction through, e.g., principal component regression (PCR) (Jolli�e,
1982), whereby regression is performed on a well-posed low-dimensional
subspace defined through most significant principal components. With
tensors being a natural generalization of vectors and matrices, tensor
regression can be defined in an analogous way.

A well established and important supervised learning technique is
linear or nonlinear Support Vector Regression (SVR) (Smola and Vap-
nik, 1997), which allows for the modeling of streaming data and is quite
closely related to Support Vector Machines (SVM) (Cortes and Vap-
nik, 1995). The model produced by SVR only depends on a subset of
training data (support vectors), because the cost function for building
the model ignores any training data that is close (within a threshold
Á) to the model prediction.

Standard support vector regression techniques have been naturally
extended to Tensor Regression (TR) or Support Tensor Machine (STM)
methods (Tao et al., 2005). In the (raw) tensor format, the TR/STM
can be formulated as

y f X; W, b X, W b, (2.2)

where X RI1 I

N is the input tensor regressor, W RI1 I

N the
tensor of weights (also called regression tensor or model tensor), b the
bias, and y the regression output, X, W vec X T vec W is the
inner product of two tensors.
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• The learning of the tensor regression model is typically formulated as the 

minimization of following squared cost function 

484 Supervised Learning with Tensors

We shall denote input samples of multiple predictor variables (or
features) by X1, . . . , X

M

(tensors), and the actual continuous or cate-
gorical response variables by y1, y2, . . . , y

M

(usually scalars). The train-
ing process, that is the estimation of the weight tensor W and bias b, is
carried out based on the set of available training samples X

m

, y
m

for
m 1, . . . , M . Upon arrival of a new training sample, the TR model
is used to make predictions for that sample.

The problem is usually formulated as a minimization of the follow-
ing squared cost function, given by

J X, y W, b
M

m 1
y

m

W, X
m

b
2

(2.3)

or the logistic loss function (usually employed in classification prob-
lems), given by

J X, y W, b
M

m 1
log 1

1 e y

m

W,X

m

b

. (2.4)

In practice, for very large scale problems, tensors are expressed
approximately in tensor network formats, especially using Canonical
Polyadic (CP), Tucker or Tensor Train (TT)/Hierarchical Tucker (HT)
models (Oseledets, 2011a; Grasedyck, 2010). In this case, a suitable
representation of the weight tensor, W, plays a key role in the model
performance. For example, the CP representation of the weight tensor,
in the form

W
R

r 1
u 1

r

u 2
r

u N

r

I 1 U 1
2 U 2

N

U N , (2.5)

where “ ” denotes the outer product of vectors, leads to a generalized
linear model (GLM), called the CP tensor regression (Zhou et al., 2013).

Analogously, upon the application of Tucker multilinear rank tensor
representation

W G 1 U 1
2 U 2

N

U N , (2.6)

we obtain Tucker tensor regression (Ho�, 2015; Li et al., 2013; Yu et al.,
2016).

✓                                        are the M pairs of training samples
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where “ ” denotes the outer product of vectors, leads to a generalized
linear model (GLM), called the CP tensor regression (Zhou et al., 2013).
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CP Regression Model

• The linear CP tensor regression [Zhou et. al 2013] model given by
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✓ substantial reduction in dimensionality

2.1. Tensor Regression 483

2.1 Tensor Regression

Regression is at the very core of signal processing and machine learning,
whereby the output is typically estimated based on a linear combina-
tion of regression coe�cients and the input regressor, which can be a
vector, matrix, or tensor. In this way, regression analysis can be used
to predict dependent variables (responses, outputs, estimates), from a
set of independent variables (predictors, inputs, regressors), by explor-
ing the correlations among these variables as well as explaining the
inherent factors behind the observed patterns. It is also often conve-
nient, especially regarding ill-posed cases of matrix inversion, which is
inherent to regression to jointly perform regression and dimensionality
reduction through, e.g., principal component regression (PCR) (Jolli�e,
1982), whereby regression is performed on a well-posed low-dimensional
subspace defined through most significant principal components. With
tensors being a natural generalization of vectors and matrices, tensor
regression can be defined in an analogous way.

A well established and important supervised learning technique is
linear or nonlinear Support Vector Regression (SVR) (Smola and Vap-
nik, 1997), which allows for the modeling of streaming data and is quite
closely related to Support Vector Machines (SVM) (Cortes and Vap-
nik, 1995). The model produced by SVR only depends on a subset of
training data (support vectors), because the cost function for building
the model ignores any training data that is close (within a threshold
Á) to the model prediction.

Standard support vector regression techniques have been naturally
extended to Tensor Regression (TR) or Support Tensor Machine (STM)
methods (Tao et al., 2005). In the (raw) tensor format, the TR/STM
can be formulated as

y f X; W, b X, W b, (2.2)

where X RI1 I

N is the input tensor regressor, W RI1 I

N the
tensor of weights (also called regression tensor or model tensor), b the
bias, and y the regression output, X, W vec X T vec W is the
inner product of two tensors.
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• The advantages of CP regression 

⇥ ⇥

✓ low rank CP model could provide a sound recovery of many low rank signals

 i.e. a 128   128   128 MRI image, the parameters reduce from 2,097,157 to 1157                 

via rank-3 decomposition



Tucker Regression Model

• The linear Tucker tensor regression [Li et. al 2013] model given by

�16

✓ substantially reduce the dimensionality

✓ provide a sound low rank approximation to potentially high rank signal

2.1. Tensor Regression 483

2.1 Tensor Regression

Regression is at the very core of signal processing and machine learning,
whereby the output is typically estimated based on a linear combina-
tion of regression coe�cients and the input regressor, which can be a
vector, matrix, or tensor. In this way, regression analysis can be used
to predict dependent variables (responses, outputs, estimates), from a
set of independent variables (predictors, inputs, regressors), by explor-
ing the correlations among these variables as well as explaining the
inherent factors behind the observed patterns. It is also often conve-
nient, especially regarding ill-posed cases of matrix inversion, which is
inherent to regression to jointly perform regression and dimensionality
reduction through, e.g., principal component regression (PCR) (Jolli�e,
1982), whereby regression is performed on a well-posed low-dimensional
subspace defined through most significant principal components. With
tensors being a natural generalization of vectors and matrices, tensor
regression can be defined in an analogous way.

A well established and important supervised learning technique is
linear or nonlinear Support Vector Regression (SVR) (Smola and Vap-
nik, 1997), which allows for the modeling of streaming data and is quite
closely related to Support Vector Machines (SVM) (Cortes and Vap-
nik, 1995). The model produced by SVR only depends on a subset of
training data (support vectors), because the cost function for building
the model ignores any training data that is close (within a threshold
Á) to the model prediction.

Standard support vector regression techniques have been naturally
extended to Tensor Regression (TR) or Support Tensor Machine (STM)
methods (Tao et al., 2005). In the (raw) tensor format, the TR/STM
can be formulated as

y f X; W, b X, W b, (2.2)

where X RI1 I

N is the input tensor regressor, W RI1 I

N the
tensor of weights (also called regression tensor or model tensor), b the
bias, and y the regression output, X, W vec X T vec W is the
inner product of two tensors.

where the coefficient tensor       is assumed to follow a Tucker decomposition 

484 Supervised Learning with Tensors

We shall denote input samples of multiple predictor variables (or
features) by X1, . . . , X

M

(tensors), and the actual continuous or cate-
gorical response variables by y1, y2, . . . , y

M

(usually scalars). The train-
ing process, that is the estimation of the weight tensor W and bias b, is
carried out based on the set of available training samples X

m

, y
m

for
m 1, . . . , M . Upon arrival of a new training sample, the TR model
is used to make predictions for that sample.

The problem is usually formulated as a minimization of the follow-
ing squared cost function, given by

J X, y W, b
M

m 1
y

m

W, X
m

b
2

(2.3)

or the logistic loss function (usually employed in classification prob-
lems), given by

J X, y W, b
M

m 1
log 1

1 e y

m

W,X

m

b

. (2.4)

In practice, for very large scale problems, tensors are expressed
approximately in tensor network formats, especially using Canonical
Polyadic (CP), Tucker or Tensor Train (TT)/Hierarchical Tucker (HT)
models (Oseledets, 2011a; Grasedyck, 2010). In this case, a suitable
representation of the weight tensor, W, plays a key role in the model
performance. For example, the CP representation of the weight tensor,
in the form

W
R

r 1
u 1

r

u 2
r

u N

r

I 1 U 1
2 U 2

N

U N , (2.5)
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• The shared advantages of Tucker regression with CP regression
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• The advantages of Tucker regression over CP regression
✓ offer freedom in choice of different ranks when tensor data is skewed in 

dimensions

✓ explicitly model the interactions between factor matrices



General Linear Tensor Regression Model

• A general tensor regression model can be obtained when regression 

coefficient tensor      is high-order than the input tensors      , leading to
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✓                          is the Nth-order predictor tensor

✓                       is the Pth-order regression coefficient tensor with 

✓                          is the (P-N)th-order response tensor

✓               denotes a tensor contraction along the first N modes

• This model allows response to be a high-order tensor

• This model includes many linear tensor regression models as special cases 

i.e., CP regression, Tucker regression, etc 

2.1. Tensor Regression 485

An alternative form of the multilinear Tucker regression model,
proposed by Ho� (2015), assumes that the replicated observations
X

m

, Y
m

M

m 1 are stacked in concatenated tensors X RI1 I

N

M

and Y RJ1 J

N

M , which admit the following model

Y X 1 W1 2 W2
N

W
N N 1 D

M

E, (2.7)

where D
M

is an M M diagonal matrix, W
n

RJ

n

I

n are the weight
matrices within the Tucker model, and E is a zero-mean residual tensor
of the same order as Y. The unknown regression coe�cient matrices,
W

n

can be found using the procedure outlined in Algorithm 1.
It is important to highlight that the Tucker regression model o�ers

several benefits over the CP regression model, which include:

1. A more parsimonious modeling capability and a more compact
model, especially for a limited number of available samples;

2. Ability to fully exploit multi-linear ranks, through the freedom to
choose a di�erent rank for each mode, which is essentially useful
when data is skewed in dimensions (di�erent sizes in modes);

3. Tucker decomposition explicitly models the interaction between
factor matrices in di�erent modes, thus allowing for a finer grid
search over a larger modeling space.

Both the CP and Tucker tensor regression models can be solved
by alternating least squares (ALS) algorithms which sequentially esti-
mate one factor matrix at a time while keeping other factor matrices
fixed. To deal with the curse of dimensionality, various tensor network
decompositions can be applied, such as the TT/HT decomposition for
very high-order tensors (Oseledets, 2011a; Grasedyck, 2010). When the
weight tensor W in (2.2) is represented by a low-rank HT decomposi-
tion, this is referred to as the H-Tucker tensor regression (Hou, 2017).

Remark 1. In some applications, the weight tensor, W, is of a
higher-order than input tensors, X

m

, this yields a more general tensor
regression model

Y
m

X
m

W E
m

, m 1, . . . , M, (2.8)
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Algorithm 1: Multilinear Tucker Regression
Input: X RI1 I2 IN M and Y RJ1 I2 JN M .
Output: W

n

, n 1, . . . , N .
1: Initialize randomly W

n

for n 1, . . . , N .
2: while not converged or iteration limit is not reached do
3: for n 1 to N do
4: X n X 1 W1 n 1 W

n 1 n 1 W
n 1 N

W
N

5: Matricize tensors X n and Y into their respective unfolded
matrices X n

n

and Y
n

6: Compute W
n

Y
n

X n

n

T X n

n

X n

n

T
1

7: end for
8: end while

where X
m

W denotes a tensor contraction along the first N modes
of an Nth-order input (covariate) tensor, X

m

RI1 I

N , and a
P th-order weight tensor, W RI1 I

P , with P N , while E
RI

P 1 I

P is the residual tensor and Y RI

P 1 I

P the response
tensor.

Observe that the tensor inner product is equivalent to a contraction
of two tensors of the same order (which is a scalar) while a contraction
of two tensors of di�erent orders, X RI1 I

N and W RI1 I

P ,
with P N , is defined as a tensor Y RI

N 1 I

P of P N th-order
with entries

X W
i

N 1,...,i

P

I1

i1 1

I

N

i

N

1
x

i1,...,i

N

w
i1,...,i

N

,i

N 1,...,i

P

. (2.9)

Many regression problems are special cases of the general tensor
regression model in (2.8), including the multi-response regression,
vector autoregressive model and pair-wise interaction tensor model
(see (Raskutti and Yuan, 2015) and references therein).

In summary, the aim of tensor regression is to estimate the entries
of a weight tensor, W, based on available input-output observations
X

m

, Y
m

. In a more general scenario, support tensor regression (STR)
aims to identify a nonlinear function, f : RI1 I2 I

N R, from a
collection of observed input-output data pairs X

m

, y
m

M

m 1 generated
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of a weight tensor, W, based on available input-output observations
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PLS for Matrix Regression

• Goal of partial least squares (PLS) regression is to predict the response 

matrix Y from the predictor matrix X, and describe their common latent 

structure
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• The PLS regression consists of two steps

i) extract a set of latent variables of X and Y by performing a simultaneous 

decomposition of X and Y, such that maximum pairwise covariance is 

between the latent variables of X and the latent variables of Y

ii) use the extracted latent variables to predict Y



PLS for Matrix Regression Cont

• The standard PLS regression takes the form of 
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Figure 2.2: The standard PLS model which performs data decomposition as a
sum of rank-one matrices.

2.5.1 Standard Partial Least Squares

The principle behind the PLS method is to search for a common set of
latent vectors in the independent variable X RI J and the dependent
variable Y RI M by performing their simultaneous decomposition,
with the constraint that the components obtained through such a de-
composition explain as much as possible of the covariance between X
and Y. This problem can be formulated as (see also Figure 2.2)

X TPT E
R

r 1
t
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pT
r

E, (2.28)

Y TDCT F
R

r 1
d

rr

t
r

cT
r

F, (2.29)

where T t1, t2, . . . , t
R

RI R consists of R orthonormal latent
variables from X, and a matrix U TD u1, u2, . . . , u

R

RI R

represents latent variables from Y which have maximum covariance
with the latent variables, T, in X. The matrices P and C represent
loadings (PLS regression coe�cients), and E, F are respectively the
residuals for X and Y, while D is a scaling diagonal matrix.

The PLS procedure is recursive, so that in order to obtain the set
of first latent components in T, the standard PLS algorithm finds the
two sets of weight vectors, w and c, through the following optimization

✓                is the matrix predictor and                  is the matrix response 

✓                                            contains R latent variables from 

✓                                                        represents R latent variables from

✓     and     represent loadings or PLS regression coefficients 
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PLS for Matrix Regression Cont

• The PLS typically applies a deflation strategy to extract the latent 

variables                                         and                                                     

as well as all the loadings  
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• A classical algorithm for the extraction process is called nonlinear iterative 

partial least squares PLS regression algorithm (NIPALS-PLS) [Wold, 1984]                                 

• Having extracted all the factors, the prediction for the new test point     

can be performed by                          

    here     is some weight matrix obtained from NIPALS-PLS algorithm                
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problem

max
w,c

wTXTYc
2

, s.t. wTw 1, cTc 1. (2.30)

The obtained latent variables are given by t Xw Xw 2
2 and u

Yc. In doing so, we have made the following two assumptions: i) the
latent variables t

r

R

r 1 are good predictors of Y; ii) the linear (inner)
relation between the latent variables t and u does exist, that is U
TD Z, where Z denotes the matrix of Gaussian i.i.d. residuals. Upon
combining with the decomposition of Y, in (2.29), we have

Y TDCT ZCT F TDCT F , (2.31)

where F is the residual matrix. Observe from (2.31) that the problem
boils down to finding common latent variables, T, that best explain
the variance in both X and Y. The prediction of new dataset X can
then be performed by Y X WDCT.

2.5.2 The N -way PLS Method

The multi-way PLS (called N -way PLS) proposed by Bro (1996) is a
simple extension of the standard PLS. The method factorizes an Nth-
order tensor, X, based on the CP decomposition, to predict response
variables represented by Y, as shown in Figure 2.3. For a 3rd-order
tensor, X RI J K , and a multivariate response matrix, Y RI M ,
with the respective elements x

ijk

and y
im

, the tensor of independent
variables, X, is decomposed into one latent vector t RI 1 and two
loading vectors, p RJ 1 and q RK 1, i.e., one loading vector per
mode. As shown in Figure 2.3, the 3-way PLS (the N -way PLS for
N 3) performs the following simultaneous tensor and matrix decom-
positions

X
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rr
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F. (2.32)
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High-order PLS for Tensor Regression

• Goal of high-order partial least squares (HOPLS) [Zhao et. al 2011] regression 

allows to predict the response tensor Y from the predictor tensor X and 

describe their common latent structure

• HOPLS extends PLS by projecting tensorial data onto a common latent 

subspace but using block Tucker decomposition [De Lathauwer, 2008]
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• Similarly, HOPLS regression consists of two steps

i) extract a set of latent variables of tensor X and tensor Y by performing a 

simultaneous block Tucker decomposition of both tensor X and tensor Y, 

such that maximum pairwise covariance is between the latent variables of X 

and the latent variables of Y

ii) use the extracted latent variables to predict tensor Y



HOPLS Framework

• The standard HOPLS performs joint block Tucker decomposition of both 

predictor tensor and response tensor by
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✓                           is the (N+1)th-order predictor tensor by concatenating M samples            

✓                           is the (N+1)th-order response tensor having the same size M

✓                is the latent variable for the r-th component

✓                           and                            are the loadings for r-th component 

✓                               and                               are the core tensors for r-th component
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have the same size in the first mode, i.e., M samples. Such a model
allows us to find the optimal subspace approximation of X, in which
the independent and dependent variables share a common set of latent
vectors in one specific mode (i.e., samples mode). More specifically, we
assume that X is decomposed as a sum of rank-(1, L1, . . . , L

N

) Tucker
blocks, while Y is decomposed as a sum of rank-(1, K1, . . . , K

N

) Tucker
blocks, which can be expressed as
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the HOPLS model in (2.33) can be rewritten as
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where E
R

and F
R

are the residuals obtained after extracting R la-
tent components. The core tensors, G

x

and G
y

, have a special block-
diagonal structure (see Figure 2.4) and their elements indicate the level
of local interactions between the corresponding latent vectors and load-
ing matrices.

Benefiting from the advantages of Tucker decomposition over the
CP model, HOPLS generates approximate latent components that bet-
ter model the data than N -way PLS. Specifically, the HOPLS di�ers
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Figure 2.3: The N -way PLS model performs a joint decomposition of data ten-
sors/matrices as a sum of rank-one tensors through standard CP decomposition for
the independent variables, X, and a sum of rank-one matrices for the responses, Y.
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Again, the problem boils down to finding the common latent variables,
t

r

, in both X and Y, that best explain the variance in X and Y. The
prediction of a new dataset, X , can then be performed by Y 1
X 1 Q P 1DCT, where P p1, . . . , p

R

, Q q1, . . . , q
R

, and
D diag d
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.

2.5.3 HOPLS using Constrained Tucker Model

An alternative, more flexible and general multilinear regression model,
termed the higher-order partial least squares (HOPLS) (Zhao et al.,
2011, 2013a), performs simultaneously constrained Tucker decomposi-
tions for an N 1 th-order independent tensor, X RM I1 I

N ,
and an N 1 th-order dependent tensor, Y RM J1 J

N , which
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have the same size in the first mode, i.e., M samples. Such a model
allows us to find the optimal subspace approximation of X, in which
the independent and dependent variables share a common set of latent
vectors in one specific mode (i.e., samples mode). More specifically, we
assume that X is decomposed as a sum of rank-(1, L1, . . . , L

N

) Tucker
blocks, while Y is decomposed as a sum of rank-(1, K1, . . . , K
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) Tucker
blocks, which can be expressed as
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the HOPLS model in (2.33) can be rewritten as
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where E
R

and F
R

are the residuals obtained after extracting R la-
tent components. The core tensors, G

x

and G
y

, have a special block-
diagonal structure (see Figure 2.4) and their elements indicate the level
of local interactions between the corresponding latent vectors and load-
ing matrices.

Benefiting from the advantages of Tucker decomposition over the
CP model, HOPLS generates approximate latent components that bet-
ter model the data than N -way PLS. Specifically, the HOPLS di�ers
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where E
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are the residuals obtained after extracting R la-
tent components. The core tensors, G
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, have a special block-
diagonal structure (see Figure 2.4) and their elements indicate the level
of local interactions between the corresponding latent vectors and load-
ing matrices.

Benefiting from the advantages of Tucker decomposition over the
CP model, HOPLS generates approximate latent components that bet-
ter model the data than N -way PLS. Specifically, the HOPLS di�ers
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diagonal structure (see Figure 2.4) and their elements indicate the level
of local interactions between the corresponding latent vectors and load-
ing matrices.

Benefiting from the advantages of Tucker decomposition over the
CP model, HOPLS generates approximate latent components that bet-
ter model the data than N -way PLS. Specifically, the HOPLS di�ers

2.5. Higher-Order Partial Least Squares 497

have the same size in the first mode, i.e., M samples. Such a model
allows us to find the optimal subspace approximation of X, in which
the independent and dependent variables share a common set of latent
vectors in one specific mode (i.e., samples mode). More specifically, we
assume that X is decomposed as a sum of rank-(1, L1, . . . , L

N

) Tucker
blocks, while Y is decomposed as a sum of rank-(1, K1, . . . , K

N

) Tucker
blocks, which can be expressed as

X
R

r 1
G

xr

1 t
r 2 P 1

r

N 1 P N

r

E
R

,

Y
R

r 1
G

yr

1 t
r 2 Q 1

r

N 1Q N

r

F
R

,

(2.33)

where R is the number of latent vectors, t
r

RM is the r-th latent
vector, P n

r

N

n 1
RI

n

L

n and Q n

r

N

n 1
RJ

n

K

n are the loading
matrices in mode-n, and G

xr

R1 L1 L

N and G
yr

R1 K1 K

N

are core tensors. By defining a latent matrix T t1, . . . , t
R

, mode-n
loading matrix P n P n

1 , . . . , P n

R

, mode-n loading matrix Q n

Q n

1 , . . . , Q n

R

and core tensors

G
x

blockdiag G
x1, . . . , G

xR

RR RL1 RL

N ,

G
y

blockdiag G
y1, . . . , G

yR

RR RK1 RK

N ,
(2.34)

the HOPLS model in (2.33) can be rewritten as

X G
x

1 T 2 P 1
N 1 P N E

R

,

Y G
y

1 T 2 Q 1
N 1 Q N F

R

,
(2.35)

where E
R

and F
R

are the residuals obtained after extracting R la-
tent components. The core tensors, G

x

and G
y

, have a special block-
diagonal structure (see Figure 2.4) and their elements indicate the level
of local interactions between the corresponding latent vectors and load-
ing matrices.

Benefiting from the advantages of Tucker decomposition over the
CP model, HOPLS generates approximate latent components that bet-
ter model the data than N -way PLS. Specifically, the HOPLS di�ers

2.5. Higher-Order Partial Least Squares 497

have the same size in the first mode, i.e., M samples. Such a model
allows us to find the optimal subspace approximation of X, in which
the independent and dependent variables share a common set of latent
vectors in one specific mode (i.e., samples mode). More specifically, we
assume that X is decomposed as a sum of rank-(1, L1, . . . , L

N

) Tucker
blocks, while Y is decomposed as a sum of rank-(1, K1, . . . , K

N

) Tucker
blocks, which can be expressed as

X
R

r 1
G

xr

1 t
r 2 P 1

r

N 1 P N

r

E
R

,

Y
R

r 1
G

yr

1 t
r 2 Q 1

r

N 1Q N

r

F
R

,

(2.33)

where R is the number of latent vectors, t
r

RM is the r-th latent
vector, P n

r

N

n 1
RI

n

L

n and Q n

r

N

n 1
RJ

n

K

n are the loading
matrices in mode-n, and G

xr

R1 L1 L

N and G
yr

R1 K1 K

N

are core tensors. By defining a latent matrix T t1, . . . , t
R

, mode-n
loading matrix P n P n

1 , . . . , P n

R

, mode-n loading matrix Q n

Q n

1 , . . . , Q n

R

and core tensors

G
x

blockdiag G
x1, . . . , G

xR

RR RL1 RL

N ,

G
y

blockdiag G
y1, . . . , G

yR

RR RK1 RK

N ,
(2.34)

the HOPLS model in (2.33) can be rewritten as

X G
x

1 T 2 P 1
N 1 P N E

R

,

Y G
y

1 T 2 Q 1
N 1 Q N F

R

,
(2.35)

where E
R

and F
R

are the residuals obtained after extracting R la-
tent components. The core tensors, G

x

and G
y

, have a special block-
diagonal structure (see Figure 2.4) and their elements indicate the level
of local interactions between the corresponding latent vectors and load-
ing matrices.

Benefiting from the advantages of Tucker decomposition over the
CP model, HOPLS generates approximate latent components that bet-
ter model the data than N -way PLS. Specifically, the HOPLS di�ers



HOPLS Framework Cont

�23

2.5. Higher-Order Partial Least Squares 497

have the same size in the first mode, i.e., M samples. Such a model
allows us to find the optimal subspace approximation of X, in which
the independent and dependent variables share a common set of latent
vectors in one specific mode (i.e., samples mode). More specifically, we
assume that X is decomposed as a sum of rank-(1, L1, . . . , L

N

) Tucker
blocks, while Y is decomposed as a sum of rank-(1, K1, . . . , K

N

) Tucker
blocks, which can be expressed as

X
R

r 1
G

xr

1 t
r 2 P 1

r

N 1 P N

r

E
R

,

Y
R

r 1
G

yr

1 t
r 2 Q 1

r

N 1Q N

r

F
R

,

(2.33)

where R is the number of latent vectors, t
r

RM is the r-th latent
vector, P n

r

N

n 1
RI

n

L

n and Q n

r

N

n 1
RJ

n

K

n are the loading
matrices in mode-n, and G

xr

R1 L1 L

N and G
yr

R1 K1 K

N

are core tensors. By defining a latent matrix T t1, . . . , t
R

, mode-n
loading matrix P n P n

1 , . . . , P n

R

, mode-n loading matrix Q n

Q n

1 , . . . , Q n

R

and core tensors

G
x

blockdiag G
x1, . . . , G

xR

RR RL1 RL

N ,

G
y

blockdiag G
y1, . . . , G

yR

RR RK1 RK

N ,
(2.34)

the HOPLS model in (2.33) can be rewritten as

X G
x

1 T 2 P 1
N 1 P N E

R

,

Y G
y

1 T 2 Q 1
N 1 Q N F

R

,
(2.35)

where E
R

and F
R

are the residuals obtained after extracting R la-
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ter model the data than N -way PLS. Specifically, the HOPLS di�ers

498 Supervised Learning with Tensors

=

+ +. . .

+ +. . .=

X
t1

I × L 22

M ×1

1× L × L 21

L × I1 1

P(2)
1 P(2)

R

tR

1× L × L21

L × I1 1

I L22

M×R

T

I ×RL 2 2P(2)

P(1)T

RL ×I1 1

Gx

. . .

. . .

Y

T

M×1

1× K × K21

K × J1 1

Q(2)
1

Q(2)

G y

=
R ×RK × RK 1 2 RK × J1 1

M ×1

Q(1)T

J ×RK 2 2

J × K22

1× K  × K21

K × J1 1

J × K22

Q(2)
R

Q(1)T(1)T

(               )

(               )

(               )

(               )

(                       )

(           )

(                      )

(                 )

)  (                 )(

(                )

(                      )

M ×1(           )

(            )

(           ) (           )

(                       )

(               )

(               )

(                            ) (                 )

1 R

P(1)
1 P(1)

R
T T

+

+

E

(                     )M ×I × I1 2

(                     )M ×I × I1 2

(                 )

(                      )M × J × J21

× 

(              )

(             )M × R (                      )M × J × J21

=
+ E

(                     )M ×I × I1 2

t1
+

(                      )M × J × J21

tR

F

F

Q

 R×R L1×RL 2

Figure 2.4: The HOPLS model which approximates the independent variables, X,
as a sum of rank- 1, L1, L2 tensors. The approximation for the dependent variables,
Y, follows a similar principle, whereby the common latent components, T, are shared
between X and Y.

substantially from the N -way PLS model in the sense that the sizes
of loading matrices are controlled by a hyperparameter, providing a
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substantially from the N -way PLS model in the sense that the sizes
of loading matrices are controlled by a hyperparameter, providing a
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have the same size in the first mode, i.e., M samples. Such a model
allows us to find the optimal subspace approximation of X, in which
the independent and dependent variables share a common set of latent
vectors in one specific mode (i.e., samples mode). More specifically, we
assume that X is decomposed as a sum of rank-(1, L1, . . . , L

N

) Tucker
blocks, while Y is decomposed as a sum of rank-(1, K1, . . . , K

N

) Tucker
blocks, which can be expressed as

X
R

r 1
G

xr

1 t
r 2 P 1

r

N 1 P N

r

E
R

,

Y
R

r 1
G

yr

1 t
r 2 Q 1

r

N 1Q N

r

F
R

,

(2.33)

where R is the number of latent vectors, t
r

RM is the r-th latent
vector, P n

r

N

n 1
RI

n

L

n and Q n

r

N

n 1
RJ

n

K

n are the loading
matrices in mode-n, and G

xr

R1 L1 L

N and G
yr

R1 K1 K

N

are core tensors. By defining a latent matrix T t1, . . . , t
R

, mode-n
loading matrix P n P n

1 , . . . , P n

R

, mode-n loading matrix Q n

Q n

1 , . . . , Q n

R

and core tensors

G
x

blockdiag G
x1, . . . , G

xR

RR RL1 RL

N ,

G
y

blockdiag G
y1, . . . , G

yR

RR RK1 RK

N ,
(2.34)

the HOPLS model in (2.33) can be rewritten as

X G
x

1 T 2 P 1
N 1 P N E

R

,

Y G
y

1 T 2 Q 1
N 1 Q N F

R

,
(2.35)

where E
R

and F
R

are the residuals obtained after extracting R la-
tent components. The core tensors, G

x

and G
y

, have a special block-
diagonal structure (see Figure 2.4) and their elements indicate the level
of local interactions between the corresponding latent vectors and load-
ing matrices.

Benefiting from the advantages of Tucker decomposition over the
CP model, HOPLS generates approximate latent components that bet-
ter model the data than N -way PLS. Specifically, the HOPLS di�ers

2.5. Higher-Order Partial Least Squares 497

have the same size in the first mode, i.e., M samples. Such a model
allows us to find the optimal subspace approximation of X, in which
the independent and dependent variables share a common set of latent
vectors in one specific mode (i.e., samples mode). More specifically, we
assume that X is decomposed as a sum of rank-(1, L1, . . . , L

N

) Tucker
blocks, while Y is decomposed as a sum of rank-(1, K1, . . . , K

N

) Tucker
blocks, which can be expressed as

X
R

r 1
G

xr

1 t
r 2 P 1

r

N 1 P N

r

E
R

,

Y
R

r 1
G

yr

1 t
r 2 Q 1

r

N 1Q N

r

F
R

,

(2.33)

where R is the number of latent vectors, t
r

RM is the r-th latent
vector, P n

r

N

n 1
RI

n

L

n and Q n

r

N

n 1
RJ

n

K

n are the loading
matrices in mode-n, and G

xr

R1 L1 L

N and G
yr

R1 K1 K

N

are core tensors. By defining a latent matrix T t1, . . . , t
R

, mode-n
loading matrix P n P n

1 , . . . , P n

R

, mode-n loading matrix Q n

Q n

1 , . . . , Q n

R

and core tensors

G
x

blockdiag G
x1, . . . , G

xR

RR RL1 RL

N ,

G
y

blockdiag G
y1, . . . , G

yR

RR RK1 RK

N ,
(2.34)

the HOPLS model in (2.33) can be rewritten as

X G
x

1 T 2 P 1
N 1 P N E

R

,

Y G
y

1 T 2 Q 1
N 1 Q N F

R

,
(2.35)

where E
R

and F
R

are the residuals obtained after extracting R la-
tent components. The core tensors, G

x

and G
y

, have a special block-
diagonal structure (see Figure 2.4) and their elements indicate the level
of local interactions between the corresponding latent vectors and load-
ing matrices.

Benefiting from the advantages of Tucker decomposition over the
CP model, HOPLS generates approximate latent components that bet-
ter model the data than N -way PLS. Specifically, the HOPLS di�ers

2.5. Higher-Order Partial Least Squares 497

have the same size in the first mode, i.e., M samples. Such a model
allows us to find the optimal subspace approximation of X, in which
the independent and dependent variables share a common set of latent
vectors in one specific mode (i.e., samples mode). More specifically, we
assume that X is decomposed as a sum of rank-(1, L1, . . . , L

N

) Tucker
blocks, while Y is decomposed as a sum of rank-(1, K1, . . . , K

N

) Tucker
blocks, which can be expressed as

X
R

r 1
G

xr

1 t
r 2 P 1

r

N 1 P N

r

E
R

,

Y
R

r 1
G

yr

1 t
r 2 Q 1

r

N 1Q N

r

F
R

,

(2.33)

where R is the number of latent vectors, t
r

RM is the r-th latent
vector, P n

r

N

n 1
RI

n

L

n and Q n

r

N

n 1
RJ

n

K

n are the loading
matrices in mode-n, and G

xr

R1 L1 L

N and G
yr

R1 K1 K

N

are core tensors. By defining a latent matrix T t1, . . . , t
R

, mode-n
loading matrix P n P n

1 , . . . , P n

R

, mode-n loading matrix Q n

Q n

1 , . . . , Q n

R

and core tensors

G
x

blockdiag G
x1, . . . , G

xR

RR RL1 RL

N ,

G
y

blockdiag G
y1, . . . , G

yR

RR RK1 RK

N ,
(2.34)

the HOPLS model in (2.33) can be rewritten as

X G
x

1 T 2 P 1
N 1 P N E

R

,

Y G
y

1 T 2 Q 1
N 1 Q N F

R

,
(2.35)

where E
R

and F
R

are the residuals obtained after extracting R la-
tent components. The core tensors, G

x

and G
y

, have a special block-
diagonal structure (see Figure 2.4) and their elements indicate the level
of local interactions between the corresponding latent vectors and load-
ing matrices.

Benefiting from the advantages of Tucker decomposition over the
CP model, HOPLS generates approximate latent components that bet-
ter model the data than N -way PLS. Specifically, the HOPLS di�ers

2.5. Higher-Order Partial Least Squares 497

have the same size in the first mode, i.e., M samples. Such a model
allows us to find the optimal subspace approximation of X, in which
the independent and dependent variables share a common set of latent
vectors in one specific mode (i.e., samples mode). More specifically, we
assume that X is decomposed as a sum of rank-(1, L1, . . . , L

N

) Tucker
blocks, while Y is decomposed as a sum of rank-(1, K1, . . . , K

N

) Tucker
blocks, which can be expressed as

X
R

r 1
G

xr

1 t
r 2 P 1

r

N 1 P N

r

E
R

,

Y
R

r 1
G

yr

1 t
r 2 Q 1

r

N 1Q N

r

F
R

,

(2.33)

where R is the number of latent vectors, t
r

RM is the r-th latent
vector, P n

r

N

n 1
RI

n

L

n and Q n

r

N

n 1
RJ

n

K

n are the loading
matrices in mode-n, and G

xr

R1 L1 L

N and G
yr

R1 K1 K

N

are core tensors. By defining a latent matrix T t1, . . . , t
R

, mode-n
loading matrix P n P n

1 , . . . , P n

R

, mode-n loading matrix Q n

Q n

1 , . . . , Q n

R

and core tensors

G
x

blockdiag G
x1, . . . , G

xR

RR RL1 RL

N ,

G
y

blockdiag G
y1, . . . , G

yR

RR RK1 RK

N ,
(2.34)

the HOPLS model in (2.33) can be rewritten as

X G
x

1 T 2 P 1
N 1 P N E

R

,

Y G
y

1 T 2 Q 1
N 1 Q N F

R

,
(2.35)

where E
R

and F
R

are the residuals obtained after extracting R la-
tent components. The core tensors, G

x

and G
y

, have a special block-
diagonal structure (see Figure 2.4) and their elements indicate the level
of local interactions between the corresponding latent vectors and load-
ing matrices.

Benefiting from the advantages of Tucker decomposition over the
CP model, HOPLS generates approximate latent components that bet-
ter model the data than N -way PLS. Specifically, the HOPLS di�ers

2.5. Higher-Order Partial Least Squares 497

have the same size in the first mode, i.e., M samples. Such a model
allows us to find the optimal subspace approximation of X, in which
the independent and dependent variables share a common set of latent
vectors in one specific mode (i.e., samples mode). More specifically, we
assume that X is decomposed as a sum of rank-(1, L1, . . . , L

N

) Tucker
blocks, while Y is decomposed as a sum of rank-(1, K1, . . . , K

N

) Tucker
blocks, which can be expressed as

X
R

r 1
G

xr

1 t
r 2 P 1

r

N 1 P N

r

E
R

,

Y
R

r 1
G

yr

1 t
r 2 Q 1

r

N 1Q N

r

F
R

,

(2.33)

where R is the number of latent vectors, t
r

RM is the r-th latent
vector, P n

r

N

n 1
RI

n

L

n and Q n

r

N

n 1
RJ

n

K

n are the loading
matrices in mode-n, and G

xr

R1 L1 L

N and G
yr

R1 K1 K

N

are core tensors. By defining a latent matrix T t1, . . . , t
R

, mode-n
loading matrix P n P n

1 , . . . , P n

R

, mode-n loading matrix Q n

Q n

1 , . . . , Q n

R

and core tensors

G
x

blockdiag G
x1, . . . , G

xR

RR RL1 RL

N ,

G
y

blockdiag G
y1, . . . , G

yR

RR RK1 RK

N ,
(2.34)

the HOPLS model in (2.33) can be rewritten as

X G
x

1 T 2 P 1
N 1 P N E

R

,

Y G
y

1 T 2 Q 1
N 1 Q N F

R

,
(2.35)

where E
R

and F
R

are the residuals obtained after extracting R la-
tent components. The core tensors, G

x

and G
y

, have a special block-
diagonal structure (see Figure 2.4) and their elements indicate the level
of local interactions between the corresponding latent vectors and load-
ing matrices.

Benefiting from the advantages of Tucker decomposition over the
CP model, HOPLS generates approximate latent components that bet-
ter model the data than N -way PLS. Specifically, the HOPLS di�ers

2.5. Higher-Order Partial Least Squares 497

have the same size in the first mode, i.e., M samples. Such a model
allows us to find the optimal subspace approximation of X, in which
the independent and dependent variables share a common set of latent
vectors in one specific mode (i.e., samples mode). More specifically, we
assume that X is decomposed as a sum of rank-(1, L1, . . . , L

N

) Tucker
blocks, while Y is decomposed as a sum of rank-(1, K1, . . . , K

N

) Tucker
blocks, which can be expressed as

X
R

r 1
G

xr

1 t
r 2 P 1

r

N 1 P N

r

E
R

,

Y
R

r 1
G

yr

1 t
r 2 Q 1

r

N 1Q N

r

F
R

,

(2.33)

where R is the number of latent vectors, t
r

RM is the r-th latent
vector, P n

r

N

n 1
RI

n

L

n and Q n

r

N

n 1
RJ

n

K

n are the loading
matrices in mode-n, and G

xr

R1 L1 L

N and G
yr

R1 K1 K

N

are core tensors. By defining a latent matrix T t1, . . . , t
R

, mode-n
loading matrix P n P n

1 , . . . , P n

R

, mode-n loading matrix Q n

Q n

1 , . . . , Q n

R

and core tensors

G
x

blockdiag G
x1, . . . , G

xR

RR RL1 RL

N ,

G
y

blockdiag G
y1, . . . , G

yR

RR RK1 RK

N ,
(2.34)

the HOPLS model in (2.33) can be rewritten as

X G
x

1 T 2 P 1
N 1 P N E

R

,

Y G
y

1 T 2 Q 1
N 1 Q N F

R

,
(2.35)

where E
R

and F
R

are the residuals obtained after extracting R la-
tent components. The core tensors, G

x

and G
y

, have a special block-
diagonal structure (see Figure 2.4) and their elements indicate the level
of local interactions between the corresponding latent vectors and load-
ing matrices.

Benefiting from the advantages of Tucker decomposition over the
CP model, HOPLS generates approximate latent components that bet-
ter model the data than N -way PLS. Specifically, the HOPLS di�ers

2.5. Higher-Order Partial Least Squares 497

have the same size in the first mode, i.e., M samples. Such a model
allows us to find the optimal subspace approximation of X, in which
the independent and dependent variables share a common set of latent
vectors in one specific mode (i.e., samples mode). More specifically, we
assume that X is decomposed as a sum of rank-(1, L1, . . . , L

N

) Tucker
blocks, while Y is decomposed as a sum of rank-(1, K1, . . . , K

N

) Tucker
blocks, which can be expressed as

X
R

r 1
G

xr

1 t
r 2 P 1

r

N 1 P N

r

E
R

,

Y
R

r 1
G

yr

1 t
r 2 Q 1

r

N 1Q N

r

F
R

,

(2.33)

where R is the number of latent vectors, t
r

RM is the r-th latent
vector, P n

r

N

n 1
RI

n

L

n and Q n

r

N

n 1
RJ

n

K

n are the loading
matrices in mode-n, and G

xr

R1 L1 L

N and G
yr

R1 K1 K

N

are core tensors. By defining a latent matrix T t1, . . . , t
R

, mode-n
loading matrix P n P n

1 , . . . , P n

R

, mode-n loading matrix Q n

Q n

1 , . . . , Q n

R

and core tensors

G
x

blockdiag G
x1, . . . , G

xR

RR RL1 RL

N ,

G
y

blockdiag G
y1, . . . , G

yR

RR RK1 RK

N ,
(2.34)

the HOPLS model in (2.33) can be rewritten as

X G
x

1 T 2 P 1
N 1 P N E

R

,

Y G
y

1 T 2 Q 1
N 1 Q N F

R

,
(2.35)

where E
R

and F
R

are the residuals obtained after extracting R la-
tent components. The core tensors, G

x

and G
y

, have a special block-
diagonal structure (see Figure 2.4) and their elements indicate the level
of local interactions between the corresponding latent vectors and load-
ing matrices.

Benefiting from the advantages of Tucker decomposition over the
CP model, HOPLS generates approximate latent components that bet-
ter model the data than N -way PLS. Specifically, the HOPLS di�ers

498 Supervised Learning with Tensors

=

+ +. . .

+ +. . .=

X
t1

I × L 22

M ×1

1× L × L 21

L × I1 1

P(2)
1 P(2)

R

tR

1× L × L21

L × I1 1

I L22

M×R

T

I ×RL 2 2P(2)

P(1)T

RL ×I1 1

Gx

. . .

. . .

Y

T

M×1

1× K × K21

K × J1 1

Q(2)
1

Q(2)

G y

=
R ×RK × RK 1 2 RK × J1 1

M ×1

Q(1)T

J ×RK 2 2

J × K22

1× K  × K21

K × J1 1

J × K22

Q(2)
R

Q(1)T(1)T

(               )

(               )

(               )

(               )

(                       )

(           )

(                      )

(                 )

)  (                 )(

(                )

(                      )

M ×1(           )

(            )

(           ) (           )

(                       )

(               )

(               )

(                            ) (                 )

1 R

P(1)
1 P(1)

R
T T

+

+

E

(                     )M ×I × I1 2

(                     )M ×I × I1 2

(                 )

(                      )M × J × J21

× 

(              )

(             )M × R (                      )M × J × J21

=
+ E

(                     )M ×I × I1 2

t1
+

(                      )M × J × J21

tR

F

F

Q

 R×R L1×RL 2

Figure 2.4: The HOPLS model which approximates the independent variables, X,
as a sum of rank- 1, L1, L2 tensors. The approximation for the dependent variables,
Y, follows a similar principle, whereby the common latent components, T, are shared
between X and Y.
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HOPLS Experimental Results
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✓ dataset  ECoG food tracking data
✓ predictor 4th-order tensor  sample    time    frequency    channel  
✓ response 3rd-order tensor sample    time    3D positions    marker

• Goal to decode limb movement trajectories based on ECoG signals of monkey

figure credit [Zhao et. al 2013]

⇥⇥ ⇥
⇥ ⇥ ⇥



Outline

• Tensor Regression

• TensorNets for Deep Neural Networks Compression

• (Multi-)Tensor Completion

• Tensor Denoising

�26



 Background

• Deep Neural Networks (DNNs) archives the state-of-art performance in many 

large-scale machine learning applications

✓ i.e. computation vision, speech recognition and text processing etc 

• DNNs have thousands of nodes and millions of learnable parameters and are 

trained using millions of images on GPUs

• DNNs reaches the hardware limits both in terms the computational power and 

the memory

• DNNs reaches the memory limit with 89% [Simonyan and Zisserman, 2015] or 

even 100% [Xue et al, 2013] memory occupied by the weight matrices of the fully-

connected layers  

�27



 VGGNet Example
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• The huge number of parameters of FC layers is the bottleneck in a 

typical DNN like VGGNet [Simonyan and Zisserman, 2015]



TensorNet for DNN Compression

• TensorNet [Novikov et. al, 2015] applies tensor train (TT) [Oseledet, 2011] format to 

represent the dense weight matrix of the fully-connected layers using fewer 

parameters while keeping enough flexibility to perform signal transformations 

�29

• The advantages of TensorNet

✓ compatible with the existing training algorithms for neural networks 

✓ match the performance of the uncompressed counterparts with compression 

factor of the weights of FC layer up to 200, 000 times leading to the compression 

factor of the whole network up to 7 times 

✓ able to use more hidden units than was available before 



 Tensor Train Decomposition

�30

• Recall that in index form, tensor train decomposition (TTD) can be 

represented by

X (i1, i2, ..., id) ⇡
P

↵0,...,↵d
G1[i1](↵0,↵1)G2[i2](↵1,↵2) · · ·Gd[id](↵d�1,↵d)

✓ i.e. an illustration of TTD of 5th-order tensor  

G1 G2 G3 G4 G5



 TT-vector

�31

• TT-vector converts a long vector into a TT-format

✓ vector              where               

✓ coordinate                       of vector           

✓ d-dimensional vector-index                                                 of tensorized    , 

where

✓                      holds  

✓ TT-format of     is called TT-vector

b 2 RN N =
Qd

k=1 nk

` 2 {1, ..., N} b 2 RN

µ(`) = (µ1(`), µ2(`), ..., µd(`))



 TT-matrix

�32

• TT-matrix converts a big matrix into a TT-format

✓ matrix                   where                         and       

✓ row coordinate                        and column coordinate                      of           

✓ d-dimensional vector-indices                                                                   of 

tensorized     , where                               and 

✓                                         holds  

✓ TT-format of      is called TT-matrix
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TT-layer 

• Fully connected layers apply a linear transformation to N-dimensional input 

vector

�33

• TT-layer transforms input     (in TT-vector) by the weight      (in TT-matrix), to 

the output 

where the weight matrix                     and bias vector    

• The application of TT-matrix-by-vector operation yields low computational 

complexity of forward pass 

• The learning can be performed by applying back-propagation to FC layers to 

compute gradients w.r.t the tensor cores



 TensorNet Experimental Results Cont

• Substitution of FC layers with the TT-layers in VGG-16 and VGG-19 networks 

✓ FC stands for a fully-connected layer 

✓ TT‘$’ stands for a TT-layer with all the TT-ranks equal ‘$’

✓ MR‘$’ stands for a fully-connected layer with the matrix ranks restricted to ‘$’

✓ The experiments report the compression factor of TT-layers; the resulting 

compression factor of the whole network; the top1 and top5 classification errors 

�34

Architecture TT-layers
compr.

vgg-16
compr.

vgg-19
compr.

vgg-16
top 1

vgg-16
top 5

vgg-19
top 1

vgg-19
top 5

FC FC FC 1 1 1 30.9 11.2 29.0 10.1
TT4 FC FC 50 972 3.9 3.5 31.2 11.2 29.8 10.4
TT2 FC FC 194 622 3.9 3.5 31.5 11.5 30.4 10.9
TT1 FC FC 713 614 3.9 3.5 33.3 12.8 31.9 11.8
TT4 TT4 FC 37 732 7.4 6 32.2 12.3 31.6 11.7
MR1 FC FC 3 521 3.9 3.5 99.5 97.6 99.8 99
MR5 FC FC 704 3.9 3.5 81.7 53.9 79.1 52.4
MR50 FC FC 70 3.7 3.4 36.7 14.9 34.5 15.8

Table 2: Substituting the fully-connected layers with the TT-layers in vgg-16 and vgg-19 networks
on the ImageNet dataset. FC stands for a fully-connected layer; TT! stands for a TT-layer with
all the TT-ranks equal “!”; MR! stands for a fully-connected layer with the matrix rank restricted
to “!”. We report the compression rate of the TT-layers matrices and of the whole network in the
second, third and fourth columns.

followed by ReLU and by a N × 10 fully-connected layer. With N = 3125 hidden units (contrary
to 64 in the original network) we achieve the test error of 23.13% without fine-tuning which is
slightly better than the test error of the baseline (23.25%). The TT-layer treated input and output
vectors as 4 × 4 × 4 × 4 × 4 and 5 × 5 × 5 × 5 × 5 tensors respectively. All the TT-ranks equal
8, making the number of the parameters in the TT-layer equal 4 160. The compression rate of the
TensorNet compared with the baseline w.r.t. all the parameters is 1.24. In addition, substituting the
both fully-connected layers by the TT-layers yields the test error of 24.39% and reduces the number
of parameters of the fully-connected layer matrices by the factor of 11.9 and the total parameter
number by the factor of 1.7.

For comparison, in [6] the fully-connected layers in a CIFAR-10 CNN were compressed by the
factor of at most 4.7 times with the loss of about 2% in accuracy.

6.2.1 Wide and shallow network

With sufficient amount of hidden units, even a neural network with two fully-connected layers and
sigmoid non-linearity can approximate any decision boundary [5]. Traditionally, very wide shallow
networks are not considered because of high computational and memory demands and the over-
fitting risk. TensorNet can potentially address both issues. We use a three-layered TensorNet of
the following architecture: the TT-layer with the weight matrix of size 3 072× 262 144, ReLU, the
TT-layer with the weight matrix of size 262 144× 4 096, ReLU, the fully-connected layer with the
weight matrix of size 4 096 × 10. We report the test error of 31.47% which is (to the best of our
knowledge) the best result achieved by a non-convolutional neural network.

6.3 ImageNet

In this experiment we evaluate the TT-layers on a large scale task. We consider the 1000-class
ImageNet ILSVRC-2012 dataset [19], which consist of 1.2 million training images and 50 000
validation images. We use deep the CNNs vgg-16 and vgg-19 [21] as the reference models2. Both
networks consist of the two parts: the convolutional and the fully-connected parts. In the both
networks the second part consist of 3 fully-connected layers with weight matrices of sizes 25088×
4096, 4096× 4096 and 4096× 1000.

In each network we substitute the first fully-connected layer with the TT-layer. To do this we reshape
the 25088-dimensional input vectors to the tensors of the size 2× 7× 8× 8 × 7× 4 and the 4096-
dimensional output vectors to the tensors of the size 4 × 4 × 4 × 4 × 4 × 4. The remaining fully-
connected layers are initialized randomly. The parameters of the convolutional parts are kept fixed
as trained by Simonyan and Zisserman [21]. We train the TT-layer and the fully-connected layers
on the training set. In Table 2 we vary the ranks of the TT-layer and report the compression factor of
the TT-layers (vs. the original fully-connected layer), the resulting compression factor of the whole
network, and the top 1 and top 5 errors on the validation set. In addition, we substitute the second
fully-connected layer with the TT-layer. As a baseline compression method we constrain the matrix
rank of the weight matrix of the first fully-connected layer using the approach of [2].

2After we had started to experiment on the vgg-16 network the vgg-* networks have been improved by
the authors. Thus, we report the results on a slightly outdated version of vgg-16 and the up-to-date version of
vgg-19.
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Tensor Completion

?

?

?

?
??

?

Missing entryObserved entry

Incomplete tensor Completed tensor

Tensor completion problem:

Tensor completion is to apply tensor method to infer a 
tensor with missing entries from partial observations. 



Motivation

Recommender system
Collaborative filtering

Movie ratings (Netflix)

Social network analysis
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Matrix Factorization for Incomplete Data

Various Networks Network modeling methods Sparse matrix-variate Gaussian process blockmodels Multi-way network modeling InfTucker:t-Process based Infinite Tensor Decomposition Question and Answer

Matrix factorization

Why matrix factorization is useful?

Y = UV

Various Networks Network modeling methods Sparse matrix-variate Gaussian process blockmodels Multi-way network modeling InfTucker:t-Process based Infinite Tensor Decomposition Question and Answer

Matrix factorization

Matrix factorization methods

Singular Value Decomposition (SVD)
Non-negative Matrix Factorization (NMF)
Probabilistic Matrix Factorization (PMF)
Gaussian Process Latent Variable Models (GPLVM)

 38

Challenges:

• ill-posed problem

• infinite solutions

Regularizations:

• Low-rank assumption

• Smoothness, non-negativity



Tensor Completion

Solving scheme 1: 
low-rank assumption on tensor

Low-rank

assumption

?

?

?
??

?

Missing entryObserved entry

Incomplete tensor Completed tensor

Example: High accuracy LRTC (HaLRTC)

3

one key building block is the existence of a closed form
solution for the following optimization problem:

min
X⌥Rp⇥q

:
1

2
⌦X �M⌦2F + �⌦X⌦tr, (3)

where M ⌥ Rp⇥q , and � is a constant. Candès and Recht
[9], Recht et al. [37], and Candès and Tao [10] theoretically
justified the validity of the trace norm to approximate the
rank of matrices. Recht [36] recently improved their result
and also largely simplified the proof by using the golfing
scheme from quantum information theory [15]. An alterna-
tive singular value based method for matrix completion was
recently proposed and justified by Keshavan et al. [21].

This journal paper builds on our own previous work
[29] where we extended the matrix trace norm to the
tensor case and proposed to recover the missing entries
in a low rank tensor by solving a tensor trace norm
minimization problem. We used a relaxation trick on the
objective function such that the block coordinate descent
algorithm can be employed to solve this problem [29].
Since this approach is not efficient enough, some recent
papers tried to use the alternating direction method of
multipliers (ADMM) to efficiently solve the tensor trace
norm minimization problem. The ADMM algorithm was
developed in the 1970s, but was successful in solving large
scale problems and optimization problems with multiple
nonsmooth terms in the objective function [28] recently.
Signoretto et al. [38] and Gandy et al. [14] applied the
ADMM algorithm to solve the tensor completion problem
with Gaussian observation noise, i.e.,

min
X

:
⇧

2
⌦X� � T�⌦2F + ⌦X⌦⇤, (4)

where ⌦X⌦⇤ is the tensor trace norm defined in Eq. (8).
The tensor completion problem without observation noise
can be solved by optimizing Eq. (4) iteratively with an
increasing value of ⇧ [38], [14]. Tomioka et al. [43]
proposed several slightly different models for the problem
Eq. (4) by introducing dummy variables and also applied
ADMM to solve them. Out of these three algorithms for
tensor completion based on ADMM, we choose to compare
to the algorithm by Gandy et al., because the problem
statement is identical to ours. Our results will show that our
adaption of ADMM and our proposed FaLRTC algorithm
are more efficient.

Besides tensor completion, the tensor trace norm pro-
posed in [26] can be applied in various other computer
vision problems such as visual saliency detection [47],
medical imaging [16], corrupted data correction [26], [27],
data compression [25].

3 THE FORMULATION OF TENSOR COM-
PLETION

This section presents a convex model and three heuristic
models for tensor completion.

3.1 Convex Formulation for Tensor Completion
Before introducing the low rank tensor completion problem,
let us start from the well-known optimization problem [24]
for low rank matrix completion:

min
X

: rank(X)

s.t. : X� = M�,
(5)

where X,M ⌥ Rp⇥q , and the elements of M in the set ⇥
are given while the remaining elements are missing. The
missing elements of X are determined such that the rank
of the matrix X is as small as possible. The optimization
problem in Eq. (5) is a nonconvex optimization problem
since the function rank(X) is nonconvex. One common
approach is to use the trace norm ⌦.⌦⇤ to approximate the
rank of matrices. The advantage of the trace norm is that
⌦.⌦⇤ is the tightest convex envelop for the rank of matrices.
This leads to the following convex optimization problem for
matrix completion [3], [7], [30]:

min
X

: ⌦X⌦⇤

s.t. : X� = M�.
(6)

The tensor is the generalization of the matrix concept. We
generalize the completion algorithm for the matrix (i.e., 2-
mode or 2-order tensor) case to higher-order tensors by
solving the following optimization problem:

min
X

: ⌦X⌦⇤

s.t. : X� = T�
(7)

where X , T are n-mode tensors with identical size in each
mode. The first issue is the definition of the trace norm for
the general tensor case. We propose the following definition
for the tensor trace norm:

⌦X⌦⇤ :=
nX

i=1

�i⌦X(i)⌦⇤. (8)

where �i’s are constants satisfying �i ⌃ 0 and
Pn

i=1 �i =
1. In essence, the trace norm of a tensor is a convex
combination of the trace norms of all matrices unfolded
along each mode. Note that when the mode number n is
equal to 2 (i.e. the matrix case), the definition of the trace
norm of a tensor is consistent with the matrix case, because
the trace norm of a matrix is equal to the trace norm of its
transpose. Under this definition, the optimization in Eq. (7)
can be written as:

min
X

:
nX

i=1

�i⌦X(i)⌦⇤

s.t. : X� = T�.
(9)

Here one might ask why we do not define the tensor
trace norm as the convex envelop of the tensor rank like
in the matrix case. Unlike matrices, computing the rank
of a general tensor (mode number > 2) is an NP hard
problem [18]. Therefore, there is no explicit expression for
the convex envelop of the tensor rank to the best of our
knowledge.
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where �i’s are constants satisfying �i ⌃ 0 and
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1. In essence, the trace norm of a tensor is a convex
combination of the trace norms of all matrices unfolded
along each mode. Note that when the mode number n is
equal to 2 (i.e. the matrix case), the definition of the trace
norm of a tensor is consistent with the matrix case, because
the trace norm of a matrix is equal to the trace norm of its
transpose. Under this definition, the optimization in Eq. (7)
can be written as:

min
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Here one might ask why we do not define the tensor
trace norm as the convex envelop of the tensor rank like
in the matrix case. Unlike matrices, computing the rank
of a general tensor (mode number > 2) is an NP hard
problem [18]. Therefore, there is no explicit expression for
the convex envelop of the tensor rank to the best of our
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Assume the tensor matricization 
of each mode is low -rank

HaLRTC

[Liu, et al., 2013]



Tensor Completion

[Kolda, et al., 2009]

Mode-n matricization of a three-order tensor:

3-order tensor mode-2 slices

mode-3 slices

mode-1 slices

mode-1

mode-2
mode-3

…

…

…

mode-2 matricization 

mode-3 matricization 

mode-1 matricization 

X(1)
<latexit sha1_base64="gQrexxULnmFLClFh7Dc1vAI0MAU=">AAAB+XicbVBNS8NAFHypX7V+pXr0EixCvZREBPUiBS8eKxhbaEPYbDft0s0m7G6UEvNTvHhQ8eo/8ea/cdPmoK0DC8PMe7zZCRJGpbLtb6Oysrq2vlHdrG1t7+zumfX9exmnAhMXxywWvQBJwignrqKKkV4iCIoCRrrB5Lrwuw9ESBrzOzVNiBehEachxUhpyTfrgwipMUYs6+V+1nROct9s2C17BmuZOCVpQImOb34NhjFOI8IVZkjKvmMnysuQUBQzktcGqSQJwhM0In1NOYqI9LJZ9Nw61srQCmOhH1fWTP29kaFIymkU6MkiqFz0CvE/r5+q8MLLKE9SRTieHwpTZqnYKnqwhlQQrNhUE4QF1VktPEYCYaXbqukSnMUvLxP3tHXZsm/PGu2rso0qHMIRNMGBc2jDDXTABQyP8Ayv8GY8GS/Gu/ExH60Y5c4B/IHx+QM8+pOD</latexit><latexit sha1_base64="gQrexxULnmFLClFh7Dc1vAI0MAU=">AAAB+XicbVBNS8NAFHypX7V+pXr0EixCvZREBPUiBS8eKxhbaEPYbDft0s0m7G6UEvNTvHhQ8eo/8ea/cdPmoK0DC8PMe7zZCRJGpbLtb6Oysrq2vlHdrG1t7+zumfX9exmnAhMXxywWvQBJwignrqKKkV4iCIoCRrrB5Lrwuw9ESBrzOzVNiBehEachxUhpyTfrgwipMUYs6+V+1nROct9s2C17BmuZOCVpQImOb34NhjFOI8IVZkjKvmMnysuQUBQzktcGqSQJwhM0In1NOYqI9LJZ9Nw61srQCmOhH1fWTP29kaFIymkU6MkiqFz0CvE/r5+q8MLLKE9SRTieHwpTZqnYKnqwhlQQrNhUE4QF1VktPEYCYaXbqukSnMUvLxP3tHXZsm/PGu2rso0qHMIRNMGBc2jDDXTABQyP8Ayv8GY8GS/Gu/ExH60Y5c4B/IHx+QM8+pOD</latexit><latexit sha1_base64="gQrexxULnmFLClFh7Dc1vAI0MAU=">AAAB+XicbVBNS8NAFHypX7V+pXr0EixCvZREBPUiBS8eKxhbaEPYbDft0s0m7G6UEvNTvHhQ8eo/8ea/cdPmoK0DC8PMe7zZCRJGpbLtb6Oysrq2vlHdrG1t7+zumfX9exmnAhMXxywWvQBJwignrqKKkV4iCIoCRrrB5Lrwuw9ESBrzOzVNiBehEachxUhpyTfrgwipMUYs6+V+1nROct9s2C17BmuZOCVpQImOb34NhjFOI8IVZkjKvmMnysuQUBQzktcGqSQJwhM0In1NOYqI9LJZ9Nw61srQCmOhH1fWTP29kaFIymkU6MkiqFz0CvE/r5+q8MLLKE9SRTieHwpTZqnYKnqwhlQQrNhUE4QF1VktPEYCYaXbqukSnMUvLxP3tHXZsm/PGu2rso0qHMIRNMGBc2jDDXTABQyP8Ayv8GY8GS/Gu/ExH60Y5c4B/IHx+QM8+pOD</latexit>
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Technical problems
• Model selection problem 

• Rank determination; tuning parameter selection 

• Uncertainty information (confidence region) 

• Point estimation by ML, MAP, or optimisation methods 

• Overfitting problem 

• Efficiency  (MCMC, Gibbs inference - easy derivation 
but slow convergence; no analytic solution)



Tensor factorization with missing values
• Problem:  Nth-order tensor is partially observed. 

• True latent tensor is represented by a CP model with the minimum R 

• Sparsity imposed on latent dimensions of factors

3

(i1, i2, . . . , iN )th entry is denoted by X
i1i2...iN , where

the indices typically range from 1 to their capital
version, e.g., i

n

= 1, 2, . . . , I
n

, 8n 2 [1, N ].
The inner product of two tensors is defined by

hA,Bi = P

i1i2...iN
A

i1i2...iNB
i1i2...iN , and the squared

Frobenius norm by kAk2
F

= hA,Ai. To provide an
extension of N (N � 3) variables, a generalized inner
product of a set of vectors, matrices, or tensors is de-
fined as a sum of element-wise products. For example,
given {A(n)|n = 1, . . . , N}, we define

D

A

(1), · · · ,A(N)
E

=

X

i,j

Y

n

A(n)
ij

. (1)

The Hadamard product is an entrywise product of
two vectors, matrices, or tensors of the same dimen-
sions. For instance, given two matrices, A 2 RI⇥J

and B 2 RI⇥J , their Hadamard product is a matrix
of size I⇥J and is denoted by A~B. Without loss of
generality, the Hadamard product of a set of matrices
is simply denoted by

~
n

A

(n)
= A

(1) ~A

(2) ~ · · ·~A

(N). (2)

The Kronecker product [1] of matrices A 2 RI⇥J and
B 2 RK⇥L is a matrix of size IK ⇥ JL, denoted by
A ⌦B. The Khatri Rao product of matrices A 2 RI⇥K

and B 2 RJ⇥K is a matrix of size IJ ⇥ K, defined
by a columnwise Kronecker product and denoted by
A �B. In particular, the Khatri Rao product of a set
of matrices in reverse order is defined by

K

n

A

(n)
= A

(N) �A

(N�1) � · · ·�A

(1), (3)

while the Khatri Rao product of a set of matrices,
except the nth matrix, denoted by A

(\n), is defined
by
K

k 6=n

A

(k) = A

(N) � · · ·�A

(n+1) �A

(n�1) � · · ·�A

(1). (4)

3 BAYESIAN TENSOR FACTORIZATION

3.1 Probabilistic Model and Priors
Let Y be an incomplete N th-order tensor of size
I1 ⇥ I2 ⇥ · · · ⇥ I

N

with missing entries. The element
Y
i1i2...,iN is observed if (i1, i2, · · · , iN ) 2 ⌦, where ⌦

denotes a set of indices. We define an indicator tensor
O of the same size as Y ; its entry O

i1i2···in is equal to
1 if it is observed and otherwise is equal to 0.

We assume Y is a noisy observation of a true latent
tensor X , that is, Y = X + ", where the noise term
is assumed to be an i.i.d. Gaussian distribution, i.e.,
" ⇠ Q

i1,...,iN
N (0, ⌧�1

), and the latent tensor X can
be exactly represented by a CP model, given by

X =

R

X

r=1

a

(1)
r

� · · · � a(N)
r

= [[A

(1), . . . ,A(N)
]], (5)

where "�" denotes the outer product of vectors and
[[· · · ]] denotes a Kruskal operator of a set of matrices

having the same number of columns. {A(n)|n =

1, . . . , N} are latent factor matrices corresponding to
each of N modes, respectively. The CP model can be
interpreted as a sum of R rank-one tensors, which is
related to a precise definition of tensor rank, which
is the smallest integer R for which the above rep-
resentation holds [1]. In the following parts, mode-n
factor matrix A

(n) of size I
n

⇥ R is denoted by two
different representations using row-wise and column-
wise vectors, that is,

A

(n) =
h

a

(n)
1 , . . . ,a(n)

in
, . . . ,a(n)

In

iT
=

h

a

(n)
·1 , . . . ,a(n)

·r , . . . ,a(n)
·R

i

.

The CP generative model, together with noise as-
sumption, directly give rise to the observation model,
the probability density of partially observed tensor
Y⌦, (i.e., Y I(O=1)) given the parameters, which is
factorized over tensor elements

p
⇣

Y⌦

�

�

�

{A(n)}N
n=1, ⌧
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=

I1
Y

i1=1

· · ·
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Y

iN=1

N
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Y
i1i2...iN

�
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D

a

(1)
i1

,a(2)
i2

, · · · ,a(N)
iN

E

, ⌧�1
⌘Oi1···in

, (6)

where the parameter ⌧ denotes the noise precision,
and

D

a

(1)
i1

,a(2)
i2

, · · · ,a(N)
iN

E

=

P

r

Q

n

a(n)
inr

denotes an
inner-product of N (N � 3) vectors, which is defined
in (1). The likelihood model in (6) indicates that
Y
i1···iN can be generated from multiple R-dimensional

latent variables
�

a

(n)
in

�

�n = 1, . . . , N
 

, whereas each
latent variable a

(n)
in

corresponds to a set of observa-
tions rather than one, i.e., a subtensor whose mode-n
index is i

n

. Another interpretation is that each element
of Y depends on the similarity of its corresponding
N latent variables, which is measured by an inner
product of multiple vectors. The essential difference
between matrix and tensor factorization is that the
inner product of N � 3 latent variables allows us
to model the multilinear interaction structure, which
in turn leads to many more difficulties in model
learning.

Unlike the matrix case, the estimation of tensor
rank is a challenging problem. In practice, the ef-
fective dimensionality of the latent space, i.e., R, is
a tuning parameter selected by a specific criterion,
such as fitting error or generalization error. This
parameter controls the model complexity and thus
its selection can be considered as a model selection
problem. In our study, we seek an elegant automatic
model selection method, which can not only infer
the rank of the true latent tensor X , but also effec-
tively avoid the overfitting problem. To achieve this,
a set of continuous hyperparameters are employed
to control the variance related to each dimensionality
of the latent space, respectively. Since the minimum
R is desired in the sense of low rank approxima-
tion, a sparsity-inducing prior is specified over these
hyperparameters, resulting in it being possible to

⌦ indicates observed indices

O is a indicator tensor
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fective dimensionality of the latent space, i.e., R, is
a tuning parameter selected by a specific criterion,
such as fitting error or generalization error. This
parameter controls the model complexity and thus
its selection can be considered as a model selection
problem. In our study, we seek an elegant automatic
model selection method, which can not only infer
the rank of the true latent tensor X , but also effec-
tively avoid the overfitting problem. To achieve this,
a set of continuous hyperparameters are employed
to control the variance related to each dimensionality
of the latent space, respectively. Since the minimum
R is desired in the sense of low rank approxima-
tion, a sparsity-inducing prior is specified over these
hyperparameters, resulting in it being possible to
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parameter controls the model complexity and thus
its selection can be considered as a model selection
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model selection method, which can not only infer
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tively avoid the overfitting problem. To achieve this,
a set of continuous hyperparameters are employed
to control the variance related to each dimensionality
of the latent space, respectively. Since the minimum
R is desired in the sense of low rank approxima-
tion, a sparsity-inducing prior is specified over these
hyperparameters, resulting in it being possible to
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achieve automatic rank determination as a part of the
Baybesian inference process. This technique is known
as automatic relevance determination (ARD) [31] or
sparse Bayesian learning [32]. However, unlike the
traditional methods that place the ARD prior over
either latent variables or weight parameters, such
as Bayesian principle component analysis [33], our
method considers all model parameters as latent vari-
ables over which a sparsity-inducing prior is placed
with shared hyperparameters.

More specifically, we place a prior distribution over
the latent factors, governed by R-dimensional hyper-
parameters � = [�1, . . . ,�R

], where each �
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controls
rth component in A

(n). Thus, the prior of the mode-n
factor matrix is given by

p
�

A

(n)
�

��
�

=

In
Y

in=1

N �a(n)
in

�

�

0,⇤�1�, 8n 2 [1, N ], (7)

where ⇤ = diag(�) denotes the inverse covariance
matrix, also known as the precision matrix, and is
shared by latent factor matrices in all modes. We can
further define a hyperprior over hyperparameters �,
which is factorized over latent dimensionality due to
the independent assumption
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where Ga(x|a, b) denotes a Gamma distribution

Ga(x|a, b) = baxa�1e�bx
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and �(a) is the Gamma function.
Since the sparsity is enforced in the latent dimen-

sions, the initialization point of the dimensionality of
latent space (i.e., R) is usually set to its maximum
possible value, while the effective dimensionality can
be inferred automatically under a Bayesian inference
framework. For instance, if a particular �

r

has a
posterior distribution concentrated at large values,
the corresponding
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(n)
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|8n 2 [1, N ]} will tend to
be zero and effectively be pruned out. It should be
noted that since the priors are shared across N latent
matrices, our framework can learn the same sparsity
pattern for them, yielding the minimum number of
rank-one terms. Therefore, our model can effectively
infer the rank of tensor while performing the tensor
factorization, which can be treated as a Bayesian low-
rank tensor factorization.

To complete the model with a fully Bayesian treat-
ment, we also place a hyperprior over the noise
precision ⌧ , that is,

p(⌧) = Ga(⌧ |a0, b0). (10)

The probabilistic graph structure of the model is
illustrated in Fig. 1.
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Fig. 1. Probabilistic graphical model of Bayesian CP
factorization of an N th-order tensor.

For simplicity of notation, all unknowns, in-
cluding both model parameters and hyperparame-
ters, are collected and denoted together by ⇥ =
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the joint distribution of observed data and all latent
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By combining the likelihood in (6), the priors of model
parameters in (7), and the hyperpriors in (8) and (10),
the logarithm of the joint distribution is given by (see
Appendix for details)
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where M =

P

i1,...,iN
O

i1,...,iN denotes the total num-
ber of observations and "~" denotes the Hadamard
product of tensors. Without loss of generality, we can
perform maximum a posteriori (MAP) estimation of
latent matrices and hyperparameters by maximizing
(11), which is, to some extent, equivalent to optimiz-
ing a squared error function with regularized con-
straints imposed on the factor matrices and additional
constraints imposed on the regularization parameters.
Since this is non-convex, we can find only a locally
optimal MAP solution by using stochastic gradient
descent methods.

However, in this study, our objective is to develop
a method that, in contrast to the point estimation
methods, computes the full posterior distribution of
all variables in ⇥ given the observed data, that is,

p(⇥|Y⌦) =
p(⇥,Y⌦)

R

p(⇥,Y⌦) d⇥
. (12)
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(11), which is, to some extent, equivalent to optimiz-
ing a squared error function with regularized con-
straints imposed on the factor matrices and additional
constraints imposed on the regularization parameters.
Since this is non-convex, we can find only a locally
optimal MAP solution by using stochastic gradient
descent methods.

However, in this study, our objective is to develop
a method that, in contrast to the point estimation
methods, computes the full posterior distribution of
all variables in ⇥ given the observed data, that is,

p(⇥|Y⌦) =
p(⇥,Y⌦)

R

p(⇥,Y⌦) d⇥
. (12)
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achieve automatic rank determination as a part of the
Baybesian inference process. This technique is known
as automatic relevance determination (ARD) [31] or
sparse Bayesian learning [32]. However, unlike the
traditional methods that place the ARD prior over
either latent variables or weight parameters, such
as Bayesian principle component analysis [33], our
method considers all model parameters as latent vari-
ables over which a sparsity-inducing prior is placed
with shared hyperparameters.

More specifically, we place a prior distribution over
the latent factors, governed by R-dimensional hyper-
parameters � = [�1, . . . ,�R

], where each �
r

controls
rth component in A

(n). Thus, the prior of the mode-n
factor matrix is given by
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where ⇤ = diag(�) denotes the inverse covariance
matrix, also known as the precision matrix, and is
shared by latent factor matrices in all modes. We can
further define a hyperprior over hyperparameters �,
which is factorized over latent dimensionality due to
the independent assumption

p(�) =
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where Ga(x|a, b) denotes a Gamma distribution

Ga(x|a, b) = baxa�1e�bx
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and �(a) is the Gamma function.
Since the sparsity is enforced in the latent dimen-

sions, the initialization point of the dimensionality of
latent space (i.e., R) is usually set to its maximum
possible value, while the effective dimensionality can
be inferred automatically under a Bayesian inference
framework. For instance, if a particular �
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has a
posterior distribution concentrated at large values,
the corresponding
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|8n 2 [1, N ]} will tend to
be zero and effectively be pruned out. It should be
noted that since the priors are shared across N latent
matrices, our framework can learn the same sparsity
pattern for them, yielding the minimum number of
rank-one terms. Therefore, our model can effectively
infer the rank of tensor while performing the tensor
factorization, which can be treated as a Bayesian low-
rank tensor factorization.

To complete the model with a fully Bayesian treat-
ment, we also place a hyperprior over the noise
precision ⌧ , that is,

p(⌧) = Ga(⌧ |a0, b0). (10)

The probabilistic graph structure of the model is
illustrated in Fig. 1.
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Fig. 1. Probabilistic graphical model of Bayesian CP
factorization of an N th-order tensor.

For simplicity of notation, all unknowns, in-
cluding both model parameters and hyperparame-
ters, are collected and denoted together by ⇥ =

{A(1), . . . ,A(N),�, ⌧}. From Fig. 1, we can easily write
the joint distribution of observed data and all latent
variables as
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By combining the likelihood in (6), the priors of model
parameters in (7), and the hyperpriors in (8) and (10),
the logarithm of the joint distribution is given by (see
Appendix for details)
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where M =
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i1,...,iN
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i1,...,iN denotes the total num-
ber of observations and "~" denotes the Hadamard
product of tensors. Without loss of generality, we can
perform maximum a posteriori (MAP) estimation of
latent matrices and hyperparameters by maximizing
(11), which is, to some extent, equivalent to optimiz-
ing a squared error function with regularized con-
straints imposed on the factor matrices and additional
constraints imposed on the regularization parameters.
Since this is non-convex, we can find only a locally
optimal MAP solution by using stochastic gradient
descent methods.

However, in this study, our objective is to develop
a method that, in contrast to the point estimation
methods, computes the full posterior distribution of
all variables in ⇥ given the observed data, that is,

p(⇥|Y⌦) =
p(⇥,Y⌦)

R

p(⇥,Y⌦) d⇥
. (12)
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be zero and effectively be pruned out. It should be
noted that since the priors are shared across N latent
matrices, our framework can learn the same sparsity
pattern for them, yielding the minimum number of
rank-one terms. Therefore, our model can effectively
infer the rank of tensor while performing the tensor
factorization, which can be treated as a Bayesian low-
rank tensor factorization.

To complete the model with a fully Bayesian treat-
ment, we also place a hyperprior over the noise
precision ⌧ , that is,

p(⌧) = Ga(⌧ |a0, b0). (10)

The probabilistic graph structure of the model is
illustrated in Fig. 1.
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For simplicity of notation, all unknowns, in-
cluding both model parameters and hyperparame-
ters, are collected and denoted together by ⇥ =

{A(1), . . . ,A(N),�, ⌧}. From Fig. 1, we can easily write
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By combining the likelihood in (6), the priors of model
parameters in (7), and the hyperpriors in (8) and (10),
the logarithm of the joint distribution is given by (see
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where M =
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i1,...,iN
O

i1,...,iN denotes the total num-
ber of observations and "~" denotes the Hadamard
product of tensors. Without loss of generality, we can
perform maximum a posteriori (MAP) estimation of
latent matrices and hyperparameters by maximizing
(11), which is, to some extent, equivalent to optimiz-
ing a squared error function with regularized con-
straints imposed on the factor matrices and additional
constraints imposed on the regularization parameters.
Since this is non-convex, we can find only a locally
optimal MAP solution by using stochastic gradient
descent methods.

However, in this study, our objective is to develop
a method that, in contrast to the point estimation
methods, computes the full posterior distribution of
all variables in ⇥ given the observed data, that is,

p(⇥|Y⌦) =
p(⇥,Y⌦)
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p(⇥,Y⌦) d⇥
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Based on the posterior distribution of model param-
eters in ⇥, the predictive distribution over missing
entries, denoted by Y\⌦, can be inferred by

p(Y\⌦|Y⌦) =

Z

p(Y\⌦|⇥)p(⇥|Y⌦)d⇥, (13)

3.2 Model Learning via Bayesian Inference
An exact Bayesian inference in (12) and (13) would
integrate over all latent variables as well as hyperpa-
rameters, which is obviously analytically intractable.
Hence, we must resort to approximate inference. In
this section, we describe the development of a de-
terministic approximate inference method under a
variational Bayesian (VB) framework [34], [35] to learn
the probabilistic CP factorization model.

We therefore seek a distribution q(⇥) to approxi-
mate the true posterior distribution p(⇥|Y⌦) by min-
imizing the KL divergence, that is,
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where ln p(Y⌦) represents the model evidence,
and its lower bound is defined by L(q) =
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d⇥. Since the model evidence is
a constant, the maximum of the lower bound occurs
when the KL divergence vanishes, which implies that
q(⇥) = p(⇥|Y⌦).

For the initial derivation, it will be assumed that
the variational distribution is factorized w.r.t. each
variable ⇥
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It should be noted that this is the only assumption
about the distribution, while the particular functional
forms of the individual factors q

j
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j

) can be explicitly
derived in turn. The optimised form of the jth factor
based on the maximization of the lower bound L(q)
is given by
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where E
q(⇥\⇥j)

[·] denotes an expectation w.r.t. the q
distributions over all variables except ⇥

j

. Since the
distributions of all variables are drawn from the ex-
ponential family and are conjugate w.r.t. the distri-
butions of their parent variables (see Fig. 1), we can
derive the posterior distributions of model parameters
using (16) and (11).

3.2.1 Posterior distribution of factor matrices

As can be seen in the graphical model shown in Fig. 1,
the inference of mode-n factor matrix A

(n) can be per-
formed by receiving the messages from observed data

and its co-parents, including other factors A

(k), k 6= n
and the hyperparameter ⌧ , which are expressed by the
likelihood term (6), and incorporating the messages
from its parents, which are expressed by the prior
term (7). By applying (16), it has been shown that
their posteriors can be factorized as independent dis-
tributions of their rows, which are also Gaussian (see
Appendix for a detailed derivation), i.e., 8n 2 [1, N ],
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where Y I(Oin=1) is a sample function denoting a
subset of the observed entries Y⌦, whose mode-n
index is i

n

; that is, they are the observed entries that
are affected by the latent factor a
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. In (18), the most
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need to introduce the following results.
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Proof: See Appendix for details.

For simplicity, we attempt to compute (20) by mul-
tilinear operations in a tensor or matrix form. Hence,
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⇥ = {A(1), . . . ,A(N),�, ⌧}
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selection. In our study, we seek to avoid model se-
lection and instead use continuous hyperparameters to
determine automatically the appropriate dimensionality
for the latent space as a part of the process of Baybe-
sian inference. This technique is known as automatic
relevance determination (ARD) [19] or sparse Bayesian
learning [20]. To achieve it, we specify a hierarchi-
cal prior over the latent matrices, governed by a H-
dimensional vector of hyperparameters � = [�1, . . . ,�H ].
Each hyperparameter controls one of the columns of the
matrix A(m), given by

a(m)
h ⌅ N (0,��1

h INm), m = 1, . . . ,M (6)

where �h controls the inverse variance and is shared
by latent vectors in all modes. Hence, the conditional
distribution of the latent matrix in m-mode is defined
by
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Therefore, if a particular �h has posterior distribution
concentrated at large values, the corresponding

⇣
a(m)
h

⌘

will tend to be small and be effectively removed. The
dimensionality of the latent space is usually set to its
maximum possible value, while the effective dimen-
sionality can be inferred automatically under Bayesian
framework. The intuitive interpretation is that the we
seek to perform a tensor factorization with minimal
rank by placing the sparsity inducing priors over latent
matrices, which is called low-rank tensor factorization.

We apply a fully Bayesian treatment for our model by
specify a hyperprior over hyperparameters �, which is
expressed by

p(�) =
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Gam(�h|ch0 , dh0 ) (8)

where Gam(x|a, b) denotes a Gamma distribution given
by

Gam(x|a, b) = baxa�1e�bx

�(a)
(9)

and �(a) is the Gamma function. We also place a prior
over the noise precision in (4) given by

p(⇤) = Gam(⇤ |a0, b0). (10)

Therefore, the complete joint distribution can be written
as
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where all latent variables, model parameters and hy-
perparameters are collected and denoted together by
⇥ = {A(1), . . . ,A(M),�, ⇤}. The log of joint distribution

is written as
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where Xn1n2...nM =
⌅
a(1)n1 • a(2)n2 • · · · • a(M)

nM

⇧
. Note that

the first two terms are log-likelihood, the third term is
log priors of latent matrices and the rest terms are log
priors of hyperparameters. Maximizing (12) is, to some
extent, equivalent to optimize a squared error function
with regularized constrains imposed on factor matrices.
Since this is non-convex, we can just find a locally
optimal solution of MAP estimation of all unknowns
including latent matrices and hyperparameters by using
stochastic gradient descent methods. However, under
the fully Bayesian framework, we need to compute
the posterior distribution p(⇥|YO) where YO denotes
observed entries, i.e., Y I(O=1). Based on the posterior
distribution, the predictive distribution over missing
entries, denoted by Y\O, is given by

p(Y\O) =

�
p(Y\O|⇥)p(⇥|YO)d⇥. (13)

In addition, we can also infer the latent matrices with
their confidence regions and can infer the effective di-
mensionality of latent space (i.e., rank of a tensor). In
the next section we develop a variational Bayesian ap-
proximation inference which is achieved by optimizing
a rigorous lower bound on the marginal log likelihood
and is computationally efficient.

3 VARIATIONAL BAYESIAN INFERENCE
A fully Bayesian approach would integrate over all latent
variables and parameters as well as over the hyperpa-
rameters, which is obviously analytically intractable. We
must resort to the approximation inference. In this sec-
tion, we derive a variational Bayesian (VB) [21] approach
for our model to infer the posterior distributions over
the whole set of latent variables and hyperparameters
denoted by ⇥.

We therefore seek a distribution q(⇥) to approximate
the true posterior distribution p(⇥|Y) by minimizing the
KL divergence, that is
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Based on the posterior distribution of model param-
eters in ⇥, the predictive distribution over missing
entries, denoted by Y\⌦, can be inferred by

p(Y\⌦|Y⌦) =
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3.2 Model Learning via Bayesian Inference
An exact Bayesian inference in (12) and (13) would
integrate over all latent variables as well as hyperpa-
rameters, which is obviously analytically intractable.
Hence, we must resort to approximate inference. In
this section, we describe the development of a de-
terministic approximate inference method under a
variational Bayesian (VB) framework [34], [35] to learn
the probabilistic CP factorization model.

We therefore seek a distribution q(⇥) to approxi-
mate the true posterior distribution p(⇥|Y⌦) by min-
imizing the KL divergence, that is,
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where ln p(Y⌦) represents the model evidence,
and its lower bound is defined by L(q) =
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It should be noted that this is the only assumption
about the distribution, while the particular functional
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. Since the
distributions of all variables are drawn from the ex-
ponential family and are conjugate w.r.t. the distri-
butions of their parent variables (see Fig. 1), we can
derive the posterior distributions of model parameters
using (16) and (11).

3.2.1 Posterior distribution of factor matrices

As can be seen in the graphical model shown in Fig. 1,
the inference of mode-n factor matrix A

(n) can be per-
formed by receiving the messages from observed data

and its co-parents, including other factors A

(k), k 6= n
and the hyperparameter ⌧ , which are expressed by the
likelihood term (6), and incorporating the messages
from its parents, which are expressed by the prior
term (7). By applying (16), it has been shown that
their posteriors can be factorized as independent dis-
tributions of their rows, which are also Gaussian (see
Appendix for a detailed derivation), i.e., 8n 2 [1, N ],
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where the posterior parameters can be updated by
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where Y I(Oin=1) is a sample function denoting a
subset of the observed entries Y⌦, whose mode-n
index is i

n

; that is, they are the observed entries that
are affected by the latent factor a

(n)
in

. In (18), the most
complex term is related to

A

(\n)T
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=
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A

(k)
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, (19)
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T is of size R ⇥ Q
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, and
each column is computed by ~

k 6=n
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(k)
ik

with varying
mode-k index i

k

. The symbol (·)I(Oin=1) denotes a
subset of columns sampled according to the subtensor
O

in = 1. Hence, E
q

[A

(\n)T
in

A

(\n)
in

] denotes the poste-
rior covariance matrix of the Khatri-Rao product of
latent factors in all modes except the nth-mode, and
it contains only the columns corresponding to the
observed entries whose mode-n index is i

n

. In order
to evaluate this posterior covariance matrix, first we
need to introduce the following results.

Theorem 3.1. Given a set of independent random matrices
{A(n) 2 RIn⇥R|n = 1, . . . , N}, a

(n)
in

denotes i
n

th-row
random vector and these random vectors are assumed
independent. If 8n, 8i
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, E[a(n)
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] and Var
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Proof: See Appendix for details.

For simplicity, we attempt to compute (20) by mul-
tilinear operations in a tensor or matrix form. Hence,
8n, let B

(n) of size I
n

⇥ R2 denote an expectation of
a quadratic form related to A

(n) by defining the i
n

th-
row vector as b
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where 1

Q
n In

denotes a vector of length
Q

n

I
n

and all
elements are equal to one.

According to Theorem 3.1 and the computation
form in (21), the term E

q

⇥

A

(\n)T
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in (18) can be
evaluated efficiently by
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where B

(k) denotes a posterior quadratic form of A(k),
and O···in··· denotes a subtensor where the model-n
index is fixed to i

n

. It should be noted that in (22), the
Khatri-Rao product is computed on all mode factors
except the nth mode, while the sum is performed on
the n � 1 indices that interact with mode-n index i

n

,
yielding the observed entries, which is indicated by
the tensor O···in···. Another complicated part in (18)
can also be simplified by multilinear operations, i.e.,

E
q
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in
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Finally, the variational posterior approximation of
factor matrices can be obtained by evaluating (18).
On the basis of the approximated posterior, the poste-
rior moments, including 8n, 8i

n

, E
q

⇥
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in

⇤

, Var
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, which are
required for learning other latent variables in ⇥ can
easily be evaluated.

3.2.2 Posterior distribution of hyperparameters �

The prior of factor matrices is governed by hyper-
parameters � in which �

r

corresponds to the rth
component in the latent space. It should be noted
that, instead of point estimation via optimizations,
learning the posterior of � is crucial for automatic
model selection. As seen in Fig. 1, the inference of
� can be performed by receiving messages from N
factor matrices and incorporating the messages from
its hyperprior. By applying (16), we can identify the
posteriors of �

r

, 8r 2 [1, R] as an independent Gamma
distribution (see Appendix for details),

q�(�) =
R
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r

|cr
M

, dr
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), (24)

where cr
M

, dr
M

denote the posterior parameters
learned from M observations, which can be updated

by
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The expectation of the inner product of the rth com-
ponent in mode-n matrix w.r.t. q distribution can be
evaluated using the posterior parameters in (17), i.e.,

E
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By combining (25) and (26), we can further simplify
the computation of d
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, . . . dR
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]
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where ˜

A = E
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. Because of the property of
Gamma distribution, the posterior expectation of �
w.r.t. q distribution can be obtained by E
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m

, . . . , cR
M

/dR
M

]

T , and thus, E
q

[⇤] = diag(E
q

[�]).

3.2.3 Posterior distribution of hyperparameter ⌧

The inference of the noise precision ⌧ can be per-
formed by receiving the messages from observed data
and its co-parents, including N factor matrices, and
incorporating the messages from its hyperprior. By
applying (16), the variational posterior is a Gamma
distribution (see Appendix for details), given by

q
⌧

(⌧) = Ga(⌧ |a
M

, b
M

), (28)

where the posterior parameters can be updated by
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(29)

However, the posterior expectation of model error in
the above expression cannot be computed straight-
forwardly, and therefore, we need to introduce the
following results.

Theorem 3.2. Assume a set of independent R-dimensional
random vector {x(n)|n = 1, . . . , N}, if 8n, the E[x(n)

], and
Var[x(n)

] are known, then

E


D

x
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(30)
where the left term denotes the expectation of the square of
the inner products of N vectors, and the right term denotes
the inner products of N matrices, where each matrix of size
R ⇥ R denotes an expectation of the outer product of the
nth vector, respectively.

Proof: See Appendix for details.
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According to Theorem 3.1 and the computation
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where B

(k) denotes a posterior quadratic form of A(k),
and O···in··· denotes a subtensor where the model-n
index is fixed to i

n

. It should be noted that in (22), the
Khatri-Rao product is computed on all mode factors
except the nth mode, while the sum is performed on
the n � 1 indices that interact with mode-n index i
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,
yielding the observed entries, which is indicated by
the tensor O···in···. Another complicated part in (18)
can also be simplified by multilinear operations, i.e.,
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Finally, the variational posterior approximation of
factor matrices can be obtained by evaluating (18).
On the basis of the approximated posterior, the poste-
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, which are
required for learning other latent variables in ⇥ can
easily be evaluated.

3.2.2 Posterior distribution of hyperparameters �

The prior of factor matrices is governed by hyper-
parameters � in which �

r

corresponds to the rth
component in the latent space. It should be noted
that, instead of point estimation via optimizations,
learning the posterior of � is crucial for automatic
model selection. As seen in Fig. 1, the inference of
� can be performed by receiving messages from N
factor matrices and incorporating the messages from
its hyperprior. By applying (16), we can identify the
posteriors of �

r

, 8r 2 [1, R] as an independent Gamma
distribution (see Appendix for details),
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The expectation of the inner product of the rth com-
ponent in mode-n matrix w.r.t. q distribution can be
evaluated using the posterior parameters in (17), i.e.,
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By combining (25) and (26), we can further simplify
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where ˜
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w.r.t. q distribution can be obtained by E
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/dR
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]

T , and thus, E
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[⇤] = diag(E
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[�]).

3.2.3 Posterior distribution of hyperparameter ⌧

The inference of the noise precision ⌧ can be per-
formed by receiving the messages from observed data
and its co-parents, including N factor matrices, and
incorporating the messages from its hyperprior. By
applying (16), the variational posterior is a Gamma
distribution (see Appendix for details), given by

q
⌧

(⌧) = Ga(⌧ |a
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where the posterior parameters can be updated by
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However, the posterior expectation of model error in
the above expression cannot be computed straight-
forwardly, and therefore, we need to introduce the
following results.

Theorem 3.2. Assume a set of independent R-dimensional
random vector {x(n)|n = 1, . . . , N}, if 8n, the E[x(n)

], and
Var[x(n)

] are known, then
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where the left term denotes the expectation of the square of
the inner products of N vectors, and the right term denotes
the inner products of N matrices, where each matrix of size
R ⇥ R denotes an expectation of the outer product of the
nth vector, respectively.

Proof: See Appendix for details.
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Based on the posterior distribution of model param-
eters in ⇥, the predictive distribution over missing
entries, denoted by Y\⌦, can be inferred by

p(Y\⌦|Y⌦) =

Z

p(Y\⌦|⇥)p(⇥|Y⌦)d⇥, (13)

3.2 Model Learning via Bayesian Inference
An exact Bayesian inference in (12) and (13) would
integrate over all latent variables as well as hyperpa-
rameters, which is obviously analytically intractable.
Hence, we must resort to approximate inference. In
this section, we describe the development of a de-
terministic approximate inference method under a
variational Bayesian (VB) framework [34], [35] to learn
the probabilistic CP factorization model.

We therefore seek a distribution q(⇥) to approxi-
mate the true posterior distribution p(⇥|Y⌦) by min-
imizing the KL divergence, that is,

KL
�

q(⇥)

�

�

�

�p(⇥|Y⌦)
�

=

Z

q(⇥) ln

⇢

q(⇥)

p(⇥|Y⌦)

�

d⇥

= ln p(Y⌦)�
Z

q(⇥) ln

⇢

p(Y⌦,⇥)

q(⇥)

�

d⇥, (14)

where ln p(Y⌦) represents the model evidence,
and its lower bound is defined by L(q) =

R

q(⇥) ln

n

p(Y⌦,⇥)
q(⇥)

o

d⇥. Since the model evidence is
a constant, the maximum of the lower bound occurs
when the KL divergence vanishes, which implies that
q(⇥) = p(⇥|Y⌦).

For the initial derivation, it will be assumed that
the variational distribution is factorized w.r.t. each
variable ⇥

j

and therefore can be written as

q(⇥) = q
�

(�)q
⌧

(⌧)
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q
n
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(n)
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It should be noted that this is the only assumption
about the distribution, while the particular functional
forms of the individual factors q

j

(⇥

j

) can be explicitly
derived in turn. The optimised form of the jth factor
based on the maximization of the lower bound L(q)
is given by

ln q
j

(⇥

j

) = E
q(⇥\⇥j)

[ln p(Y ,⇥)] + const, (16)

where E
q(⇥\⇥j)

[·] denotes an expectation w.r.t. the q
distributions over all variables except ⇥

j

. Since the
distributions of all variables are drawn from the ex-
ponential family and are conjugate w.r.t. the distri-
butions of their parent variables (see Fig. 1), we can
derive the posterior distributions of model parameters
using (16) and (11).

3.2.1 Posterior distribution of factor matrices

As can be seen in the graphical model shown in Fig. 1,
the inference of mode-n factor matrix A

(n) can be per-
formed by receiving the messages from observed data

and its co-parents, including other factors A

(k), k 6= n
and the hyperparameter ⌧ , which are expressed by the
likelihood term (6), and incorporating the messages
from its parents, which are expressed by the prior
term (7). By applying (16), it has been shown that
their posteriors can be factorized as independent dis-
tributions of their rows, which are also Gaussian (see
Appendix for a detailed derivation), i.e., 8n 2 [1, N ],
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where Y I(Oin=1) is a sample function denoting a
subset of the observed entries Y⌦, whose mode-n
index is i

n

; that is, they are the observed entries that
are affected by the latent factor a

(n)
in

. In (18), the most
complex term is related to
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] denotes the poste-
rior covariance matrix of the Khatri-Rao product of
latent factors in all modes except the nth-mode, and
it contains only the columns corresponding to the
observed entries whose mode-n index is i
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. In order
to evaluate this posterior covariance matrix, first we
need to introduce the following results.
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Proof: See Appendix for details.

For simplicity, we attempt to compute (20) by mul-
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Based on the posterior distribution of model param-
eters in ⇥, the predictive distribution over missing
entries, denoted by Y\⌦, can be inferred by

p(Y\⌦|Y⌦) =

Z

p(Y\⌦|⇥)p(⇥|Y⌦)d⇥, (13)

3.2 Model Learning via Bayesian Inference
An exact Bayesian inference in (12) and (13) would
integrate over all latent variables as well as hyperpa-
rameters, which is obviously analytically intractable.
Hence, we must resort to approximate inference. In
this section, we describe the development of a de-
terministic approximate inference method under a
variational Bayesian (VB) framework [34], [35] to learn
the probabilistic CP factorization model.

We therefore seek a distribution q(⇥) to approxi-
mate the true posterior distribution p(⇥|Y⌦) by min-
imizing the KL divergence, that is,

KL
�

q(⇥)

�

�

�

�p(⇥|Y⌦)
�

=

Z

q(⇥) ln

⇢

q(⇥)
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�

d⇥

= ln p(Y⌦)�
Z

q(⇥) ln

⇢

p(Y⌦,⇥)

q(⇥)

�

d⇥, (14)

where ln p(Y⌦) represents the model evidence,
and its lower bound is defined by L(q) =

R

q(⇥) ln

n

p(Y⌦,⇥)
q(⇥)

o

d⇥. Since the model evidence is
a constant, the maximum of the lower bound occurs
when the KL divergence vanishes, which implies that
q(⇥) = p(⇥|Y⌦).

For the initial derivation, it will be assumed that
the variational distribution is factorized w.r.t. each
variable ⇥

j

and therefore can be written as

q(⇥) = q
�

(�)q
⌧

(⌧)
N

Y

n=1

q
n

⇣

A

(n)
⌘

. (15)

It should be noted that this is the only assumption
about the distribution, while the particular functional
forms of the individual factors q

j

(⇥

j

) can be explicitly
derived in turn. The optimised form of the jth factor
based on the maximization of the lower bound L(q)
is given by

ln q
j

(⇥

j

) = E
q(⇥\⇥j)

[ln p(Y ,⇥)] + const, (16)

where E
q(⇥\⇥j)

[·] denotes an expectation w.r.t. the q
distributions over all variables except ⇥

j

. Since the
distributions of all variables are drawn from the ex-
ponential family and are conjugate w.r.t. the distri-
butions of their parent variables (see Fig. 1), we can
derive the posterior distributions of model parameters
using (16) and (11).

3.2.1 Posterior distribution of factor matrices

As can be seen in the graphical model shown in Fig. 1,
the inference of mode-n factor matrix A

(n) can be per-
formed by receiving the messages from observed data

and its co-parents, including other factors A

(k), k 6= n
and the hyperparameter ⌧ , which are expressed by the
likelihood term (6), and incorporating the messages
from its parents, which are expressed by the prior
term (7). By applying (16), it has been shown that
their posteriors can be factorized as independent dis-
tributions of their rows, which are also Gaussian (see
Appendix for a detailed derivation), i.e., 8n 2 [1, N ],

q
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where the posterior parameters can be updated by
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where Y I(Oin=1) is a sample function denoting a
subset of the observed entries Y⌦, whose mode-n
index is i

n

; that is, they are the observed entries that
are affected by the latent factor a

(n)
in

. In (18), the most
complex term is related to
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where (
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k

, and
each column is computed by ~

k 6=n

a

(k)
ik

with varying
mode-k index i

k

. The symbol (·)I(Oin=1) denotes a
subset of columns sampled according to the subtensor
O

in = 1. Hence, E
q

[A

(\n)T
in

A

(\n)
in

] denotes the poste-
rior covariance matrix of the Khatri-Rao product of
latent factors in all modes except the nth-mode, and
it contains only the columns corresponding to the
observed entries whose mode-n index is i

n

. In order
to evaluate this posterior covariance matrix, first we
need to introduce the following results.

Theorem 3.1. Given a set of independent random matrices
{A(n) 2 RIn⇥R|n = 1, . . . , N}, a

(n)
in

denotes i
n

th-row
random vector and these random vectors are assumed
independent. If 8n, 8i
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] and Var
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Proof: See Appendix for details.

For simplicity, we attempt to compute (20) by mul-
tilinear operations in a tensor or matrix form. Hence,
8n, let B

(n) of size I
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⇥ R2 denote an expectation of
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(n) by defining the i
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Based on the posterior distribution of model param-
eters in ⇥, the predictive distribution over missing
entries, denoted by Y\⌦, can be inferred by

p(Y\⌦|Y⌦) =

Z

p(Y\⌦|⇥)p(⇥|Y⌦)d⇥, (13)

3.2 Model Learning via Bayesian Inference
An exact Bayesian inference in (12) and (13) would
integrate over all latent variables as well as hyperpa-
rameters, which is obviously analytically intractable.
Hence, we must resort to approximate inference. In
this section, we describe the development of a de-
terministic approximate inference method under a
variational Bayesian (VB) framework [34], [35] to learn
the probabilistic CP factorization model.

We therefore seek a distribution q(⇥) to approxi-
mate the true posterior distribution p(⇥|Y⌦) by min-
imizing the KL divergence, that is,

KL
�

q(⇥)

�

�
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�p(⇥|Y⌦)
�

=

Z

q(⇥) ln
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= ln p(Y⌦)�
Z

q(⇥) ln

⇢

p(Y⌦,⇥)

q(⇥)

�

d⇥, (14)

where ln p(Y⌦) represents the model evidence,
and its lower bound is defined by L(q) =

R

q(⇥) ln

n

p(Y⌦,⇥)
q(⇥)

o

d⇥. Since the model evidence is
a constant, the maximum of the lower bound occurs
when the KL divergence vanishes, which implies that
q(⇥) = p(⇥|Y⌦).

For the initial derivation, it will be assumed that
the variational distribution is factorized w.r.t. each
variable ⇥

j

and therefore can be written as

q(⇥) = q
�

(�)q
⌧

(⌧)
N

Y
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q
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A
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⌘
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It should be noted that this is the only assumption
about the distribution, while the particular functional
forms of the individual factors q

j

(⇥

j

) can be explicitly
derived in turn. The optimised form of the jth factor
based on the maximization of the lower bound L(q)
is given by

ln q
j

(⇥

j

) = E
q(⇥\⇥j)

[ln p(Y ,⇥)] + const, (16)

where E
q(⇥\⇥j)

[·] denotes an expectation w.r.t. the q
distributions over all variables except ⇥

j

. Since the
distributions of all variables are drawn from the ex-
ponential family and are conjugate w.r.t. the distri-
butions of their parent variables (see Fig. 1), we can
derive the posterior distributions of model parameters
using (16) and (11).

3.2.1 Posterior distribution of factor matrices

As can be seen in the graphical model shown in Fig. 1,
the inference of mode-n factor matrix A

(n) can be per-
formed by receiving the messages from observed data

and its co-parents, including other factors A

(k), k 6= n
and the hyperparameter ⌧ , which are expressed by the
likelihood term (6), and incorporating the messages
from its parents, which are expressed by the prior
term (7). By applying (16), it has been shown that
their posteriors can be factorized as independent dis-
tributions of their rows, which are also Gaussian (see
Appendix for a detailed derivation), i.e., 8n 2 [1, N ],
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where the posterior parameters can be updated by
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where Y I(Oin=1) is a sample function denoting a
subset of the observed entries Y⌦, whose mode-n
index is i

n

; that is, they are the observed entries that
are affected by the latent factor a

(n)
in

. In (18), the most
complex term is related to
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, and
each column is computed by ~
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. The symbol (·)I(Oin=1) denotes a
subset of columns sampled according to the subtensor
O

in = 1. Hence, E
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in

A
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] denotes the poste-
rior covariance matrix of the Khatri-Rao product of
latent factors in all modes except the nth-mode, and
it contains only the columns corresponding to the
observed entries whose mode-n index is i

n

. In order
to evaluate this posterior covariance matrix, first we
need to introduce the following results.

Theorem 3.1. Given a set of independent random matrices
{A(n) 2 RIn⇥R|n = 1, . . . , N}, a
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denotes i
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random vector and these random vectors are assumed
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Proof: See Appendix for details.

For simplicity, we attempt to compute (20) by mul-
tilinear operations in a tensor or matrix form. Hence,
8n, let B

(n) of size I
n

⇥ R2 denote an expectation of
a quadratic form related to A

(n) by defining the i
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Based on the posterior distribution of model param-
eters in ⇥, the predictive distribution over missing
entries, denoted by Y\⌦, can be inferred by

p(Y\⌦|Y⌦) =

Z

p(Y\⌦|⇥)p(⇥|Y⌦)d⇥, (13)

3.2 Model Learning via Bayesian Inference
An exact Bayesian inference in (12) and (13) would
integrate over all latent variables as well as hyperpa-
rameters, which is obviously analytically intractable.
Hence, we must resort to approximate inference. In
this section, we describe the development of a de-
terministic approximate inference method under a
variational Bayesian (VB) framework [34], [35] to learn
the probabilistic CP factorization model.

We therefore seek a distribution q(⇥) to approxi-
mate the true posterior distribution p(⇥|Y⌦) by min-
imizing the KL divergence, that is,

KL
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q(⇥)
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�p(⇥|Y⌦)
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=
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q(⇥) ln
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q(⇥) ln
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p(Y⌦,⇥)
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where ln p(Y⌦) represents the model evidence,
and its lower bound is defined by L(q) =

R

q(⇥) ln

n

p(Y⌦,⇥)
q(⇥)

o

d⇥. Since the model evidence is
a constant, the maximum of the lower bound occurs
when the KL divergence vanishes, which implies that
q(⇥) = p(⇥|Y⌦).

For the initial derivation, it will be assumed that
the variational distribution is factorized w.r.t. each
variable ⇥

j

and therefore can be written as

q(⇥) = q
�

(�)q
⌧

(⌧)
N

Y

n=1

q
n
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A

(n)
⌘

. (15)

It should be noted that this is the only assumption
about the distribution, while the particular functional
forms of the individual factors q

j

(⇥

j

) can be explicitly
derived in turn. The optimised form of the jth factor
based on the maximization of the lower bound L(q)
is given by

ln q
j

(⇥

j

) = E
q(⇥\⇥j)

[ln p(Y ,⇥)] + const, (16)

where E
q(⇥\⇥j)

[·] denotes an expectation w.r.t. the q
distributions over all variables except ⇥

j

. Since the
distributions of all variables are drawn from the ex-
ponential family and are conjugate w.r.t. the distri-
butions of their parent variables (see Fig. 1), we can
derive the posterior distributions of model parameters
using (16) and (11).

3.2.1 Posterior distribution of factor matrices

As can be seen in the graphical model shown in Fig. 1,
the inference of mode-n factor matrix A

(n) can be per-
formed by receiving the messages from observed data

and its co-parents, including other factors A

(k), k 6= n
and the hyperparameter ⌧ , which are expressed by the
likelihood term (6), and incorporating the messages
from its parents, which are expressed by the prior
term (7). By applying (16), it has been shown that
their posteriors can be factorized as independent dis-
tributions of their rows, which are also Gaussian (see
Appendix for a detailed derivation), i.e., 8n 2 [1, N ],
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where Y I(Oin=1) is a sample function denoting a
subset of the observed entries Y⌦, whose mode-n
index is i

n

; that is, they are the observed entries that
are affected by the latent factor a

(n)
in

. In (18), the most
complex term is related to
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] denotes the poste-
rior covariance matrix of the Khatri-Rao product of
latent factors in all modes except the nth-mode, and
it contains only the columns corresponding to the
observed entries whose mode-n index is i

n

. In order
to evaluate this posterior covariance matrix, first we
need to introduce the following results.

Theorem 3.1. Given a set of independent random matrices
{A(n) 2 RIn⇥R|n = 1, . . . , N}, a
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denotes i
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Proof: See Appendix for details.

For simplicity, we attempt to compute (20) by mul-
tilinear operations in a tensor or matrix form. Hence,
8n, let B
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⇥ R2 denote an expectation of
a quadratic form related to A

(n) by defining the i
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where 1

Q
n In

denotes a vector of length
Q

n

I
n

and all
elements are equal to one.

According to Theorem 3.1 and the computation
form in (21), the term E
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in (18) can be
evaluated efficiently by
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where B

(k) denotes a posterior quadratic form of A(k),
and O···in··· denotes a subtensor where the model-n
index is fixed to i

n

. It should be noted that in (22), the
Khatri-Rao product is computed on all mode factors
except the nth mode, while the sum is performed on
the n � 1 indices that interact with mode-n index i
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,
yielding the observed entries, which is indicated by
the tensor O···in···. Another complicated part in (18)
can also be simplified by multilinear operations, i.e.,
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Finally, the variational posterior approximation of
factor matrices can be obtained by evaluating (18).
On the basis of the approximated posterior, the poste-
rior moments, including 8n, 8i
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required for learning other latent variables in ⇥ can
easily be evaluated.

3.2.2 Posterior distribution of hyperparameters �

The prior of factor matrices is governed by hyper-
parameters � in which �

r

corresponds to the rth
component in the latent space. It should be noted
that, instead of point estimation via optimizations,
learning the posterior of � is crucial for automatic
model selection. As seen in Fig. 1, the inference of
� can be performed by receiving messages from N
factor matrices and incorporating the messages from
its hyperprior. By applying (16), we can identify the
posteriors of �

r

, 8r 2 [1, R] as an independent Gamma
distribution (see Appendix for details),
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The expectation of the inner product of the rth com-
ponent in mode-n matrix w.r.t. q distribution can be
evaluated using the posterior parameters in (17), i.e.,
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By combining (25) and (26), we can further simplify
the computation of d
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where ˜

A = E
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⇥
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⇤

. Because of the property of
Gamma distribution, the posterior expectation of �
w.r.t. q distribution can be obtained by E

q

[�] =

[c1
M

/d1
m

, . . . , cR
M

/dR
M

]

T , and thus, E
q

[⇤] = diag(E
q

[�]).

3.2.3 Posterior distribution of hyperparameter ⌧

The inference of the noise precision ⌧ can be per-
formed by receiving the messages from observed data
and its co-parents, including N factor matrices, and
incorporating the messages from its hyperprior. By
applying (16), the variational posterior is a Gamma
distribution (see Appendix for details), given by

q
⌧

(⌧) = Ga(⌧ |a
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, b
M

), (28)

where the posterior parameters can be updated by
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However, the posterior expectation of model error in
the above expression cannot be computed straight-
forwardly, and therefore, we need to introduce the
following results.

Theorem 3.2. Assume a set of independent R-dimensional
random vector {x(n)|n = 1, . . . , N}, if 8n, the E[x(n)

], and
Var[x(n)

] are known, then
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x
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x
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x
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x
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iE

(30)
where the left term denotes the expectation of the square of
the inner products of N vectors, and the right term denotes
the inner products of N matrices, where each matrix of size
R ⇥ R denotes an expectation of the outer product of the
nth vector, respectively.

Proof: See Appendix for details.
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According to Theorem 3.1 and the computation
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where B

(k) denotes a posterior quadratic form of A(k),
and O···in··· denotes a subtensor where the model-n
index is fixed to i

n

. It should be noted that in (22), the
Khatri-Rao product is computed on all mode factors
except the nth mode, while the sum is performed on
the n � 1 indices that interact with mode-n index i

n

,
yielding the observed entries, which is indicated by
the tensor O···in···. Another complicated part in (18)
can also be simplified by multilinear operations, i.e.,
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Finally, the variational posterior approximation of
factor matrices can be obtained by evaluating (18).
On the basis of the approximated posterior, the poste-
rior moments, including 8n, 8i
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, which are
required for learning other latent variables in ⇥ can
easily be evaluated.

3.2.2 Posterior distribution of hyperparameters �

The prior of factor matrices is governed by hyper-
parameters � in which �

r

corresponds to the rth
component in the latent space. It should be noted
that, instead of point estimation via optimizations,
learning the posterior of � is crucial for automatic
model selection. As seen in Fig. 1, the inference of
� can be performed by receiving messages from N
factor matrices and incorporating the messages from
its hyperprior. By applying (16), we can identify the
posteriors of �

r

, 8r 2 [1, R] as an independent Gamma
distribution (see Appendix for details),

q�(�) =
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where cr
M

, dr
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denote the posterior parameters
learned from M observations, which can be updated
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The expectation of the inner product of the rth com-
ponent in mode-n matrix w.r.t. q distribution can be
evaluated using the posterior parameters in (17), i.e.,
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By combining (25) and (26), we can further simplify
the computation of d
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]
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where ˜
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Gamma distribution, the posterior expectation of �
w.r.t. q distribution can be obtained by E
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/d1
m

, . . . , cR
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/dR
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]

T , and thus, E
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[⇤] = diag(E
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[�]).

3.2.3 Posterior distribution of hyperparameter ⌧

The inference of the noise precision ⌧ can be per-
formed by receiving the messages from observed data
and its co-parents, including N factor matrices, and
incorporating the messages from its hyperprior. By
applying (16), the variational posterior is a Gamma
distribution (see Appendix for details), given by

q
⌧

(⌧) = Ga(⌧ |a
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), (28)

where the posterior parameters can be updated by
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However, the posterior expectation of model error in
the above expression cannot be computed straight-
forwardly, and therefore, we need to introduce the
following results.

Theorem 3.2. Assume a set of independent R-dimensional
random vector {x(n)|n = 1, . . . , N}, if 8n, the E[x(n)

], and
Var[x(n)

] are known, then
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(30)
where the left term denotes the expectation of the square of
the inner products of N vectors, and the right term denotes
the inner products of N matrices, where each matrix of size
R ⇥ R denotes an expectation of the outer product of the
nth vector, respectively.

Proof: See Appendix for details.
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where B

(k) denotes a posterior quadratic form of A(k),
and O···in··· denotes a subtensor where the model-n
index is fixed to i

n

. It should be noted that in (22), the
Khatri-Rao product is computed on all mode factors
except the nth mode, while the sum is performed on
the n � 1 indices that interact with mode-n index i

n

,
yielding the observed entries, which is indicated by
the tensor O···in···. Another complicated part in (18)
can also be simplified by multilinear operations, i.e.,
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Finally, the variational posterior approximation of
factor matrices can be obtained by evaluating (18).
On the basis of the approximated posterior, the poste-
rior moments, including 8n, 8i
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, which are
required for learning other latent variables in ⇥ can
easily be evaluated.

3.2.2 Posterior distribution of hyperparameters �

The prior of factor matrices is governed by hyper-
parameters � in which �

r

corresponds to the rth
component in the latent space. It should be noted
that, instead of point estimation via optimizations,
learning the posterior of � is crucial for automatic
model selection. As seen in Fig. 1, the inference of
� can be performed by receiving messages from N
factor matrices and incorporating the messages from
its hyperprior. By applying (16), we can identify the
posteriors of �

r

, 8r 2 [1, R] as an independent Gamma
distribution (see Appendix for details),
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The expectation of the inner product of the rth com-
ponent in mode-n matrix w.r.t. q distribution can be
evaluated using the posterior parameters in (17), i.e.,

E
q

h

a

(n)T
·r a

(n)
·r
i

=

˜

a

(n)T
·r ˜

a

(n)
·r +

X

in

⇣

V

(n)
in

⌘

rr

. (26)

By combining (25) and (26), we can further simplify
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]

T , and thus, E
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3.2.3 Posterior distribution of hyperparameter ⌧

The inference of the noise precision ⌧ can be per-
formed by receiving the messages from observed data
and its co-parents, including N factor matrices, and
incorporating the messages from its hyperprior. By
applying (16), the variational posterior is a Gamma
distribution (see Appendix for details), given by
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However, the posterior expectation of model error in
the above expression cannot be computed straight-
forwardly, and therefore, we need to introduce the
following results.

Theorem 3.2. Assume a set of independent R-dimensional
random vector {x(n)|n = 1, . . . , N}, if 8n, the E[x(n)

], and
Var[x(n)

] are known, then
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where the left term denotes the expectation of the square of
the inner products of N vectors, and the right term denotes
the inner products of N matrices, where each matrix of size
R ⇥ R denotes an expectation of the outer product of the
nth vector, respectively.

Proof: See Appendix for details.
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where B

(k) denotes a posterior quadratic form of A(k),
and O···in··· denotes a subtensor where the model-n
index is fixed to i

n

. It should be noted that in (22), the
Khatri-Rao product is computed on all mode factors
except the nth mode, while the sum is performed on
the n � 1 indices that interact with mode-n index i

n

,
yielding the observed entries, which is indicated by
the tensor O···in···. Another complicated part in (18)
can also be simplified by multilinear operations, i.e.,
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Finally, the variational posterior approximation of
factor matrices can be obtained by evaluating (18).
On the basis of the approximated posterior, the poste-
rior moments, including 8n, 8i
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, which are
required for learning other latent variables in ⇥ can
easily be evaluated.

3.2.2 Posterior distribution of hyperparameters �

The prior of factor matrices is governed by hyper-
parameters � in which �
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corresponds to the rth
component in the latent space. It should be noted
that, instead of point estimation via optimizations,
learning the posterior of � is crucial for automatic
model selection. As seen in Fig. 1, the inference of
� can be performed by receiving messages from N
factor matrices and incorporating the messages from
its hyperprior. By applying (16), we can identify the
posteriors of �
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, 8r 2 [1, R] as an independent Gamma
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The expectation of the inner product of the rth com-
ponent in mode-n matrix w.r.t. q distribution can be
evaluated using the posterior parameters in (17), i.e.,
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By combining (25) and (26), we can further simplify
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q

[�] =

[c1
M

/d1
m

, . . . , cR
M

/dR
M

]

T , and thus, E
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3.2.3 Posterior distribution of hyperparameter ⌧

The inference of the noise precision ⌧ can be per-
formed by receiving the messages from observed data
and its co-parents, including N factor matrices, and
incorporating the messages from its hyperprior. By
applying (16), the variational posterior is a Gamma
distribution (see Appendix for details), given by
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where the posterior parameters can be updated by
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However, the posterior expectation of model error in
the above expression cannot be computed straight-
forwardly, and therefore, we need to introduce the
following results.

Theorem 3.2. Assume a set of independent R-dimensional
random vector {x(n)|n = 1, . . . , N}, if 8n, the E[x(n)

], and
Var[x(n)

] are known, then
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where the left term denotes the expectation of the square of
the inner products of N vectors, and the right term denotes
the inner products of N matrices, where each matrix of size
R ⇥ R denotes an expectation of the outer product of the
nth vector, respectively.

Proof: See Appendix for details.
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Demonstration of learning procedure
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Fig. 2. A toy example illustrating FBCP applied on an
incomplete tensor. The top row shows factor matrices
in three modes, while the bottom row shows the pos-
terior of �, the lower bound of marginal likelihood, and
the posterior of ⌧ from left to right.

our method with seven state-of-the-art methods based
on either tensor factorization or tensor completion
schemes. Our objective when using synthetic data
was to validate our method from several aspects:
i) rank determination capability; ii) reconstruction
performance given a complete tensor; iii) predictive
performance over missing entries given an incomplete
tensor; and iv) the sensitivity of the performance
w.r.t. the noise level and missing ratio. One typical
application of our method to real-world data is image
inpainting. Another application, newly introduced in
this study, is facial image synthesis under multiple
conditions.

5.1 Validation on Synthetic Data
The synthetic tensor data are generated by the fol-
lowing procedure. N factor matrices {A(n)}N

n=1 of size
I
n

⇥R are drawn from a standard normal distribution,
i.e., 8n, 8i

n

,a(n)
in

⇠ N (0, I
R

), and then, the true latent
tensor is constructed by X = [[A

1, . . . ,A(N)
]], which

is used to generate an observed tensor by Y = X +",
where " ⇠ Q

i1,...,iN
N (0,�2

) denotes an i.i.d. additive
noise whose parameter controls the noise level. The
missing entries, chosen uniformly, are marked by an
indicator tensor O.

5.1.1 A toy example

In this section, a toy example was used to illustrate
our model (see the demo videos in the supplemen-
tal material). First, a true latent tensor X of size
10⇥ 10⇥ 10 was generated such that the tensor rank
was R = 5, the noise parameter was �2

= 0.001, and
40% of entries were missing. Then, we applied our
method with the initial rank being set to 10. As shown
in Fig. 2, three factor matrices are inferred in which
five components are effectively pruned out, resulting
in automatic determination of the tensor rank. The
unnecessary components can be identified by the very

large values of hyperparameters �. The lower bound
of marginal likelihood increases monotonically, as
shown in Fig. 2, which indicates the effectiveness and
convergence of our algorithm. Finally, the posterior of
noise precision ⌧ ⇡ 1000 implies the method’s noise
detection and reduction capabilities.
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Fig. 3. Automatic determination of tensor rank under
varying experimental settings. The red and blue hori-
zontal dash dotted lines indicate the true tensor rank,
and the number on the top of each bar shows the rate
of exact detections.

5.1.2 Automatic determination of tensor rank

To evaluate the automatic determination of tensor
rank, extensive simulations were performed under
varying experimental conditions related to tensor size,
tensor rank, noise level, missing ratio, and the ini-
tialization method of factor matrices (e.g., SVD or
random sample). Each result is evaluated by 50 runs
corresponding to 50 different tensors generated under
the same criteria. All simulations are divided into four
groups. (A) Given complete tensors of size 20⇥20⇥20

with true rank R = 5, the evaluations were performed
under five different noise levels with an SNR ranging
from -20 dB to 20 dB, and by two different initial-
ization methods (see Fig. 3(a)). (B) Given incomplete
tensors of size 20⇥20⇥20 with R = 5 and SNR=20 dB,
the evaluations were performed under five missing
ratios, and by different initialization methods (see
Fig. 3(b)). (C) Given incomplete tensors with R = 5

and SNR=0 dB, the evaluations were performed under
varying missing ratios and two different tensor sizes
(see Fig. 3(c)). (D) Given incomplete tensors of size
20 ⇥ 20 ⇥ 20 with SNR=20 dB, the evaluations were
performed under varying missing ratios and two
different true ranks (see Fig. 3(d)).

From the results shown in Fig. 3, we observe that
SVD initialization is slightly better than random ini-
tialization in terms of the determination of tensor
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our method with seven state-of-the-art methods based
on either tensor factorization or tensor completion
schemes. Our objective when using synthetic data
was to validate our method from several aspects:
i) rank determination capability; ii) reconstruction
performance given a complete tensor; iii) predictive
performance over missing entries given an incomplete
tensor; and iv) the sensitivity of the performance
w.r.t. the noise level and missing ratio. One typical
application of our method to real-world data is image
inpainting. Another application, newly introduced in
this study, is facial image synthesis under multiple
conditions.

5.1 Validation on Synthetic Data
The synthetic tensor data are generated by the fol-
lowing procedure. N factor matrices {A(n)}N

n=1 of size
I
n

⇥R are drawn from a standard normal distribution,
i.e., 8n, 8i

n

,a(n)
in

⇠ N (0, I
R

), and then, the true latent
tensor is constructed by X = [[A

1, . . . ,A(N)
]], which

is used to generate an observed tensor by Y = X +",
where " ⇠ Q

i1,...,iN
N (0,�2

) denotes an i.i.d. additive
noise whose parameter controls the noise level. The
missing entries, chosen uniformly, are marked by an
indicator tensor O.

5.1.1 A toy example

In this section, a toy example was used to illustrate
our model (see the demo videos in the supplemen-
tal material). First, a true latent tensor X of size
10⇥ 10⇥ 10 was generated such that the tensor rank
was R = 5, the noise parameter was �2

= 0.001, and
40% of entries were missing. Then, we applied our
method with the initial rank being set to 10. As shown
in Fig. 2, three factor matrices are inferred in which
five components are effectively pruned out, resulting
in automatic determination of the tensor rank. The
unnecessary components can be identified by the very

large values of hyperparameters �. The lower bound
of marginal likelihood increases monotonically, as
shown in Fig. 2, which indicates the effectiveness and
convergence of our algorithm. Finally, the posterior of
noise precision ⌧ ⇡ 1000 implies the method’s noise
detection and reduction capabilities.
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Fig. 3. Automatic determination of tensor rank under
varying experimental settings. The red and blue hori-
zontal dash dotted lines indicate the true tensor rank,
and the number on the top of each bar shows the rate
of exact detections.

5.1.2 Automatic determination of tensor rank

To evaluate the automatic determination of tensor
rank, extensive simulations were performed under
varying experimental conditions related to tensor size,
tensor rank, noise level, missing ratio, and the ini-
tialization method of factor matrices (e.g., SVD or
random sample). Each result is evaluated by 50 runs
corresponding to 50 different tensors generated under
the same criteria. All simulations are divided into four
groups. (A) Given complete tensors of size 20⇥20⇥20

with true rank R = 5, the evaluations were performed
under five different noise levels with an SNR ranging
from -20 dB to 20 dB, and by two different initial-
ization methods (see Fig. 3(a)). (B) Given incomplete
tensors of size 20⇥20⇥20 with R = 5 and SNR=20 dB,
the evaluations were performed under five missing
ratios, and by different initialization methods (see
Fig. 3(b)). (C) Given incomplete tensors with R = 5

and SNR=0 dB, the evaluations were performed under
varying missing ratios and two different tensor sizes
(see Fig. 3(c)). (D) Given incomplete tensors of size
20 ⇥ 20 ⇥ 20 with SNR=20 dB, the evaluations were
performed under varying missing ratios and two
different true ranks (see Fig. 3(d)).

From the results shown in Fig. 3, we observe that
SVD initialization is slightly better than random ini-
tialization in terms of the determination of tensor
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(a) (b) (c) (d)

Fig. 10. (a) Ground truth of 49 unknown facial images. (b), (c), (d) Synthetic images produced by FBCP,
CPWOPT, and FaLRTC, respectively.

TABLE 3
Performance evaluated by RSEs based on total

images (T) and missing images (M)

Method 36/270 49/270 64/270 81/270

T M T M T M T M
FBCP 0.06 0.10 0.06 0.10 0.09 0.15 0.12 0.20

CPWOPT 0.53 0.65 0.56 0.61 0.58 0.59 0.65 0.73
FaLRTC 0.11 0.28 0.13 0.30 0.15 0.31 0.19 0.34
HardC. 0.37 0.37 0.37 0.40 0.37 0.40 0.37 0.40

the unknown images. We performed experiments us-
ing FBCP, CPWOPT, FaLRTC, and HardC. methods
under different missing ratios, i.e., 36, 49, 64, and 81
missing images out of 270 total images; the initial rank
was set to 100. Other algorithms were not applied,
since they are either computationally intractable for
a large dataset or not applicable to a higher order
tensor with N � 4. Since completion-based algorithms
output the exactly equivalent values for observed
data, the RSEs for missing images are more reliable
for drawing comparisons of generalization ability.

As shown in Fig. 10, the visual effects of image
synthesis produced by FBCP are significantly superior
to those produced by both CPWOPT and FaLRTC.
The synthetic images obtained by FaLRTC are too
smooth and blurred, while its performance is much
better than that of CPWOPT. The detailed perfor-
mances are compared in Table 3. We observe that
FBCP, which is also a factorization-based approach,
significantly outperforms FaLRTC and HardC. under
all different missing ratios, especially in terms of the
RSE for unknown images. These results demonstrate
the potential advantages of FBCP for modeling a data
ensemble under multiple conditions and for modeling
a higher order tensor with N � 4. There are many
potential applications based on this experiment, one
of which is the generation of a complete set of images
under varying conditions, which can be used to train
a robust classifier. Another is the inference of a frontal
image given the profile images of a novel person,
which is quite promising for achieving a robust face
recognition in surveillance videos.

6 CONCLUSIONS

In this paper, we proposed a Bayesian CP factor-
ization under a probabilistic framework, which can
naturally handle incomplete and noisy tensor data.
By enforcing appropriate priors together with hy-
perpriors over model parameters, a fully Bayesian
treatment was employed to derive a deterministic
solution for model inference. The most significant ad-
vantages are automatic determination of tensor rank
and superior predictive ability. Moreover, as a fully
tuning parameter-free approach, our method avoids
the parameter selection problem, which can also effec-
tively prevent overfitting. To provide computational
efficiency, we developed an efficient algorithm based
on multilinear operations that scales linearly with the
tensor size. Empirical results validate the effectiveness
of the proposed method in terms of discovering the
ground truth of tensor rank and imputing missing
values for an extremely sparse tensor. Several real-
world applications, such as image completion and
image synthesis, were used to demonstrate the supe-
rior qualities of our method as compared to state-of-
the-art tensor-factorization and tensor-completion ap-
proaches. In summary, because of several interesting
properties, our method would be attractive for many
potential applications.
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that can obtain optimal generalization performance, whereas
this problem is more challenging as compared to tensor
decomposition for a fully observed tensor. More specifically,
existing model selections including cross-validation are not
applicable due to correlations between the optimal tensor
rank and number of observed data points. Although numerous
tensor decomposition methods for partially observed tensor
were developed in [33], [34], [35], [36], [37], [38], [39],
[40], the most challenging task of specifying tensor rank
was conveyed to user, and thus was done mostly based on
an implicit assumption that missing data is known. Several
studies have considered automatic rank determination for CP
decomposition [5], [41]. In contrast to CP rank, multilinear
rank has more degree of freedom. An alternative framework
for tensor completion, based on a low-rank assumption, was
developed by minimizing the nuclear norm of approximate
tensor, which corresponds to a convex relaxation of rank
minimization problem [42]. Although this technique success-
fully avoids specifying tensor rank manually, several tuning
parameters are required and sensitive to missing ratio. Hence,
it essentially transformed the model selection problem to a
parameter selection problem. The nuclear norm based tensor
completion was shown to be attractive in recent years [43],
[44], [45], [46], [47], [48]. Many variants by imposing addi-
tional constraints were also exploited in [49], [50] which have
shown advantages for some specific type of data. However,
the best performance was mostly obtained by carefully tuning
parameters based on implicit assumption that missing data is
known. Another issue is that the definition of nuclear norm
of tensor corresponds to a (weighted) summation of mode-
n rank R

n

denoting the dimension of latent factor matrices.
However, the dimension of core tensor

Q
n

R
n

represents the
model complexity of whole tensor as described previously.
As a result, another possible framework can be introduced by
optimization of logarithm transformed nuclear norm.

In this paper, we introduce two different generative models
for Tucker decomposition of a complete tensor and Tucker
completion of an incomplete tensor, which can automatically
infer the optimal multilinear rank solely from observed data.
To achieve automatic model determination, we investigate
structural sparse modeling through formulating Laplace as
well as Student-t distributions in a hierarchial representation
to facilitate full posterior inference, which therefore can be
further extended to enforce group sparsity over factor matrices
and structural sparsity over core tensor. For model learning,
we derive the full posterior inference under a variational
Bayesian framework, including remarkable inference for the
non-conjugate hierarchical Laplace prior. Finally, all model
parameters can be inferred as well as predictive distribution
over missing data without needing of tuning parameters. In
addition, we introduce several Theorems based on multilinear
operations to improve computational efficiency and scalability.

The rest of this paper is organized as follows: Section II
presents notations and multilinear operations. In Section III,
we present group sparse modeling by hierarchical sparsity
inducing priors. Section IV presents Bayesian Tucker model
for tensor decomposition, while Section V presents Bayesian
Tucker model for tensor completion. The algorithm related

issues are discussed in Section VI. Section VII shows experi-
mental results followed by conclusion in Section VIII.

II. PRELIMINARIES AND NOTATIONS

Let X ,X,x denote a tensor, matrix, vector respective-
ly. Given an N th-order tensor X 2 RI1⇥I2⇥···⇥IN , its
(i1, . . . , iN )th entry is denoted by X

i1···iN , where i
n

=

1, . . . , I
n

, n = 1, . . . , N . The standard Tucker decomposition
is defined by

X = G ⇥1 U
(1) ⇥2 U

(2) ⇥ · · ·⇥
N

U

(N). (1)�
U

(n) 2 RIn⇥Rn
 
N

n=1
are a set of mode-n factor ma-

trices, G 2 RR1⇥R2⇥···⇥RN denotes the core tensor and
(R1, . . . , RN

) denote the dimensions of mode-n latent space,
respectively. The overall model complexity can be represented
by
Q

n

R
n

or
P

n

R
n

, whose minimum associated values
{R

n

}N
n=1 is termed as multilinear rank of tensor X [9]. For

a specific U

(n), we denote its row vectors by
�
u

(n)
in

��i
n

=

1, . . . , I
n

 
and its column vectors by

�
u

(n)
·rn
��r

n

= 1, . . . , R
n

 
.

Definition II.1. Let
�
U

(n) 2 RIn⇥Rn
 
N

n=1
denote a set of

matrices, the sequential Kronecker products in a reversed order
is defined and denoted byO

n

U

(n)
= U

(N) ⌦U

(N�1) ⌦ · · ·⌦U

(1).O
k 6=n

U

(k)
= U

(N) ⌦ · · ·⌦U

(n+1) ⌦U

(n�1) ⌦ · · ·⌦U

(1).

The symbol ⌦ denotes Kronecker product.
N

n

U

(n) is a
matrix of size (

Q
n

I
n

⇥Q
n

R
n

).

The Tucker decomposition (1) can be also represented by
using matrix, vector, or element-wise forms, given by

X(n) = U

(n)
G(n)

 O
k 6=n

U

(k)T

!
,

vec(X ) =

✓O
n

U

(n)

◆
vec(G),

X
i1···iN =

✓O
n

u

(n)T
in

◆
vec(G).

(2)

It should be noted that the multilinear operation is signif-
icantly efficient for computation. For example, if we com-
pute

N
n

U

(n) firstly and then multiply it with vec(G), both
the computation and memory complexity is O (

Q
n

I
n

R
n

).
In contrast, if we apply a sequence of multilinear opera-
tions (·)⇥

n

U

(n) without explicitly computing
N

n

U

(n), the
computational complexity is O (min

n

(R
n

)

Q
n

I
n

) while the
memory cost is O(

Q
n

I
n

). In this paper, we use notationN
n

(·) frequently for clarity, however, the implementation can
be performed by using multilinear operations.

III. HIERARCHICAL GROUP SPARSITY PRIORS

The sparsity inducing priors are considerably important
and powerful for many machine learning models. The most
popular ones are Laplace, Student-t, and Spike and slab
priors. However, these priors are often not conjugate with
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the likelihood distribution, which leads to difficulties for
fully Bayesian inference. In contrast, another popular sparsity
inducting prior is automatic relevance determination (ARD),
which has been widely applied in many powerful methods
such as relevance vector machine and Bayesian principle
component analysis [51], [52], [53]. The advantages of ARD
prior lie in its conjugacy resulted from a hierarchical structure.
Note that ARD prior is essentially a hierarchical Student-t
distribution since its marginal distribution isZ 1

0
N (x|0,��1

)Ga(�|a, b) d� = T (x|0, ab�1, 2a). (3)

Ga(x|a, b) =

b

a

�(a)x
a�1e�bx denotes a Gamma distribution

and T (x) denotes a Student-t distribution.
A straightforward question is that can we represent Laplace

prior by the hierarchical distributions which are conjugate?
As shown in [54], [55], a hierarchical structure of Gaus-
sian and Exponential distributions yields a Laplace marginal
distribution, whereas they are not conjugate priors. In this
paper, we present another hierarchial Laplace distribution
by employing an Inverse Gamma distribution IG(x|a, b) =

b

a

�(a)x
�a�1e�bx

�1

. Thus, we can show that the marginal
distribution isZ 1

0
N (x|0,��1

)IG(�|1, �
2

) d� = Laplace
�
x|0, 1p

�

�
. (4)

Note that � govern the degree of sparsity, for example, if � =

1, then p(x) / e�|x|.
We consider to employ the above hierarchical priors to

group sparse modeling. Let X = {x1, . . . ,xR

} denote R
groups of random variables where x

r

2 RIr denote rth group
that contains I

r

random variables. The group sparse modeling
is to enforce sparsity on groups in contrast to the individual
random variables, which effectively take into account the
clustering properties of relevant variables. To employ the
hierarchial sparsity priors for group sparse model, it can be
specified as 8r = 1, . . . , R,

Student-t: x

r

⇠ N (0,��1
r

I

Ir ), �
r

⇠ Ga(a, b), (5)

Laplace: x

r

⇠ N (0,��1
r

I

Ir ), �
r

⇠ IG(1,
�

2

). (6)

Therefore, the marginal distributions of X can be de-
rived as p(X ) =

Q
R

r=1 T (x

r

|0, ab�1, 2a) and p(X ) =Q
R

r=1 Laplace(xr

|0, 1p
�

), where T (x), Laplace(x) denote a
multivariate Student-t distribution and a multivariate Laplace
distribution respectively [56]. One can show that when a =

b ! 0, then 8r, p(x
r

) / (1/kx
r

k2)Ir . When � ! 1, then
8r, p(x

r

) / e�kxrk2 .

IV. BAYESIAN SPARSE TUCKER DECOMPOSITION

A. Model specification

We first consider the Bayesian Tucker model for an N th-
order tensor Y 2 RI1⇥···⇥IN that is fully observed. We assume
that Y is a measurement of the latent tensor X corrupted
by i.i.d. Gaussian noises, i.e., Y = X + ", where X is
generated exactly by the Tucker representation as shown in

(1). Therefore, the observation model can be specified by a
vectorized form,

vec(Y)

���nU(n)
o
,G, ⌧ ⇠ N

 ✓O
n

U

(n)
◆

vec(G), ⌧�1
I

!
.

(7)
Our objective is to infer the model parameters, as well as
model complexity, automatically and solely from given data.
To this end, we propose the hierarchical prior distributions over
all model (hyper)parameters. For noise precision ⌧ , a Gamma
prior can be simply placed with appropriate hyperparameters,
yielding an noninformative prior distribution.

To modeling tensor data by an appropriate model complexi-
ty, it is important to design the flexible prior distributions over
the factor matrices {U(n)}, n = 1, . . . , N , and the core tensor
G. Since the model complexity of Tucker decompositions de-
pends on the dimensions of G, denoted by (R1, R2, . . . , RN

),
while R

n

, n = 1, . . . , N also correspond to the number of
columns in model-n factor matrix U

(n) and thus represent the
dimensions of mode-n latent space. The minimal number of
{R

n

}N
n=1 i.e., multilinear rank [9], usually need to be given in

advance. However, due to the presence of noise, the optimal
selection of multlinear rank is quite challenging. Although
some model selection criterions can be applied, the accuracy
significantly depends on the decomposition algorithms, result-
ing in less stability and high computational cost. Therefore, we
seek an elegant automatic model selection, which can not only
infer the multilinear rank, but also effectively avoid overfitting.
To achieve this, we employ the proposed group sparsity priors
over factor matrices. More specifically, each U

(n) is govern
by hyperparameters �(n) 2 RRn , where �

(n)
rn controls the

precision related to r
n

group (i.e., r
n

th column). Due to the
group sparsity inducing property, the dimensions of latent
space will be enforced to be minimal. On the other hand, the
core tensor G also needs to be as sparse as possible. However,
if we straightforwardly place an independent sparsity prior,
the interactions between G and {U(n)} cannot be modeled,
which may lead to inaccurate estimation of multilinear rank.
As G

r1,...,rN can be considered as the scalar coefficient of the
rank-one tensor u

(1)
·r1 ⌦ · · · ⌦ u

(N)
·rN that involves r

n

th column
of U(n), respectively, if 9n, 9r

n

,u
(n)
·rn = 0, then the subtensor

G···rn··· should be also enforced to be zero. Hence, we can
use

Q
n

�
(n)
rn to control the precision of G

r1,...,rN , which is
expressed by

G
r1···rN

��� n�(n)
o
,� ⇠ N

 
0,
⇣
�
Y
n

�(n)
rn

⌘�1
!
, (8)

where � is a scale parameter related to the magnitude of G, on
which a hyperprior can be placed. Note that �(n) are shared
between U

(n) and G, leading to the consistent sparsity patterns
over them.

The hyperprior over �(n) play a key role for different
sparsity inducing priors. We propose two hierarchial priors
including Student-t and Laplace for group sparsity. Let ⇤(n)

=

diag(�(n)
), we can finally specify the hierarchial model priors
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as

⌧ ⇠ Ga
�
a⌧0 , b

⌧

0

�
,

vec(G)
��� n�(n)

o
,� ⇠ N

0@
0,

 
�
O
n

⇤

(n)

!�1
1A ,

� ⇠ Ga
�
a�0 , b

�

0

�
,

u

(n)
in

���(n) ⇠ N
⇣
0, ⇤(n)�1

⌘
, 8n, 8i

n

,

Student-t: �(n)
rn

⇠ Ga
�
a�0 , b

�

0

�
, 8n, 8r

n

,

Laplace: �(n)
rn

⇠ IG
�
1,

�

2

�
, 8n, 8r

n

,

� ⇠ Ga(a�0 , b
�

0).

(9)

The prior for the core tensor G is written as a tensor-variate
Gaussian distribution. The observation model in (7) and the
hierarchial priors in (9) are integrated, which is termed as
Bayesian Sparse Tucker Decomposition (BSTD) model. Note
that there are two proposed hierarchial sparsity priors in
BSTD model, which are thus denoted respectively by BSTD-T
(Student-t priors) and BSTD-L (Laplace priors).

For simplicity, all unknown (hyper)parameters
in BSTD model are collected and denoted by
⇥ = {G,U(1), . . . ,U(N),�(1), . . . ,�(N), ⌧,�, �}. Thus
the joint distribution of BSTD model is written as

p(Y ,⇥) = p
�Y |{U(n)},G, ⌧�Y

n

p
�
U

(n)
���(n)�

⇥ p
�G��{⇤(n)},��Y

n

p
�
�(n)|��p(�)p(�)p(⌧). (10)

In general, maximum a posterior (MAP) of ⇥ can be estimated
by optimizations of logarithm joint distribution w.r.t. each
parameters alternately. However, due to the property of point
estimation, MAP is still prone to overfitting. In contrast, we
aim to infer the posterior distributions of ⇥ under a fully
Bayesian treatment, which is p(⇥|Y) =

p(⇥,Y)R
p(⇥,Y) d⇥

.

B. Model inference

The model learning can be performed by the approxi-
mate Bayesian inferences when the posterior distributions
are analytically intractable. Since the variational Bayesian
inference [57] is more efficient and scalable as compared to
sampling based inference methods, we employ VB technique
to learn both BSTD-T and BSTD-L models. It should be noted
that the hierarchial Laplace priors are not conjugate, resulting
in a challenging problem to be addressed. In this section,
we present the main solutions for model inference while the
detailed derivations and proofs are provided in the Appendix.

VB inference aims to seek an optimal q(⇥) to ap-
proximate the true posterior distribution in the sense
of minKL(q(⇥)||p(⇥|Y)). Since KL(q(⇥)||p(⇥|Y)) =

ln p(Y) � L(q), the optimum of q(⇥) can be achieved by
maximization of lower bound L(q) that can be computed
explicitly. To achieve this, we assume that the variational
approximation posteriors can be factorized as

q(⇥) = q(G)q(�)
Y
n

q
�
U

(n)
�Y

n

q(�(n)
)q(�)q(⌧). (11)

Then, the optimized form of jth parameters based on
max

q(⇥j) L(q) is given by

q
j

(⇥

j

) / exp
�
E
q(⇥\⇥j) [ln p(Y ,⇥)]

 
. (12)

E
q(⇥\⇥j)[·] denotes an expectation w.r.t. q distribution over

all variables in ⇥ except ⇥
j

. In the following, we use E[·] to
denote the expectation w.r.t. q(⇥) for simplicity.

As can be derived, the variational posterior distribution over
the core tensor G is

q(G) = N
⇣

vec(G)��vec(eG),⌃
G

⌘
, (13)

where the posterior parameters can be updated by

vec(eG) = E[⌧ ]⌃G
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n
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U(n)T

i!
vec (Y) , (14)

⌃G =

(
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O
n

E
h
⇤(n)

i
+ E[⌧ ]

O
n

E
h
U(n)TU(n)

i)�1

. (15)

Most of expectation terms in (14), (15) are the functions
linearly related to the corresponding ⇥

j

, which can thus be
easily evaluated from their posterior q(⇥

j

). For example,
E[U(n)T

] can be evaluated according to q(U(n)
) shown in

(16), as can be similarly computed for E[⌧ ], E[�], and E[⇤(n)
].

It should be noted that the expectation involving a quadratic
term can be evaluated explicitly by using E[U

(n)T
U

(n)
] =

E[U(n)T
]E[U(n)

] + I
n

 

(n), which requires the posterior pa-
rameters given in (16).

The computational complexity for posterior update of G is
O �Q
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n

I
n

R
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�
that polynomially scales with mod-

el complexity denoted by
Q

n

R
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and linearly scales with
data size denoted by

Q
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I
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. In general, it is dominated
by O �Q
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, which is related to the matrix inverse. The

memory cost is O �Q
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R
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, dominated by ⌃
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and ⌦
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(·). It should be noted that multilinear operations
Y ⇥1 E[U(1)T
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] can be performed without

explicitly computing ⌦
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], thus reducing the memory
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and also reducing computation
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+
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I
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). To further improve compu-
tation and memory efficiency, we introduce several important
Theorems as follows.

Theorem IV.1. Let
�
⌃

(n) be a set of diagonalizable matri-
ces, and c1, c2 denote arbitrary scalars. If 8n = 1, . . . , N ,
the spectral decompositions are represented by ⌃
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=

V
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D

(n)
V

(n)T , then 
c1I+ c2
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⌃(n)

!�1
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!
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Proof. See Appendix for the detailed proof.

Theorem IV.2. Let
�
⇤

(n) be a set of diagonal matrices,�
⌃

(n) be a set of diagonalizable matrices, and c1, c2 be
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the likelihood distribution, which leads to difficulties for
fully Bayesian inference. In contrast, another popular sparsity
inducting prior is automatic relevance determination (ARD),
which has been widely applied in many powerful methods
such as relevance vector machine and Bayesian principle
component analysis [51], [52], [53]. The advantages of ARD
prior lie in its conjugacy resulted from a hierarchical structure.
Note that ARD prior is essentially a hierarchical Student-t
distribution since its marginal distribution isZ 1

0
N (x|0,��1

)Ga(�|a, b) d� = T (x|0, ab�1, 2a). (3)

Ga(x|a, b) =

b

a

�(a)x
a�1e�bx denotes a Gamma distribution

and T (x) denotes a Student-t distribution.
A straightforward question is that can we represent Laplace

prior by the hierarchical distributions which are conjugate?
As shown in [54], [55], a hierarchical structure of Gaus-
sian and Exponential distributions yields a Laplace marginal
distribution, whereas they are not conjugate priors. In this
paper, we present another hierarchial Laplace distribution
by employing an Inverse Gamma distribution IG(x|a, b) =

b

a

�(a)x
�a�1e�bx

�1

. Thus, we can show that the marginal
distribution isZ 1

0
N (x|0,��1

)IG(�|1, �
2

) d� = Laplace
�
x|0, 1p

�

�
. (4)

Note that � govern the degree of sparsity, for example, if � =

1, then p(x) / e�|x|.
We consider to employ the above hierarchical priors to

group sparse modeling. Let X = {x1, . . . ,xR

} denote R
groups of random variables where x

r

2 RIr denote rth group
that contains I

r

random variables. The group sparse modeling
is to enforce sparsity on groups in contrast to the individual
random variables, which effectively take into account the
clustering properties of relevant variables. To employ the
hierarchial sparsity priors for group sparse model, it can be
specified as 8r = 1, . . . , R,

Student-t: x

r

⇠ N (0,��1
r

I

Ir ), �
r

⇠ Ga(a, b), (5)

Laplace: x

r

⇠ N (0,��1
r

I

Ir ), �
r

⇠ IG(1,
�

2

). (6)

Therefore, the marginal distributions of X can be de-
rived as p(X ) =

Q
R

r=1 T (x

r

|0, ab�1, 2a) and p(X ) =Q
R

r=1 Laplace(xr

|0, 1p
�

), where T (x), Laplace(x) denote a
multivariate Student-t distribution and a multivariate Laplace
distribution respectively [56]. One can show that when a =

b ! 0, then 8r, p(x
r

) / (1/kx
r

k2)Ir . When � ! 1, then
8r, p(x

r

) / e�kxrk2 .

IV. BAYESIAN SPARSE TUCKER DECOMPOSITION

A. Model specification

We first consider the Bayesian Tucker model for an N th-
order tensor Y 2 RI1⇥···⇥IN that is fully observed. We assume
that Y is a measurement of the latent tensor X corrupted
by i.i.d. Gaussian noises, i.e., Y = X + ", where X is
generated exactly by the Tucker representation as shown in

(1). Therefore, the observation model can be specified by a
vectorized form,

vec(Y)

���nU(n)
o
,G, ⌧ ⇠ N

 ✓O
n

U

(n)
◆

vec(G), ⌧�1
I

!
.

(7)
Our objective is to infer the model parameters, as well as
model complexity, automatically and solely from given data.
To this end, we propose the hierarchical prior distributions over
all model (hyper)parameters. For noise precision ⌧ , a Gamma
prior can be simply placed with appropriate hyperparameters,
yielding an noninformative prior distribution.

To modeling tensor data by an appropriate model complexi-
ty, it is important to design the flexible prior distributions over
the factor matrices {U(n)}, n = 1, . . . , N , and the core tensor
G. Since the model complexity of Tucker decompositions de-
pends on the dimensions of G, denoted by (R1, R2, . . . , RN

),
while R

n

, n = 1, . . . , N also correspond to the number of
columns in model-n factor matrix U

(n) and thus represent the
dimensions of mode-n latent space. The minimal number of
{R

n

}N
n=1 i.e., multilinear rank [9], usually need to be given in

advance. However, due to the presence of noise, the optimal
selection of multlinear rank is quite challenging. Although
some model selection criterions can be applied, the accuracy
significantly depends on the decomposition algorithms, result-
ing in less stability and high computational cost. Therefore, we
seek an elegant automatic model selection, which can not only
infer the multilinear rank, but also effectively avoid overfitting.
To achieve this, we employ the proposed group sparsity priors
over factor matrices. More specifically, each U

(n) is govern
by hyperparameters �(n) 2 RRn , where �

(n)
rn controls the

precision related to r
n

group (i.e., r
n

th column). Due to the
group sparsity inducing property, the dimensions of latent
space will be enforced to be minimal. On the other hand, the
core tensor G also needs to be as sparse as possible. However,
if we straightforwardly place an independent sparsity prior,
the interactions between G and {U(n)} cannot be modeled,
which may lead to inaccurate estimation of multilinear rank.
As G

r1,...,rN can be considered as the scalar coefficient of the
rank-one tensor u

(1)
·r1 ⌦ · · · ⌦ u

(N)
·rN that involves r

n

th column
of U(n), respectively, if 9n, 9r

n

,u
(n)
·rn = 0, then the subtensor

G···rn··· should be also enforced to be zero. Hence, we can
use

Q
n

�
(n)
rn to control the precision of G

r1,...,rN , which is
expressed by

G
r1···rN

��� n�(n)
o
,� ⇠ N

 
0,
⇣
�
Y
n

�(n)
rn

⌘�1
!
, (8)

where � is a scale parameter related to the magnitude of G, on
which a hyperprior can be placed. Note that �(n) are shared
between U

(n) and G, leading to the consistent sparsity patterns
over them.

The hyperprior over �(n) play a key role for different
sparsity inducing priors. We propose two hierarchial priors
including Student-t and Laplace for group sparsity. Let ⇤(n)

=

diag(�(n)
), we can finally specify the hierarchial model priors
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Figure 3.4: Graphical illustration of the HOSVD. (a) The exact HOSVD and trun-
cated (approximative) HOSVD for a 3rd-order tensor calculated as: X G 1
U(1)

2 U(2)
3 U(3) using the SVD. (b) Tensor network notation for the HOSVD for

a 4th-order tensor X S 1 U(1)
2 U(2)

3 U(3)
4 U(4). All the factor matrices

U(n) RIn Rn and the core tensor S = G RR1 RN are orthogonal.

Due to the orthogonality of the core tensorS, its slices are also mutu-
ally orthogonal. Note that this property reduces to diagonality in the
matrix case.

Analogous to the standard PCA, a large-scale data tensor X can
be approximated by discarding the multilinear singular vectors and
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scalars. If 8n = 1, . . . , N , the spectral decompositions are

represented by ⇤

(n)�
1
2
⌃
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⇤

(n)�
1
2
= V
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D
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Proof. See Appendix for the detailed proof.

Based on Theorem IV.1 and IV.2, ⌃
G

can be factorized as
the product of sequential Kronecker products, which leads to
that matrix inverse operations can be performed by individual
eigenvalue decompositions on N small matrices, and inverse
operations only on a diagonal matrix. Therefore, the compu-
tational complexity for inference of G can be significantly
reduced to O �P

n

R3
n

+

Q
n

I
n

�
while the memory cost can

be significantly reduced to O(

P
n

R2
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+

Q
n

I
n

), if we save
⌃

G

by a format of sequential Kronecker products.
As can be derived, the variational posterior distribution over

the factor matrices
�
U

(n)
 

is represented by

q
�
U

(n)
�
=

InY
in=1

N
⇣
u
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���eu(n)
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, (n)
⌘
, n = 1, . . . , N, (16)

where the posterior parameters can be updated by

eU(n)
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In (18), the most complex expectation term related to multi-
linear operations can be computed by
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Thus, each posterior expectation term can be evaluated easily
according to the corresponding posterior distributions q(G)
and {q(U(k)

)}, k = 1, . . . , N, k 6= n.
Taken into account the computation and memory efficien-

cy, multilinear operations and sequential Kronecker products
format must be employed to avoid explicitly computation of
sequential Kronecker products. It should be noted that (19)
cannot be factorized into operations on individual kronecker
terms because of E

⇥
G(n) ⌦G(n)

⇤
. To reduce the memory

cost, we may approximate it by E
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) while the memory cost is
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The variational posterior distribution over � can be derived

to be a Gamma distribution due to its conjugate prior, which

is denoted by q(�) = Ga(a�
M
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) where the posterior
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In (20), E
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described in the following paragraphs. The computational
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Q
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R
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The inference of hyperparameters {�(n)} plays a key role

for automatic model selection (i.e., determination of multilin-
ear rank). In BSTD models, as we proposed two hierarchical
sparsity priors, resulting in two different posterior distributions
for {�(n)}.

BSTD-T model using hierarchial Student-t priors. As can
be derived, the variation posterior distribution over {�(n)} is
i.i.d. Gamma distributions due to the conjugate priors, which
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This represents the posterior expectation of squared L2-norm
of rth component in mode-n factors, which also takes into
account the uncertainty information. E
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resents the posterior expectation of squared L2-norm of r
n

slice of core tensor G. Therefore, an intuitive interpretation
of automatic model selection is that the smaller of
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rn ), which in turn
enforces more strongly u
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eral iterations, the unnecessary columns in factor matrices and
unnecessary slices in core tensor can be reduced to exact zero
(i.e., smaller than machine precision). The computational com-
plexity for inference of q(�(n)
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updated parameters for q(�(n)

), we can evaluate the posterior
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] = diag(E[�(n)

]).
BSTD-L model using hierarchial Laplace priors. Since the

hierarchical Laplace prior is not conjugate, which leads to
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The prior for the core tensor G is written as a tensor-variate
Gaussian distribution. The observation model in (7) and the
hierarchial priors in (9) are integrated, which is termed as
Bayesian Sparse Tucker Decomposition (BSTD) model. Note
that there are two proposed hierarchial sparsity priors in
BSTD model, which are thus denoted respectively by BSTD-T
(Student-t priors) and BSTD-L (Laplace priors).

For simplicity, all unknown (hyper)parameters
in BSTD model are collected and denoted by
⇥ = {G,U(1), . . . ,U(N),�(1), . . . ,�(N), ⌧,�, �}. Thus
the joint distribution of BSTD model is written as

p(Y ,⇥) = p
�Y |{U(n)},G, ⌧�Y

n

p
�
U

(n)
���(n)�

⇥ p
�G��{⇤(n)},��Y

n

p
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�(n)|��p(�)p(�)p(⌧). (10)

In general, maximum a posterior (MAP) of ⇥ can be estimated
by optimizations of logarithm joint distribution w.r.t. each
parameters alternately. However, due to the property of point
estimation, MAP is still prone to overfitting. In contrast, we
aim to infer the posterior distributions of ⇥ under a fully
Bayesian treatment, which is p(⇥|Y) =

p(⇥,Y)R
p(⇥,Y) d⇥

.

B. Model inference

The model learning can be performed by the approxi-
mate Bayesian inferences when the posterior distributions
are analytically intractable. Since the variational Bayesian
inference [57] is more efficient and scalable as compared to
sampling based inference methods, we employ VB technique
to learn both BSTD-T and BSTD-L models. It should be noted
that the hierarchial Laplace priors are not conjugate, resulting
in a challenging problem to be addressed. In this section,
we present the main solutions for model inference while the
detailed derivations and proofs are provided in the Appendix.

VB inference aims to seek an optimal q(⇥) to ap-
proximate the true posterior distribution in the sense
of minKL(q(⇥)||p(⇥|Y)). Since KL(q(⇥)||p(⇥|Y)) =

ln p(Y) � L(q), the optimum of q(⇥) can be achieved by
maximization of lower bound L(q) that can be computed
explicitly. To achieve this, we assume that the variational
approximation posteriors can be factorized as

q(⇥) = q(G)q(�)
Y
n

q
�
U

(n)
�Y

n

q(�(n)
)q(�)q(⌧). (11)

Then, the optimized form of jth parameters based on
max

q(⇥j) L(q) is given by

q
j

(⇥

j
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. (12)

E
q(⇥\⇥j)[·] denotes an expectation w.r.t. q distribution over

all variables in ⇥ except ⇥
j

. In the following, we use E[·] to
denote the expectation w.r.t. q(⇥) for simplicity.

As can be derived, the variational posterior distribution over
the core tensor G is

q(G) = N
⇣

vec(G)��vec(eG),⌃
G

⌘
, (13)

where the posterior parameters can be updated by
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Most of expectation terms in (14), (15) are the functions
linearly related to the corresponding ⇥

j

, which can thus be
easily evaluated from their posterior q(⇥

j

). For example,
E[U(n)T

] can be evaluated according to q(U(n)
) shown in

(16), as can be similarly computed for E[⌧ ], E[�], and E[⇤(n)
].

It should be noted that the expectation involving a quadratic
term can be evaluated explicitly by using E[U
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] + I
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(n), which requires the posterior pa-
rameters given in (16).

The computational complexity for posterior update of G is
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that polynomially scales with mod-

el complexity denoted by
Q

n

R
n

and linearly scales with
data size denoted by

Q
n

I
n
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(·). It should be noted that multilinear operations
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). To further improve compu-
tation and memory efficiency, we introduce several important
Theorems as follows.

Theorem IV.1. Let
�
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(n) be a set of diagonalizable matri-
ces, and c1, c2 denote arbitrary scalars. If 8n = 1, . . . , N ,
the spectral decompositions are represented by ⌃
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Proof. See Appendix for the detailed proof.

Theorem IV.2. Let
�
⇤

(n) be a set of diagonal matrices,�
⌃

(n) be a set of diagonalizable matrices, and c1, c2 be
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The prior for the core tensor G is written as a tensor-variate
Gaussian distribution. The observation model in (7) and the
hierarchial priors in (9) are integrated, which is termed as
Bayesian Sparse Tucker Decomposition (BSTD) model. Note
that there are two proposed hierarchial sparsity priors in
BSTD model, which are thus denoted respectively by BSTD-T
(Student-t priors) and BSTD-L (Laplace priors).

For simplicity, all unknown (hyper)parameters
in BSTD model are collected and denoted by
⇥ = {G,U(1), . . . ,U(N),�(1), . . . ,�(N), ⌧,�, �}. Thus
the joint distribution of BSTD model is written as

p(Y ,⇥) = p
�Y |{U(n)},G, ⌧�Y
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In general, maximum a posterior (MAP) of ⇥ can be estimated
by optimizations of logarithm joint distribution w.r.t. each
parameters alternately. However, due to the property of point
estimation, MAP is still prone to overfitting. In contrast, we
aim to infer the posterior distributions of ⇥ under a fully
Bayesian treatment, which is p(⇥|Y) =

p(⇥,Y)R
p(⇥,Y) d⇥

.

B. Model inference

The model learning can be performed by the approxi-
mate Bayesian inferences when the posterior distributions
are analytically intractable. Since the variational Bayesian
inference [57] is more efficient and scalable as compared to
sampling based inference methods, we employ VB technique
to learn both BSTD-T and BSTD-L models. It should be noted
that the hierarchial Laplace priors are not conjugate, resulting
in a challenging problem to be addressed. In this section,
we present the main solutions for model inference while the
detailed derivations and proofs are provided in the Appendix.

VB inference aims to seek an optimal q(⇥) to ap-
proximate the true posterior distribution in the sense
of minKL(q(⇥)||p(⇥|Y)). Since KL(q(⇥)||p(⇥|Y)) =

ln p(Y) � L(q), the optimum of q(⇥) can be achieved by
maximization of lower bound L(q) that can be computed
explicitly. To achieve this, we assume that the variational
approximation posteriors can be factorized as
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all variables in ⇥ except ⇥
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. In the following, we use E[·] to
denote the expectation w.r.t. q(⇥) for simplicity.

As can be derived, the variational posterior distribution over
the core tensor G is
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where the posterior parameters can be updated by
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tation and memory efficiency, we introduce several important
Theorems as follows.

Theorem IV.1. Let
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Proof. See Appendix for the detailed proof.
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⇤
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The prior for the core tensor G is written as a tensor-variate
Gaussian distribution. The observation model in (7) and the
hierarchial priors in (9) are integrated, which is termed as
Bayesian Sparse Tucker Decomposition (BSTD) model. Note
that there are two proposed hierarchial sparsity priors in
BSTD model, which are thus denoted respectively by BSTD-T
(Student-t priors) and BSTD-L (Laplace priors).

For simplicity, all unknown (hyper)parameters
in BSTD model are collected and denoted by
⇥ = {G,U(1), . . . ,U(N),�(1), . . . ,�(N), ⌧,�, �}. Thus
the joint distribution of BSTD model is written as

p(Y ,⇥) = p
�Y |{U(n)},G, ⌧�Y
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In general, maximum a posterior (MAP) of ⇥ can be estimated
by optimizations of logarithm joint distribution w.r.t. each
parameters alternately. However, due to the property of point
estimation, MAP is still prone to overfitting. In contrast, we
aim to infer the posterior distributions of ⇥ under a fully
Bayesian treatment, which is p(⇥|Y) =

p(⇥,Y)R
p(⇥,Y) d⇥

.

B. Model inference

The model learning can be performed by the approxi-
mate Bayesian inferences when the posterior distributions
are analytically intractable. Since the variational Bayesian
inference [57] is more efficient and scalable as compared to
sampling based inference methods, we employ VB technique
to learn both BSTD-T and BSTD-L models. It should be noted
that the hierarchial Laplace priors are not conjugate, resulting
in a challenging problem to be addressed. In this section,
we present the main solutions for model inference while the
detailed derivations and proofs are provided in the Appendix.

VB inference aims to seek an optimal q(⇥) to ap-
proximate the true posterior distribution in the sense
of minKL(q(⇥)||p(⇥|Y)). Since KL(q(⇥)||p(⇥|Y)) =

ln p(Y) � L(q), the optimum of q(⇥) can be achieved by
maximization of lower bound L(q) that can be computed
explicitly. To achieve this, we assume that the variational
approximation posteriors can be factorized as

q(⇥) = q(G)q(�)
Y
n

q
�
U

(n)
�Y

n

q(�(n)
)q(�)q(⌧). (11)

Then, the optimized form of jth parameters based on
max

q(⇥j) L(q) is given by

q
j

(⇥

j

) / exp
�
E
q(⇥\⇥j) [ln p(Y ,⇥)]

 
. (12)

E
q(⇥\⇥j)[·] denotes an expectation w.r.t. q distribution over

all variables in ⇥ except ⇥
j

. In the following, we use E[·] to
denote the expectation w.r.t. q(⇥) for simplicity.

As can be derived, the variational posterior distribution over
the core tensor G is

q(G) = N
⇣

vec(G)��vec(eG),⌃
G

⌘
, (13)

where the posterior parameters can be updated by

vec(eG) = E[⌧ ]⌃G

 O
n

E
h
U(n)T

i!
vec (Y) , (14)

⌃G =

(
E[�]

O
n

E
h
⇤(n)

i
+ E[⌧ ]

O
n

E
h
U(n)TU(n)

i)�1

. (15)

Most of expectation terms in (14), (15) are the functions
linearly related to the corresponding ⇥

j

, which can thus be
easily evaluated from their posterior q(⇥

j

). For example,
E[U(n)T

] can be evaluated according to q(U(n)
) shown in

(16), as can be similarly computed for E[⌧ ], E[�], and E[⇤(n)
].

It should be noted that the expectation involving a quadratic
term can be evaluated explicitly by using E[U

(n)T
U

(n)
] =

E[U(n)T
]E[U(n)

] + I
n

 

(n), which requires the posterior pa-
rameters given in (16).

The computational complexity for posterior update of G is
O �Q

n

R3
n

+

Q
n

I
n

R
n

�
that polynomially scales with mod-

el complexity denoted by
Q

n

R
n

and linearly scales with
data size denoted by

Q
n

I
n

. In general, it is dominated
by O �Q

n

R3
n

�
, which is related to the matrix inverse. The

memory cost is O �Q
n

R2
n

+

Q
n

I
n

R
n

�
, dominated by ⌃

G

and ⌦
n

(·). It should be noted that multilinear operations
Y ⇥1 E[U(1)T

]⇥ · · ·⇥
N

E[U(N)T
] can be performed without

explicitly computing ⌦
n

E[U(n)T
], thus reducing the memory

cost to O �Q
n

R2
n

+

Q
n

I
n

�
and also reducing computation

complexity to O(

Q
n

R3
n

+

Q
n

I
n

). To further improve compu-
tation and memory efficiency, we introduce several important
Theorems as follows.

Theorem IV.1. Let
�
⌃

(n) be a set of diagonalizable matri-
ces, and c1, c2 denote arbitrary scalars. If 8n = 1, . . . , N ,
the spectral decompositions are represented by ⌃

(n)
=

V

(n)
D

(n)
V

(n)T , then 
c1I+ c2

O
n

⌃(n)

!�1

= O
n

V(n)

! 
c1I+ c2

O
n

D(n)

!�1 O
n

V(n)T

!
.

Proof. See Appendix for the detailed proof.

Theorem IV.2. Let
�
⇤

(n) be a set of diagonal matrices,�
⌃

(n) be a set of diagonalizable matrices, and c1, c2 be
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scalars. If 8n = 1, . . . , N , the spectral decompositions are

represented by ⇤

(n)�
1
2
⌃

(n)
⇤

(n)�
1
2
= V

(n)
D

(n)
V

(n)T , then 
c1
O
n

⇤(n)
+ c2

O
n

⌃(n)

!�1

= O
n

⇤(n)
� 1

2
V(n)

! 
c1I+ c2

O
n

D(n)

!�1 O
n

V(n)T⇤(n)
� 1

2

!
.

Proof. See Appendix for the detailed proof.

Based on Theorem IV.1 and IV.2, ⌃
G

can be factorized as
the product of sequential Kronecker products, which leads to
that matrix inverse operations can be performed by individual
eigenvalue decompositions on N small matrices, and inverse
operations only on a diagonal matrix. Therefore, the compu-
tational complexity for inference of G can be significantly
reduced to O �P

n

R3
n

+

Q
n

I
n

�
while the memory cost can

be significantly reduced to O(

P
n

R2
n

+

Q
n

I
n

), if we save
⌃

G

by a format of sequential Kronecker products.
As can be derived, the variational posterior distribution over

the factor matrices
�
U

(n)
 

is represented by

q
�
U

(n)
�
=

InY
in=1

N
⇣
u

(n)
in

���eu(n)
in

, (n)
⌘
, n = 1, . . . , N, (16)

where the posterior parameters can be updated by

eU(n)
= E[⌧ ]Y(n)

0@O
k 6=n

E
h
U(k)

i1A E
h
GT

(n)

i
 

(n), (17)

 

(n)
=

8<:E
⇥
⇤(n)⇤

+ E[⌧ ]E

24G(n)

0@O
k 6=n

U(k)TU(k)

1AGT
(n)

359=;
�1

.

(18)

In (18), the most complex expectation term related to multi-
linear operations can be computed by

vec

8<:E

24G(n)

0@O
k 6=n

U(k)TU(k)

1AGT
(n)

359=;
= E

⇥
G(n) ⌦G(n)

⇤
vec

0@O
k 6=n

E
h
U(k)TU(k)

i1A . (19)

Thus, each posterior expectation term can be evaluated easily
according to the corresponding posterior distributions q(G)
and {q(U(k)

)}, k = 1, . . . , N, k 6= n.
Taken into account the computation and memory efficien-

cy, multilinear operations and sequential Kronecker products
format must be employed to avoid explicitly computation of
sequential Kronecker products. It should be noted that (19)
cannot be factorized into operations on individual kronecker
terms because of E

⇥
G(n) ⌦G(n)

⇤
. To reduce the memory

cost, we may approximate it by E
⇥
G(n)

⇤⌦E
⇥
G(n)

⇤
. There-

fore, the computational complexity for inference of U(n) can
be improved to O(R3

n

+

Q
n

I
n

) while the memory cost is
O (

Q
n

R
n

+

Q
n

I
n

).
The variational posterior distribution over � can be derived

to be a Gamma distribution due to its conjugate prior, which

is denoted by q(�) = Ga(a�
M

, b�
M

) where the posterior
parameters can be updated by

a�
M

= a�0 +

1

2

Y
n

R
n

,

b�
M

= b�0 +

1

2

E
⇥
vec(G2

)

T

⇤O
n

E
h
�(n)

i
.

(20)

In (20), E
⇥
vec(G2

)

T

⇤
= vec(E[G]2)T + diag(⌃

G

)

T should
be applied for rigorous inference, whereas an alternative
approximation is E

⇥
vec(G2

)

T

⇤
= vec(E[G]2)T for efficiency.

{E[�(n)
]} can be easily evaluated according to {q(�(n)

)}
described in the following paragraphs. The computational
complexity in (20) is O(

Q
n

R
n

).
The inference of hyperparameters {�(n)} plays a key role

for automatic model selection (i.e., determination of multilin-
ear rank). In BSTD models, as we proposed two hierarchical
sparsity priors, resulting in two different posterior distributions
for {�(n)}.

BSTD-T model using hierarchial Student-t priors. As can
be derived, the variation posterior distribution over {�(n)} is
i.i.d. Gamma distributions due to the conjugate priors, which
is 8n = 1, . . . , N ,

q
�
�(n)�

=

RnY
rn=1

Ga
�
�(n)
rn

��ã(n)
rn

,˜b(n)
rn

�
, (21)

where the posterior parameters can be updated by

ã(n)
rn

= a�0 +

1

2

0@I
n

+

Y
k 6=n

R
k

1A ,

˜b(n)
rn

= b�0 +

1

2

E
h
u

(n)T
·rn u

(n)
·rn

i
+

1

2

E[�]E
⇥
vec(G2

···rn···)
T

⇤O
k 6=n

E
h
�(k)

i
.

(22)

According to {q(U(n)
)} described in (16), we obtain that

E
⇥
u

(n)T
·rn u

(n)
·rn

⇤
= I

n

�
 

(n)
�
rnrn

+

e
u

(n)T
·rn e

u

(n)
·rn . (23)

This represents the posterior expectation of squared L2-norm
of rth component in mode-n factors, which also takes into
account the uncertainty information. E

⇥
vec(G2

···rn···)
T

⇤
rep-

resents the posterior expectation of squared L2-norm of r
n

slice of core tensor G. Therefore, an intuitive interpretation
of automatic model selection is that the smaller of

��
u

(n)
·r

��2
F

and kG···rn···k2
F

leads to larger E[�(n)
rn ] and updated prior

for p
�
u

(n)
·rn

���(n)
rn ) as well as p(G···rn···|�(n)

rn ), which in turn
enforces more strongly u

(n)
·rn and G···rn··· to be zero. After sev-

eral iterations, the unnecessary columns in factor matrices and
unnecessary slices in core tensor can be reduced to exact zero
(i.e., smaller than machine precision). The computational com-
plexity for inference of q(�(n)

) is O(

Q
n

R
n

+ I
n

R
n

). Given
updated parameters for q(�(n)

), we can evaluate the posterior

expectations by E[�(n)
] =

h
ã
(n)
1 /˜b

(n)
1 , . . . , ã

(n)
Rn

/˜b
(n)
Rn

i
T

and

E[⇤(n)
] = diag(E[�(n)

]).
BSTD-L model using hierarchial Laplace priors. Since the

hierarchical Laplace prior is not conjugate, which leads to

�(n), n = 1, . . . , N
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scalars. If 8n = 1, . . . , N , the spectral decompositions are

represented by ⇤

(n)�
1
2
⌃

(n)
⇤

(n)�
1
2
= V

(n)
D

(n)
V

(n)T , then 
c1
O
n

⇤(n)
+ c2

O
n

⌃(n)

!�1

= O
n

⇤(n)
� 1

2
V(n)

! 
c1I+ c2

O
n

D(n)

!�1 O
n

V(n)T⇤(n)
� 1

2

!
.

Proof. See Appendix for the detailed proof.

Based on Theorem IV.1 and IV.2, ⌃
G

can be factorized as
the product of sequential Kronecker products, which leads to
that matrix inverse operations can be performed by individual
eigenvalue decompositions on N small matrices, and inverse
operations only on a diagonal matrix. Therefore, the compu-
tational complexity for inference of G can be significantly
reduced to O �P

n

R3
n

+

Q
n

I
n

�
while the memory cost can

be significantly reduced to O(

P
n

R2
n

+

Q
n

I
n

), if we save
⌃

G

by a format of sequential Kronecker products.
As can be derived, the variational posterior distribution over

the factor matrices
�
U

(n)
 

is represented by

q
�
U

(n)
�
=

InY
in=1

N
⇣
u

(n)
in

���eu(n)
in

, (n)
⌘
, n = 1, . . . , N, (16)

where the posterior parameters can be updated by

eU(n)
= E[⌧ ]Y(n)

0@O
k 6=n

E
h
U(k)

i1A E
h
GT

(n)

i
 

(n), (17)

 

(n)
=

8<:E
⇥
⇤(n)⇤

+ E[⌧ ]E

24G(n)

0@O
k 6=n

U(k)TU(k)

1AGT
(n)

359=;
�1

.

(18)

In (18), the most complex expectation term related to multi-
linear operations can be computed by

vec

8<:E

24G(n)

0@O
k 6=n

U(k)TU(k)

1AGT
(n)

359=;
= E

⇥
G(n) ⌦G(n)

⇤
vec

0@O
k 6=n

E
h
U(k)TU(k)

i1A . (19)

Thus, each posterior expectation term can be evaluated easily
according to the corresponding posterior distributions q(G)
and {q(U(k)

)}, k = 1, . . . , N, k 6= n.
Taken into account the computation and memory efficien-

cy, multilinear operations and sequential Kronecker products
format must be employed to avoid explicitly computation of
sequential Kronecker products. It should be noted that (19)
cannot be factorized into operations on individual kronecker
terms because of E

⇥
G(n) ⌦G(n)

⇤
. To reduce the memory

cost, we may approximate it by E
⇥
G(n)

⇤⌦E
⇥
G(n)

⇤
. There-

fore, the computational complexity for inference of U(n) can
be improved to O(R3

n

+

Q
n

I
n

) while the memory cost is
O (

Q
n

R
n

+

Q
n

I
n

).
The variational posterior distribution over � can be derived

to be a Gamma distribution due to its conjugate prior, which

is denoted by q(�) = Ga(a�
M

, b�
M

) where the posterior
parameters can be updated by

a�
M

= a�0 +

1

2

Y
n

R
n

,

b�
M

= b�0 +

1

2

E
⇥
vec(G2

)

T

⇤O
n

E
h
�(n)

i
.

(20)

In (20), E
⇥
vec(G2

)

T

⇤
= vec(E[G]2)T + diag(⌃

G

)

T should
be applied for rigorous inference, whereas an alternative
approximation is E

⇥
vec(G2

)

T

⇤
= vec(E[G]2)T for efficiency.

{E[�(n)
]} can be easily evaluated according to {q(�(n)

)}
described in the following paragraphs. The computational
complexity in (20) is O(

Q
n

R
n

).
The inference of hyperparameters {�(n)} plays a key role

for automatic model selection (i.e., determination of multilin-
ear rank). In BSTD models, as we proposed two hierarchical
sparsity priors, resulting in two different posterior distributions
for {�(n)}.

BSTD-T model using hierarchial Student-t priors. As can
be derived, the variation posterior distribution over {�(n)} is
i.i.d. Gamma distributions due to the conjugate priors, which
is 8n = 1, . . . , N ,

q
�
�(n)�

=

RnY
rn=1

Ga
�
�(n)
rn

��ã(n)
rn

,˜b(n)
rn

�
, (21)

where the posterior parameters can be updated by

ã(n)
rn

= a�0 +

1

2

0@I
n

+

Y
k 6=n

R
k

1A ,

˜b(n)
rn

= b�0 +

1

2

E
h
u

(n)T
·rn u

(n)
·rn

i
+

1

2

E[�]E
⇥
vec(G2

···rn···)
T

⇤O
k 6=n

E
h
�(k)

i
.

(22)

According to {q(U(n)
)} described in (16), we obtain that

E
⇥
u

(n)T
·rn u

(n)
·rn

⇤
= I

n

�
 

(n)
�
rnrn

+

e
u

(n)T
·rn e

u

(n)
·rn . (23)

This represents the posterior expectation of squared L2-norm
of rth component in mode-n factors, which also takes into
account the uncertainty information. E

⇥
vec(G2

···rn···)
T

⇤
rep-

resents the posterior expectation of squared L2-norm of r
n

slice of core tensor G. Therefore, an intuitive interpretation
of automatic model selection is that the smaller of

��
u

(n)
·r

��2
F

and kG···rn···k2
F

leads to larger E[�(n)
rn ] and updated prior

for p
�
u

(n)
·rn

���(n)
rn ) as well as p(G···rn···|�(n)

rn ), which in turn
enforces more strongly u

(n)
·rn and G···rn··· to be zero. After sev-

eral iterations, the unnecessary columns in factor matrices and
unnecessary slices in core tensor can be reduced to exact zero
(i.e., smaller than machine precision). The computational com-
plexity for inference of q(�(n)

) is O(

Q
n

R
n

+ I
n

R
n

). Given
updated parameters for q(�(n)

), we can evaluate the posterior

expectations by E[�(n)
] =

h
ã
(n)
1 /˜b

(n)
1 , . . . , ã

(n)
Rn

/˜b
(n)
Rn

i
T

and

E[⇤(n)
] = diag(E[�(n)

]).
BSTD-L model using hierarchial Laplace priors. Since the

hierarchical Laplace prior is not conjugate, which leads to
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scalars. If 8n = 1, . . . , N , the spectral decompositions are

represented by ⇤

(n)�
1
2
⌃

(n)
⇤

(n)�
1
2
= V

(n)
D

(n)
V

(n)T , then 
c1
O
n

⇤(n)
+ c2

O
n

⌃(n)

!�1

= O
n

⇤(n)
� 1

2
V(n)

! 
c1I+ c2

O
n

D(n)

!�1 O
n

V(n)T⇤(n)
� 1

2

!
.

Proof. See Appendix for the detailed proof.

Based on Theorem IV.1 and IV.2, ⌃
G

can be factorized as
the product of sequential Kronecker products, which leads to
that matrix inverse operations can be performed by individual
eigenvalue decompositions on N small matrices, and inverse
operations only on a diagonal matrix. Therefore, the compu-
tational complexity for inference of G can be significantly
reduced to O �P

n

R3
n

+

Q
n

I
n

�
while the memory cost can

be significantly reduced to O(

P
n

R2
n

+

Q
n

I
n

), if we save
⌃

G

by a format of sequential Kronecker products.
As can be derived, the variational posterior distribution over

the factor matrices
�
U

(n)
 

is represented by

q
�
U

(n)
�
=

InY
in=1

N
⇣
u

(n)
in

���eu(n)
in

, (n)
⌘
, n = 1, . . . , N, (16)

where the posterior parameters can be updated by

eU(n)
= E[⌧ ]Y(n)

0@O
k 6=n

E
h
U(k)

i1A E
h
GT

(n)

i
 

(n), (17)

 

(n)
=

8<:E
⇥
⇤(n)⇤

+ E[⌧ ]E

24G(n)

0@O
k 6=n

U(k)TU(k)

1AGT
(n)

359=;
�1

.

(18)

In (18), the most complex expectation term related to multi-
linear operations can be computed by

vec

8<:E

24G(n)

0@O
k 6=n

U(k)TU(k)

1AGT
(n)

359=;
= E

⇥
G(n) ⌦G(n)

⇤
vec

0@O
k 6=n

E
h
U(k)TU(k)

i1A . (19)

Thus, each posterior expectation term can be evaluated easily
according to the corresponding posterior distributions q(G)
and {q(U(k)

)}, k = 1, . . . , N, k 6= n.
Taken into account the computation and memory efficien-

cy, multilinear operations and sequential Kronecker products
format must be employed to avoid explicitly computation of
sequential Kronecker products. It should be noted that (19)
cannot be factorized into operations on individual kronecker
terms because of E

⇥
G(n) ⌦G(n)

⇤
. To reduce the memory

cost, we may approximate it by E
⇥
G(n)

⇤⌦E
⇥
G(n)

⇤
. There-

fore, the computational complexity for inference of U(n) can
be improved to O(R3

n

+

Q
n

I
n

) while the memory cost is
O (

Q
n

R
n

+

Q
n

I
n

).
The variational posterior distribution over � can be derived

to be a Gamma distribution due to its conjugate prior, which

is denoted by q(�) = Ga(a�
M

, b�
M

) where the posterior
parameters can be updated by

a�
M

= a�0 +

1

2

Y
n

R
n

,

b�
M

= b�0 +

1

2

E
⇥
vec(G2

)

T

⇤O
n

E
h
�(n)

i
.

(20)

In (20), E
⇥
vec(G2

)

T

⇤
= vec(E[G]2)T + diag(⌃

G

)

T should
be applied for rigorous inference, whereas an alternative
approximation is E

⇥
vec(G2

)

T

⇤
= vec(E[G]2)T for efficiency.

{E[�(n)
]} can be easily evaluated according to {q(�(n)

)}
described in the following paragraphs. The computational
complexity in (20) is O(

Q
n

R
n

).
The inference of hyperparameters {�(n)} plays a key role

for automatic model selection (i.e., determination of multilin-
ear rank). In BSTD models, as we proposed two hierarchical
sparsity priors, resulting in two different posterior distributions
for {�(n)}.

BSTD-T model using hierarchial Student-t priors. As can
be derived, the variation posterior distribution over {�(n)} is
i.i.d. Gamma distributions due to the conjugate priors, which
is 8n = 1, . . . , N ,

q
�
�(n)�

=

RnY
rn=1

Ga
�
�(n)
rn

��ã(n)
rn

,˜b(n)
rn

�
, (21)

where the posterior parameters can be updated by

ã(n)
rn

= a�0 +

1

2

0@I
n

+

Y
k 6=n

R
k

1A ,

˜b(n)
rn

= b�0 +

1

2

E
h
u

(n)T
·rn u

(n)
·rn

i
+

1

2

E[�]E
⇥
vec(G2

···rn···)
T

⇤O
k 6=n

E
h
�(k)

i
.

(22)

According to {q(U(n)
)} described in (16), we obtain that

E
⇥
u

(n)T
·rn u

(n)
·rn

⇤
= I

n

�
 

(n)
�
rnrn

+

e
u

(n)T
·rn e

u

(n)
·rn . (23)

This represents the posterior expectation of squared L2-norm
of rth component in mode-n factors, which also takes into
account the uncertainty information. E

⇥
vec(G2

···rn···)
T

⇤
rep-

resents the posterior expectation of squared L2-norm of r
n

slice of core tensor G. Therefore, an intuitive interpretation
of automatic model selection is that the smaller of

��
u

(n)
·r

��2
F

and kG···rn···k2
F

leads to larger E[�(n)
rn ] and updated prior

for p
�
u

(n)
·rn

���(n)
rn ) as well as p(G···rn···|�(n)

rn ), which in turn
enforces more strongly u

(n)
·rn and G···rn··· to be zero. After sev-

eral iterations, the unnecessary columns in factor matrices and
unnecessary slices in core tensor can be reduced to exact zero
(i.e., smaller than machine precision). The computational com-
plexity for inference of q(�(n)

) is O(

Q
n

R
n

+ I
n

R
n

). Given
updated parameters for q(�(n)

), we can evaluate the posterior

expectations by E[�(n)
] =

h
ã
(n)
1 /˜b

(n)
1 , . . . , ã

(n)
Rn

/˜b
(n)
Rn

i
T

and

E[⇤(n)
] = diag(E[�(n)

]).
BSTD-L model using hierarchial Laplace priors. Since the

hierarchical Laplace prior is not conjugate, which leads to
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much difficulties for model inference. To solve this prob-
lem, we employ a generalized inverse Gaussian distribution,
denoted by GIG(x|h, a, b), which includes Gamma, inverse
Gamma, and inverse Gaussian distribution as special cases
by an appropriate setting of hyperparameters. For example,
one can show that Ga(a, b) = GIG(a, 2b, 0) and IG(a, b) =

GIG(�a, 0, 2b). Although the hyper-prior is �(n)
rn ⇠ IG(1, �

2 ),
the variational posterior q(�

(n)
rn ) cannot be represented as the

IG distribution. In contrast, the variation posterior distribution
over {�(n)} can be represented as i.i.d. GIG distributions,
which is 8n = 1, . . . , N ,

q
�
�(n)�

=

RnY
rn=1

GIG
�
�(n)
rn

��h, ã(n)
rn

,˜b(n)
rn

�
, (24)

where the posterior parameters can be computed by

h =

1

2

0@I
n

+

Y
k 6=n

R
k

1A� 1, ˜b(n)
rn

= E[�],

ã(n)
rn

= E[�]E
⇥
vec(G2

···rn···)
T

⇤O
k 6=n

E
h
�(k)

i
+ E

h
u

(n)T
·rn u

(n)
·rn

i
.

(25)

The computational complexity for inference of q(�(n)
) is also

O(

Q
n

R
n

+ I
n

R
n

). Given the updated parameters, we can
evaluate E

GIG

⇥
�
(n)
rn

⇤
straightforwardly, while an alternative

approximation is the posterior mode w.r.t. GIG distribution
that can avoid computational instabilities of modified Bessel
function.

By comparing (24) with (21), we can investigate the es-
sential difference between Student-t and Laplace priors. One
can show that (21) can be rewritten as GIG

⇣
ã
(n)
rn , 2˜b

(n)
rn , 0

⌘
with parameters given by (22). Hence, the key difference
lies in the setting of �. If � = 0, Student-t and Laplace
priors are essentially equivalent. To avoid manually tuning
parameters, we also place a hyper-prior over � and thus derive
the variational posterior distribution as q(�) = Ga(a�

M

, b�
M

)

whose posterior parameters can be updated by

a�
M

= a�0 +

NX
n=1

R
n

,

b�
M

= b�0 +

1

2

NX
n=1

RnX
rn=1

E
h
�(n)�1

rn

i
.

(26)

It should be noted that E
⇥
�
(n)�1

rn

⇤
cannot be computed s-

traightforwardly by E
⇥
�
(n)
rn

⇤�1. Since q(�
(n)
rn ) is a GIG dis-

tribution as shown in (24), it is not difficult to derive that
q
�
�
(n)�1

rn

�
= GIG(�h,˜b

(n)
rn , ã

(n)
rn ), yielding the posterior ex-

pectation computed by

E
GIG

h
�(n)�1

rn

i
=

q
ã
(n)
rn K1�h

✓q
ã
(n)
rn

˜b
(n)
rn

◆
q
˜b
(n)
rn K�h

✓q
ã
(n)
rn

˜b
(n)
rn

◆ , (27)

and the posterior mode computed by

arg max

�
(n)�1
rn

GIG
⇣
�(n)�1

rn

⌘
=

(�h� 1) +

q
(�h� 1)

2
+ ã

(n)
rn

˜b
(n)
rn

˜b
(n)
rn

,

(28)

where K1�h

(·) denotes a modified Bessel function of the
second kind.

As can be derived, the variational posterior distribution
over the noise hyperparameter is q(⌧) = Ga(a⌧

M

, b⌧
M

) whose
parameters can be updated by

a⌧
M = a⌧

0 +

1

2

Y
n

In,

b⌧M = b⌧0 +

1

2

E
"�����vec(Y)�

 O
n

U(n)

!
vec(G)

�����
2

F

#
,

(29)

where the posterior expectation of model residuals can be
evaluated by

E
"�����vec(Y)�

 O
n

U(n)

!
vec(G)

�����
2

F

#
=

kYk2F � 2vec(Y)

T

 O
n

E[U(n)
]

!
E[vec(G)]

+ Tr

 
E
h
vec(G)vec(G)

T
iO

n

E
h
U(n)TU(n)

i!
. (30)

In principle, E
⇥
vec(G)vec(G)T ⇤ = vec(eG)vec(eG)T + ⌃

G

.
However, vec(eG)vec(eG)T can be alternatively used as an ap-
proximation, which then makes it possible to apply multilinear
operations for computing (30) quite efficiently. Hence, the
computational complexity can then be reduced to O(

Q
n

R
n

+Q
n

I
n

).
The inference framework presented in this section can

essentially maximize the lower bound of model evidence
which is defined by L(q) = E

q(⇥)[ln p(Y ,⇥)] + H(q(⇥)).
The first term denotes the posterior expectation of joint dis-
tribution while the second term denotes the entropy of q(⇥).
In principle, L(q) should increase at each iteration, thus it
can be used to test for convergence. We provide the detailed
computation forms of L(q) in the Appendix.

V. BAYESIAN SPARSE TUCKER COMPLETION

A. Model specification
In this section, we consider Bayesian Tucker model for

tensor completion. Let Y denotes an incomplete tensor (i.e.,
with missing entries), and O denotes a binary tensor indicating
the observation positions, i.e., O

i1···iN = 1 if (i1, . . . , iN ) 2 ⌦

otherwise it is zero. ⌦ denotes a set of N -tuple indices of
observed entries. Y⌦ denotes only observed entries. Similar to
BSTD model, we assume a generative model Y⌦ = X⌦ + "
where the latent tensor X can be represented exactly by a
Tucker model with a low multilinear rank and " denotes i.i.d.
Gaussian noise.

Given an incomplete tensor, Bayesian Tucker model only
considers the observed entries, yielding a new likelihood
function represented by

p
�Y⌦|{U(n)},G, ⌧� = Y

(i1,...,iN )2⌦

N �Y
i1...iN |X

i1...iN , ⌧�1
�
.
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much difficulties for model inference. To solve this prob-
lem, we employ a generalized inverse Gaussian distribution,
denoted by GIG(x|h, a, b), which includes Gamma, inverse
Gamma, and inverse Gaussian distribution as special cases
by an appropriate setting of hyperparameters. For example,
one can show that Ga(a, b) = GIG(a, 2b, 0) and IG(a, b) =

GIG(�a, 0, 2b). Although the hyper-prior is �(n)
rn ⇠ IG(1, �

2 ),
the variational posterior q(�

(n)
rn ) cannot be represented as the

IG distribution. In contrast, the variation posterior distribution
over {�(n)} can be represented as i.i.d. GIG distributions,
which is 8n = 1, . . . , N ,

q
�
�(n)�

=

RnY
rn=1

GIG
�
�(n)
rn

��h, ã(n)
rn

,˜b(n)
rn

�
, (24)

where the posterior parameters can be computed by

h =

1

2

0@I
n

+

Y
k 6=n

R
k

1A� 1, ˜b(n)
rn

= E[�],

ã(n)
rn

= E[�]E
⇥
vec(G2

···rn···)
T

⇤O
k 6=n

E
h
�(k)

i
+ E

h
u

(n)T
·rn u

(n)
·rn

i
.

(25)

The computational complexity for inference of q(�(n)
) is also

O(

Q
n

R
n

+ I
n

R
n

). Given the updated parameters, we can
evaluate E

GIG

⇥
�
(n)
rn

⇤
straightforwardly, while an alternative

approximation is the posterior mode w.r.t. GIG distribution
that can avoid computational instabilities of modified Bessel
function.

By comparing (24) with (21), we can investigate the es-
sential difference between Student-t and Laplace priors. One
can show that (21) can be rewritten as GIG

⇣
ã
(n)
rn , 2˜b

(n)
rn , 0

⌘
with parameters given by (22). Hence, the key difference
lies in the setting of �. If � = 0, Student-t and Laplace
priors are essentially equivalent. To avoid manually tuning
parameters, we also place a hyper-prior over � and thus derive
the variational posterior distribution as q(�) = Ga(a�

M

, b�
M

)

whose posterior parameters can be updated by

a�
M

= a�0 +

NX
n=1

R
n

,

b�
M

= b�0 +

1

2

NX
n=1

RnX
rn=1

E
h
�(n)�1

rn

i
.

(26)

It should be noted that E
⇥
�
(n)�1

rn

⇤
cannot be computed s-

traightforwardly by E
⇥
�
(n)
rn

⇤�1. Since q(�
(n)
rn ) is a GIG dis-

tribution as shown in (24), it is not difficult to derive that
q
�
�
(n)�1

rn

�
= GIG(�h,˜b

(n)
rn , ã

(n)
rn ), yielding the posterior ex-

pectation computed by

E
GIG

h
�(n)�1

rn

i
=

q
ã
(n)
rn K1�h

✓q
ã
(n)
rn

˜b
(n)
rn

◆
q
˜b
(n)
rn K�h

✓q
ã
(n)
rn

˜b
(n)
rn

◆ , (27)

and the posterior mode computed by

arg max

�
(n)�1
rn

GIG
⇣
�(n)�1

rn

⌘
=

(�h� 1) +

q
(�h� 1)

2
+ ã

(n)
rn

˜b
(n)
rn

˜b
(n)
rn

,

(28)

where K1�h

(·) denotes a modified Bessel function of the
second kind.

As can be derived, the variational posterior distribution
over the noise hyperparameter is q(⌧) = Ga(a⌧

M

, b⌧
M

) whose
parameters can be updated by

a⌧
M = a⌧

0 +

1

2

Y
n

In,

b⌧M = b⌧0 +

1

2

E
"�����vec(Y)�

 O
n

U(n)

!
vec(G)

�����
2

F

#
,

(29)

where the posterior expectation of model residuals can be
evaluated by

E
"�����vec(Y)�

 O
n

U(n)

!
vec(G)

�����
2

F

#
=

kYk2F � 2vec(Y)

T

 O
n

E[U(n)
]

!
E[vec(G)]

+ Tr

 
E
h
vec(G)vec(G)

T
iO

n

E
h
U(n)TU(n)

i!
. (30)

In principle, E
⇥
vec(G)vec(G)T ⇤ = vec(eG)vec(eG)T + ⌃

G

.
However, vec(eG)vec(eG)T can be alternatively used as an ap-
proximation, which then makes it possible to apply multilinear
operations for computing (30) quite efficiently. Hence, the
computational complexity can then be reduced to O(

Q
n

R
n

+Q
n

I
n

).
The inference framework presented in this section can

essentially maximize the lower bound of model evidence
which is defined by L(q) = E

q(⇥)[ln p(Y ,⇥)] + H(q(⇥)).
The first term denotes the posterior expectation of joint dis-
tribution while the second term denotes the entropy of q(⇥).
In principle, L(q) should increase at each iteration, thus it
can be used to test for convergence. We provide the detailed
computation forms of L(q) in the Appendix.

V. BAYESIAN SPARSE TUCKER COMPLETION

A. Model specification
In this section, we consider Bayesian Tucker model for

tensor completion. Let Y denotes an incomplete tensor (i.e.,
with missing entries), and O denotes a binary tensor indicating
the observation positions, i.e., O

i1···iN = 1 if (i1, . . . , iN ) 2 ⌦

otherwise it is zero. ⌦ denotes a set of N -tuple indices of
observed entries. Y⌦ denotes only observed entries. Similar to
BSTD model, we assume a generative model Y⌦ = X⌦ + "
where the latent tensor X can be represented exactly by a
Tucker model with a low multilinear rank and " denotes i.i.d.
Gaussian noise.

Given an incomplete tensor, Bayesian Tucker model only
considers the observed entries, yielding a new likelihood
function represented by

p
�Y⌦|{U(n)},G, ⌧� = Y

(i1,...,iN )2⌦

N �Y
i1...iN |X

i1...iN , ⌧�1
�
.

⌧
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• Model assumption: Nth-order tensor 

• Likelihood function:

• Priors over model parameters are same as BSTD 

• Model inference are different for core tensor G, factor matrices 
U, and noise precision 

• Predictive distribution over missing entries
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the likelihood distribution, which leads to difficulties for
fully Bayesian inference. In contrast, another popular sparsity
inducting prior is automatic relevance determination (ARD),
which has been widely applied in many powerful methods
such as relevance vector machine and Bayesian principle
component analysis [51], [52], [53]. The advantages of ARD
prior lie in its conjugacy resulted from a hierarchical structure.
Note that ARD prior is essentially a hierarchical Student-t
distribution since its marginal distribution isZ 1

0
N (x|0,��1

)Ga(�|a, b) d� = T (x|0, ab�1, 2a). (3)

Ga(x|a, b) =

b

a

�(a)x
a�1e�bx denotes a Gamma distribution

and T (x) denotes a Student-t distribution.
A straightforward question is that can we represent Laplace

prior by the hierarchical distributions which are conjugate?
As shown in [54], [55], a hierarchical structure of Gaus-
sian and Exponential distributions yields a Laplace marginal
distribution, whereas they are not conjugate priors. In this
paper, we present another hierarchial Laplace distribution
by employing an Inverse Gamma distribution IG(x|a, b) =

b

a

�(a)x
�a�1e�bx

�1

. Thus, we can show that the marginal
distribution isZ 1

0
N (x|0,��1

)IG(�|1, �
2

) d� = Laplace
�
x|0, 1p

�

�
. (4)

Note that � govern the degree of sparsity, for example, if � =

1, then p(x) / e�|x|.
We consider to employ the above hierarchical priors to

group sparse modeling. Let X = {x1, . . . ,xR

} denote R
groups of random variables where x

r

2 RIr denote rth group
that contains I

r

random variables. The group sparse modeling
is to enforce sparsity on groups in contrast to the individual
random variables, which effectively take into account the
clustering properties of relevant variables. To employ the
hierarchial sparsity priors for group sparse model, it can be
specified as 8r = 1, . . . , R,

Student-t: x

r

⇠ N (0,��1
r

I

Ir ), �
r

⇠ Ga(a, b), (5)

Laplace: x

r

⇠ N (0,��1
r

I

Ir ), �
r

⇠ IG(1,
�

2

). (6)

Therefore, the marginal distributions of X can be de-
rived as p(X ) =

Q
R

r=1 T (x

r

|0, ab�1, 2a) and p(X ) =Q
R

r=1 Laplace(xr

|0, 1p
�

), where T (x), Laplace(x) denote a
multivariate Student-t distribution and a multivariate Laplace
distribution respectively [56]. One can show that when a =

b ! 0, then 8r, p(x
r

) / (1/kx
r

k2)Ir . When � ! 1, then
8r, p(x

r

) / e�kxrk2 .

IV. BAYESIAN SPARSE TUCKER DECOMPOSITION

A. Model specification

We first consider the Bayesian Tucker model for an N th-
order tensor Y 2 RI1⇥···⇥IN that is fully observed. We assume
that Y is a measurement of the latent tensor X corrupted
by i.i.d. Gaussian noises, i.e., Y = X + ", where X is
generated exactly by the Tucker representation as shown in

(1). Therefore, the observation model can be specified by a
vectorized form,

vec(Y)

���nU(n)
o
,G, ⌧ ⇠ N

 ✓O
n

U

(n)
◆

vec(G), ⌧�1
I

!
.

(7)
Our objective is to infer the model parameters, as well as
model complexity, automatically and solely from given data.
To this end, we propose the hierarchical prior distributions over
all model (hyper)parameters. For noise precision ⌧ , a Gamma
prior can be simply placed with appropriate hyperparameters,
yielding an noninformative prior distribution.

To modeling tensor data by an appropriate model complexi-
ty, it is important to design the flexible prior distributions over
the factor matrices {U(n)}, n = 1, . . . , N , and the core tensor
G. Since the model complexity of Tucker decompositions de-
pends on the dimensions of G, denoted by (R1, R2, . . . , RN

),
while R

n

, n = 1, . . . , N also correspond to the number of
columns in model-n factor matrix U

(n) and thus represent the
dimensions of mode-n latent space. The minimal number of
{R

n

}N
n=1 i.e., multilinear rank [9], usually need to be given in

advance. However, due to the presence of noise, the optimal
selection of multlinear rank is quite challenging. Although
some model selection criterions can be applied, the accuracy
significantly depends on the decomposition algorithms, result-
ing in less stability and high computational cost. Therefore, we
seek an elegant automatic model selection, which can not only
infer the multilinear rank, but also effectively avoid overfitting.
To achieve this, we employ the proposed group sparsity priors
over factor matrices. More specifically, each U

(n) is govern
by hyperparameters �(n) 2 RRn , where �

(n)
rn controls the

precision related to r
n

group (i.e., r
n

th column). Due to the
group sparsity inducing property, the dimensions of latent
space will be enforced to be minimal. On the other hand, the
core tensor G also needs to be as sparse as possible. However,
if we straightforwardly place an independent sparsity prior,
the interactions between G and {U(n)} cannot be modeled,
which may lead to inaccurate estimation of multilinear rank.
As G

r1,...,rN can be considered as the scalar coefficient of the
rank-one tensor u

(1)
·r1 ⌦ · · · ⌦ u

(N)
·rN that involves r

n

th column
of U(n), respectively, if 9n, 9r

n

,u
(n)
·rn = 0, then the subtensor

G···rn··· should be also enforced to be zero. Hence, we can
use

Q
n

�
(n)
rn to control the precision of G

r1,...,rN , which is
expressed by

G
r1···rN

��� n�(n)
o
,� ⇠ N

 
0,
⇣
�
Y
n

�(n)
rn

⌘�1
!
, (8)

where � is a scale parameter related to the magnitude of G, on
which a hyperprior can be placed. Note that �(n) are shared
between U

(n) and G, leading to the consistent sparsity patterns
over them.

The hyperprior over �(n) play a key role for different
sparsity inducing priors. We propose two hierarchial priors
including Student-t and Laplace for group sparsity. Let ⇤(n)

=

diag(�(n)
), we can finally specify the hierarchial model priors
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much difficulties for model inference. To solve this prob-
lem, we employ a generalized inverse Gaussian distribution,
denoted by GIG(x|h, a, b), which includes Gamma, inverse
Gamma, and inverse Gaussian distribution as special cases
by an appropriate setting of hyperparameters. For example,
one can show that Ga(a, b) = GIG(a, 2b, 0) and IG(a, b) =

GIG(�a, 0, 2b). Although the hyper-prior is �(n)
rn ⇠ IG(1, �

2 ),
the variational posterior q(�

(n)
rn ) cannot be represented as the

IG distribution. In contrast, the variation posterior distribution
over {�(n)} can be represented as i.i.d. GIG distributions,
which is 8n = 1, . . . , N ,

q
�
�(n)�

=

RnY
rn=1

GIG
�
�(n)
rn

��h, ã(n)
rn

,˜b(n)
rn

�
, (24)

where the posterior parameters can be computed by

h =

1

2

0@I
n

+

Y
k 6=n

R
k

1A� 1, ˜b(n)
rn

= E[�],

ã(n)
rn

= E[�]E
⇥
vec(G2

···rn···)
T

⇤O
k 6=n

E
h
�(k)

i
+ E

h
u

(n)T
·rn u

(n)
·rn

i
.

(25)

The computational complexity for inference of q(�(n)
) is also

O(

Q
n

R
n

+ I
n

R
n

). Given the updated parameters, we can
evaluate E

GIG

⇥
�
(n)
rn

⇤
straightforwardly, while an alternative

approximation is the posterior mode w.r.t. GIG distribution
that can avoid computational instabilities of modified Bessel
function.

By comparing (24) with (21), we can investigate the es-
sential difference between Student-t and Laplace priors. One
can show that (21) can be rewritten as GIG

⇣
ã
(n)
rn , 2˜b

(n)
rn , 0

⌘
with parameters given by (22). Hence, the key difference
lies in the setting of �. If � = 0, Student-t and Laplace
priors are essentially equivalent. To avoid manually tuning
parameters, we also place a hyper-prior over � and thus derive
the variational posterior distribution as q(�) = Ga(a�

M

, b�
M

)

whose posterior parameters can be updated by

a�
M

= a�0 +

NX
n=1

R
n

,

b�
M

= b�0 +

1

2

NX
n=1

RnX
rn=1

E
h
�(n)�1

rn

i
.

(26)

It should be noted that E
⇥
�
(n)�1

rn

⇤
cannot be computed s-

traightforwardly by E
⇥
�
(n)
rn

⇤�1. Since q(�
(n)
rn ) is a GIG dis-

tribution as shown in (24), it is not difficult to derive that
q
�
�
(n)�1

rn

�
= GIG(�h,˜b

(n)
rn , ã

(n)
rn ), yielding the posterior ex-

pectation computed by

E
GIG

h
�(n)�1

rn

i
=

q
ã
(n)
rn K1�h

✓q
ã
(n)
rn

˜b
(n)
rn

◆
q
˜b
(n)
rn K�h

✓q
ã
(n)
rn

˜b
(n)
rn

◆ , (27)

and the posterior mode computed by

arg max

�
(n)�1
rn

GIG
⇣
�(n)�1

rn

⌘
=

(�h� 1) +

q
(�h� 1)

2
+ ã

(n)
rn

˜b
(n)
rn

˜b
(n)
rn

,

(28)

where K1�h

(·) denotes a modified Bessel function of the
second kind.

As can be derived, the variational posterior distribution
over the noise hyperparameter is q(⌧) = Ga(a⌧

M

, b⌧
M

) whose
parameters can be updated by

a⌧
M = a⌧

0 +

1

2

Y
n

In,

b⌧M = b⌧0 +

1

2

E
"�����vec(Y)�

 O
n

U(n)

!
vec(G)

�����
2

F

#
,

(29)

where the posterior expectation of model residuals can be
evaluated by

E
"�����vec(Y)�

 O
n

U(n)

!
vec(G)

�����
2

F

#
=

kYk2F � 2vec(Y)

T

 O
n

E[U(n)
]

!
E[vec(G)]

+ Tr

 
E
h
vec(G)vec(G)

T
iO

n

E
h
U(n)TU(n)

i!
. (30)

In principle, E
⇥
vec(G)vec(G)T ⇤ = vec(eG)vec(eG)T + ⌃

G

.
However, vec(eG)vec(eG)T can be alternatively used as an ap-
proximation, which then makes it possible to apply multilinear
operations for computing (30) quite efficiently. Hence, the
computational complexity can then be reduced to O(

Q
n

R
n

+Q
n

I
n

).
The inference framework presented in this section can

essentially maximize the lower bound of model evidence
which is defined by L(q) = E

q(⇥)[ln p(Y ,⇥)] + H(q(⇥)).
The first term denotes the posterior expectation of joint dis-
tribution while the second term denotes the entropy of q(⇥).
In principle, L(q) should increase at each iteration, thus it
can be used to test for convergence. We provide the detailed
computation forms of L(q) in the Appendix.

V. BAYESIAN SPARSE TUCKER COMPLETION

A. Model specification
In this section, we consider Bayesian Tucker model for

tensor completion. Let Y denotes an incomplete tensor (i.e.,
with missing entries), and O denotes a binary tensor indicating
the observation positions, i.e., O

i1···iN = 1 if (i1, . . . , iN ) 2 ⌦

otherwise it is zero. ⌦ denotes a set of N -tuple indices of
observed entries. Y⌦ denotes only observed entries. Similar to
BSTD model, we assume a generative model Y⌦ = X⌦ + "
where the latent tensor X can be represented exactly by a
Tucker model with a low multilinear rank and " denotes i.i.d.
Gaussian noise.

Given an incomplete tensor, Bayesian Tucker model only
considers the observed entries, yielding a new likelihood
function represented by

p
�Y⌦|{U(n)},G, ⌧� = Y

(i1,...,iN )2⌦

N �Y
i1...iN |X

i1...iN , ⌧�1
�
.
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that can obtain optimal generalization performance, whereas
this problem is more challenging as compared to tensor
decomposition for a fully observed tensor. More specifically,
existing model selections including cross-validation are not
applicable due to correlations between the optimal tensor
rank and number of observed data points. Although numerous
tensor decomposition methods for partially observed tensor
were developed in [33], [34], [35], [36], [37], [38], [39],
[40], the most challenging task of specifying tensor rank
was conveyed to user, and thus was done mostly based on
an implicit assumption that missing data is known. Several
studies have considered automatic rank determination for CP
decomposition [5], [41]. In contrast to CP rank, multilinear
rank has more degree of freedom. An alternative framework
for tensor completion, based on a low-rank assumption, was
developed by minimizing the nuclear norm of approximate
tensor, which corresponds to a convex relaxation of rank
minimization problem [42]. Although this technique success-
fully avoids specifying tensor rank manually, several tuning
parameters are required and sensitive to missing ratio. Hence,
it essentially transformed the model selection problem to a
parameter selection problem. The nuclear norm based tensor
completion was shown to be attractive in recent years [43],
[44], [45], [46], [47], [48]. Many variants by imposing addi-
tional constraints were also exploited in [49], [50] which have
shown advantages for some specific type of data. However,
the best performance was mostly obtained by carefully tuning
parameters based on implicit assumption that missing data is
known. Another issue is that the definition of nuclear norm
of tensor corresponds to a (weighted) summation of mode-
n rank R

n

denoting the dimension of latent factor matrices.
However, the dimension of core tensor

Q
n

R
n

represents the
model complexity of whole tensor as described previously.
As a result, another possible framework can be introduced by
optimization of logarithm transformed nuclear norm.

In this paper, we introduce two different generative models
for Tucker decomposition of a complete tensor and Tucker
completion of an incomplete tensor, which can automatically
infer the optimal multilinear rank solely from observed data.
To achieve automatic model determination, we investigate
structural sparse modeling through formulating Laplace as
well as Student-t distributions in a hierarchial representation
to facilitate full posterior inference, which therefore can be
further extended to enforce group sparsity over factor matrices
and structural sparsity over core tensor. For model learning,
we derive the full posterior inference under a variational
Bayesian framework, including remarkable inference for the
non-conjugate hierarchical Laplace prior. Finally, all model
parameters can be inferred as well as predictive distribution
over missing data without needing of tuning parameters. In
addition, we introduce several Theorems based on multilinear
operations to improve computational efficiency and scalability.

The rest of this paper is organized as follows: Section II
presents notations and multilinear operations. In Section III,
we present group sparse modeling by hierarchical sparsity
inducing priors. Section IV presents Bayesian Tucker model
for tensor decomposition, while Section V presents Bayesian
Tucker model for tensor completion. The algorithm related

issues are discussed in Section VI. Section VII shows experi-
mental results followed by conclusion in Section VIII.

II. PRELIMINARIES AND NOTATIONS

Let X ,X,x denote a tensor, matrix, vector respective-
ly. Given an N th-order tensor X 2 RI1⇥I2⇥···⇥IN , its
(i1, . . . , iN )th entry is denoted by X

i1···iN , where i
n

=

1, . . . , I
n

, n = 1, . . . , N . The standard Tucker decomposition
is defined by

X = G ⇥1 U
(1) ⇥2 U

(2) ⇥ · · ·⇥
N

U

(N). (1)�
U

(n) 2 RIn⇥Rn
 
N

n=1
are a set of mode-n factor ma-

trices, G 2 RR1⇥R2⇥···⇥RN denotes the core tensor and
(R1, . . . , RN

) denote the dimensions of mode-n latent space,
respectively. The overall model complexity can be represented
by
Q

n

R
n

or
P

n

R
n

, whose minimum associated values
{R

n

}N
n=1 is termed as multilinear rank of tensor X [9]. For

a specific U

(n), we denote its row vectors by
�
u

(n)
in

��i
n

=

1, . . . , I
n

 
and its column vectors by

�
u

(n)
·rn
��r

n

= 1, . . . , R
n

 
.

Definition II.1. Let
�
U

(n) 2 RIn⇥Rn
 
N

n=1
denote a set of

matrices, the sequential Kronecker products in a reversed order
is defined and denoted byO

n

U

(n)
= U

(N) ⌦U

(N�1) ⌦ · · ·⌦U

(1).O
k 6=n

U

(k)
= U

(N) ⌦ · · ·⌦U

(n+1) ⌦U

(n�1) ⌦ · · ·⌦U

(1).

The symbol ⌦ denotes Kronecker product.
N

n

U

(n) is a
matrix of size (

Q
n

I
n

⇥Q
n

R
n

).

The Tucker decomposition (1) can be also represented by
using matrix, vector, or element-wise forms, given by

X(n) = U

(n)
G(n)

 O
k 6=n

U

(k)T

!
,

vec(X ) =

✓O
n

U

(n)

◆
vec(G),

X
i1···iN =

✓O
n

u

(n)T
in

◆
vec(G).

(2)

It should be noted that the multilinear operation is signif-
icantly efficient for computation. For example, if we com-
pute

N
n

U

(n) firstly and then multiply it with vec(G), both
the computation and memory complexity is O (

Q
n

I
n

R
n

).
In contrast, if we apply a sequence of multilinear opera-
tions (·)⇥

n

U

(n) without explicitly computing
N

n

U

(n), the
computational complexity is O (min

n

(R
n

)

Q
n

I
n

) while the
memory cost is O(

Q
n

I
n

). In this paper, we use notationN
n

(·) frequently for clarity, however, the implementation can
be performed by using multilinear operations.

III. HIERARCHICAL GROUP SPARSITY PRIORS

The sparsity inducing priors are considerably important
and powerful for many machine learning models. The most
popular ones are Laplace, Student-t, and Spike and slab
priors. However, these priors are often not conjugate with
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much difficulties for model inference. To solve this prob-
lem, we employ a generalized inverse Gaussian distribution,
denoted by GIG(x|h, a, b), which includes Gamma, inverse
Gamma, and inverse Gaussian distribution as special cases
by an appropriate setting of hyperparameters. For example,
one can show that Ga(a, b) = GIG(a, 2b, 0) and IG(a, b) =

GIG(�a, 0, 2b). Although the hyper-prior is �(n)
rn ⇠ IG(1, �

2 ),
the variational posterior q(�

(n)
rn ) cannot be represented as the

IG distribution. In contrast, the variation posterior distribution
over {�(n)} can be represented as i.i.d. GIG distributions,
which is 8n = 1, . . . , N ,

q
�
�(n)�

=

RnY
rn=1

GIG
�
�(n)
rn

��h, ã(n)
rn

,˜b(n)
rn

�
, (24)

where the posterior parameters can be computed by

h =

1

2

0@I
n

+

Y
k 6=n

R
k

1A� 1, ˜b(n)
rn

= E[�],

ã(n)
rn

= E[�]E
⇥
vec(G2

···rn···)
T

⇤O
k 6=n

E
h
�(k)

i
+ E

h
u

(n)T
·rn u

(n)
·rn

i
.

(25)

The computational complexity for inference of q(�(n)
) is also

O(

Q
n

R
n

+ I
n

R
n

). Given the updated parameters, we can
evaluate E

GIG

⇥
�
(n)
rn

⇤
straightforwardly, while an alternative

approximation is the posterior mode w.r.t. GIG distribution
that can avoid computational instabilities of modified Bessel
function.

By comparing (24) with (21), we can investigate the es-
sential difference between Student-t and Laplace priors. One
can show that (21) can be rewritten as GIG

⇣
ã
(n)
rn , 2˜b

(n)
rn , 0

⌘
with parameters given by (22). Hence, the key difference
lies in the setting of �. If � = 0, Student-t and Laplace
priors are essentially equivalent. To avoid manually tuning
parameters, we also place a hyper-prior over � and thus derive
the variational posterior distribution as q(�) = Ga(a�

M

, b�
M

)

whose posterior parameters can be updated by

a�
M

= a�0 +

NX
n=1

R
n

,

b�
M

= b�0 +

1

2

NX
n=1

RnX
rn=1

E
h
�(n)�1

rn

i
.

(26)

It should be noted that E
⇥
�
(n)�1

rn

⇤
cannot be computed s-

traightforwardly by E
⇥
�
(n)
rn

⇤�1. Since q(�
(n)
rn ) is a GIG dis-

tribution as shown in (24), it is not difficult to derive that
q
�
�
(n)�1

rn

�
= GIG(�h,˜b

(n)
rn , ã

(n)
rn ), yielding the posterior ex-

pectation computed by

E
GIG

h
�(n)�1

rn

i
=

q
ã
(n)
rn K1�h

✓q
ã
(n)
rn

˜b
(n)
rn

◆
q
˜b
(n)
rn K�h

✓q
ã
(n)
rn

˜b
(n)
rn

◆ , (27)

and the posterior mode computed by

arg max

�
(n)�1
rn

GIG
⇣
�(n)�1

rn

⌘
=

(�h� 1) +

q
(�h� 1)

2
+ ã

(n)
rn

˜b
(n)
rn

˜b
(n)
rn

,

(28)

where K1�h

(·) denotes a modified Bessel function of the
second kind.

As can be derived, the variational posterior distribution
over the noise hyperparameter is q(⌧) = Ga(a⌧

M

, b⌧
M

) whose
parameters can be updated by

a⌧
M = a⌧

0 +

1

2

Y
n

In,

b⌧M = b⌧0 +

1

2

E
"�����vec(Y)�

 O
n

U(n)

!
vec(G)

�����
2

F

#
,

(29)

where the posterior expectation of model residuals can be
evaluated by

E
"�����vec(Y)�

 O
n

U(n)

!
vec(G)

�����
2

F

#
=

kYk2F � 2vec(Y)

T

 O
n

E[U(n)
]

!
E[vec(G)]

+ Tr

 
E
h
vec(G)vec(G)

T
iO

n

E
h
U(n)TU(n)

i!
. (30)

In principle, E
⇥
vec(G)vec(G)T ⇤ = vec(eG)vec(eG)T + ⌃

G

.
However, vec(eG)vec(eG)T can be alternatively used as an ap-
proximation, which then makes it possible to apply multilinear
operations for computing (30) quite efficiently. Hence, the
computational complexity can then be reduced to O(

Q
n

R
n

+Q
n

I
n

).
The inference framework presented in this section can

essentially maximize the lower bound of model evidence
which is defined by L(q) = E

q(⇥)[ln p(Y ,⇥)] + H(q(⇥)).
The first term denotes the posterior expectation of joint dis-
tribution while the second term denotes the entropy of q(⇥).
In principle, L(q) should increase at each iteration, thus it
can be used to test for convergence. We provide the detailed
computation forms of L(q) in the Appendix.

V. BAYESIAN SPARSE TUCKER COMPLETION

A. Model specification
In this section, we consider Bayesian Tucker model for

tensor completion. Let Y denotes an incomplete tensor (i.e.,
with missing entries), and O denotes a binary tensor indicating
the observation positions, i.e., O

i1···iN = 1 if (i1, . . . , iN ) 2 ⌦

otherwise it is zero. ⌦ denotes a set of N -tuple indices of
observed entries. Y⌦ denotes only observed entries. Similar to
BSTD model, we assume a generative model Y⌦ = X⌦ + "
where the latent tensor X can be represented exactly by a
Tucker model with a low multilinear rank and " denotes i.i.d.
Gaussian noise.

Given an incomplete tensor, Bayesian Tucker model only
considers the observed entries, yielding a new likelihood
function represented by

p
�Y⌦|{U(n)},G, ⌧� = Y

(i1,...,iN )2⌦

N �Y
i1...iN |X

i1...iN , ⌧�1
�
.
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much difficulties for model inference. To solve this prob-
lem, we employ a generalized inverse Gaussian distribution,
denoted by GIG(x|h, a, b), which includes Gamma, inverse
Gamma, and inverse Gaussian distribution as special cases
by an appropriate setting of hyperparameters. For example,
one can show that Ga(a, b) = GIG(a, 2b, 0) and IG(a, b) =

GIG(�a, 0, 2b). Although the hyper-prior is �(n)
rn ⇠ IG(1, �

2 ),
the variational posterior q(�

(n)
rn ) cannot be represented as the

IG distribution. In contrast, the variation posterior distribution
over {�(n)} can be represented as i.i.d. GIG distributions,
which is 8n = 1, . . . , N ,

q
�
�(n)�

=

RnY
rn=1

GIG
�
�(n)
rn

��h, ã(n)
rn

,˜b(n)
rn

�
, (24)

where the posterior parameters can be computed by

h =

1

2

0@I
n

+

Y
k 6=n

R
k

1A� 1, ˜b(n)
rn

= E[�],

ã(n)
rn

= E[�]E
⇥
vec(G2

···rn···)
T

⇤O
k 6=n

E
h
�(k)

i
+ E

h
u

(n)T
·rn u

(n)
·rn

i
.

(25)

The computational complexity for inference of q(�(n)
) is also

O(

Q
n

R
n

+ I
n

R
n

). Given the updated parameters, we can
evaluate E

GIG

⇥
�
(n)
rn

⇤
straightforwardly, while an alternative

approximation is the posterior mode w.r.t. GIG distribution
that can avoid computational instabilities of modified Bessel
function.

By comparing (24) with (21), we can investigate the es-
sential difference between Student-t and Laplace priors. One
can show that (21) can be rewritten as GIG

⇣
ã
(n)
rn , 2˜b

(n)
rn , 0

⌘
with parameters given by (22). Hence, the key difference
lies in the setting of �. If � = 0, Student-t and Laplace
priors are essentially equivalent. To avoid manually tuning
parameters, we also place a hyper-prior over � and thus derive
the variational posterior distribution as q(�) = Ga(a�

M

, b�
M

)

whose posterior parameters can be updated by

a�
M

= a�0 +

NX
n=1

R
n

,

b�
M

= b�0 +

1

2

NX
n=1

RnX
rn=1

E
h
�(n)�1

rn

i
.

(26)

It should be noted that E
⇥
�
(n)�1

rn

⇤
cannot be computed s-

traightforwardly by E
⇥
�
(n)
rn

⇤�1. Since q(�
(n)
rn ) is a GIG dis-

tribution as shown in (24), it is not difficult to derive that
q
�
�
(n)�1

rn

�
= GIG(�h,˜b

(n)
rn , ã

(n)
rn ), yielding the posterior ex-

pectation computed by

E
GIG

h
�(n)�1

rn

i
=

q
ã
(n)
rn K1�h

✓q
ã
(n)
rn

˜b
(n)
rn

◆
q
˜b
(n)
rn K�h

✓q
ã
(n)
rn

˜b
(n)
rn

◆ , (27)

and the posterior mode computed by

arg max

�
(n)�1
rn

GIG
⇣
�(n)�1

rn

⌘
=

(�h� 1) +

q
(�h� 1)

2
+ ã

(n)
rn

˜b
(n)
rn

˜b
(n)
rn

,

(28)

where K1�h

(·) denotes a modified Bessel function of the
second kind.

As can be derived, the variational posterior distribution
over the noise hyperparameter is q(⌧) = Ga(a⌧

M

, b⌧
M

) whose
parameters can be updated by

a⌧
M = a⌧

0 +

1

2

Y
n

In,

b⌧M = b⌧0 +

1

2

E
"�����vec(Y)�

 O
n

U(n)

!
vec(G)

�����
2

F

#
,

(29)

where the posterior expectation of model residuals can be
evaluated by

E
"�����vec(Y)�

 O
n

U(n)

!
vec(G)

�����
2

F

#
=

kYk2F � 2vec(Y)

T

 O
n

E[U(n)
]

!
E[vec(G)]

+ Tr

 
E
h
vec(G)vec(G)

T
iO

n

E
h
U(n)TU(n)

i!
. (30)

In principle, E
⇥
vec(G)vec(G)T ⇤ = vec(eG)vec(eG)T + ⌃

G

.
However, vec(eG)vec(eG)T can be alternatively used as an ap-
proximation, which then makes it possible to apply multilinear
operations for computing (30) quite efficiently. Hence, the
computational complexity can then be reduced to O(

Q
n

R
n

+Q
n

I
n

).
The inference framework presented in this section can

essentially maximize the lower bound of model evidence
which is defined by L(q) = E

q(⇥)[ln p(Y ,⇥)] + H(q(⇥)).
The first term denotes the posterior expectation of joint dis-
tribution while the second term denotes the entropy of q(⇥).
In principle, L(q) should increase at each iteration, thus it
can be used to test for convergence. We provide the detailed
computation forms of L(q) in the Appendix.

V. BAYESIAN SPARSE TUCKER COMPLETION

A. Model specification
In this section, we consider Bayesian Tucker model for

tensor completion. Let Y denotes an incomplete tensor (i.e.,
with missing entries), and O denotes a binary tensor indicating
the observation positions, i.e., O

i1···iN = 1 if (i1, . . . , iN ) 2 ⌦

otherwise it is zero. ⌦ denotes a set of N -tuple indices of
observed entries. Y⌦ denotes only observed entries. Similar to
BSTD model, we assume a generative model Y⌦ = X⌦ + "
where the latent tensor X can be represented exactly by a
Tucker model with a low multilinear rank and " denotes i.i.d.
Gaussian noise.

Given an incomplete tensor, Bayesian Tucker model only
considers the observed entries, yielding a new likelihood
function represented by

p
�Y⌦|{U(n)},G, ⌧� = Y

(i1,...,iN )2⌦

N �Y
i1...iN |X

i1...iN , ⌧�1
�
.
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Based on Tucker decomposition framework, we can thus
represent the observation model as that 8(i1, . . . , iN ),

Yi1···iN
��� nu(n)

in

o
,G, ⌧ ⇠ N

  O
n

u(n)T
in

!
vec(G), ⌧�1

!Oi1···iN

.

(31)

For Tucker decomposition of an incomplete tensor, the
problem is ill-conditioned and has infinite solutions. The low-
rank assumption play an key role for successful tensor com-
pletion, which implies that the determination of multilinear
rank significantly affects the predictive performance. However,
standard model selection strategies, such as cross-validation,
cannot be applied for finding the optimal multilinear rank
because it varies dramatically with missing ratios. Therefore,
the inference of multilinear rank is more challenging when
missing values occur.

As described in BSTD model, we employ two types of
hierarchical group sparsity priors over the factor matrices
and core tensor with aim to seek the minimum multilinear
rank automatically, which is more efficient and elegant than
the standard model selections by repeating many times and
selecting one optimum model. Therefore, the model priors for
all hidden variables are same with that in BSTD model. By
combining likelihood model in (31) with the model priors in
(9), we propose a Bayesian Sparse Tucker Completion (BSTC)
model, which enable us to infer the minimum multilinear rank
as well as the noise level solely from partially observed data
without requiring any tuning parameters.

B. Model inference

For BSTC model, we also employ VB inference framework
to learn the model under a fully Bayesian treatment. Since
BSTC model differs from BSTD model in the likelihood
function (31), indicating that the inference for factor matrices,
core tensor and noise parameter are essentially different, while
other hyperparameters can be inferred by the same solutions.
In this section, we present only the main solutions while the
detailed derivations are provided in the Appendix.

As can be derived, the variational posterior distribution over
the core tensor G is

q(G) = N
⇣

vec(G)��vec(eG),⌃
G

⌘
(32)

where the posterior parameters can be updated by

vec(eG) = E[⌧ ]⌃G

X
(i1,...,iN )2⌦

 
Yi1···iN

O
n

E
h
u(n)
in

i!
(33)

⌃G =

8<:E[�]
O
n

E
h
⇤(n)

i
+ E[⌧ ]

X
(i1,...,iN )2⌦

O
n

E
h
u(n)
in

u(n)T
in

i9=;
�1

(34)

It should be noted that Theorems IV.1, IV.2 and multilinear
operations cannot be applied to (34) due to the sum of
kronecker products. Thus the sequential kronecker products
must be computed explicitly, resulting in the computation-
al cost of O �Q

n

R3
n

+M
Q

n

R2
n

�
, where M denotes the

number of observed entries (i.e., data size), and memo-
ry cost of O �Q

n

R2
n

�
. This severely prevents the method

from being applied to large-scale datasets. To improve s-
calability, we propose an alternative solution by optimizing
argminG{� ln q(G)} instead of closed-form update in (33).
This can be achieved by employing a nonlinear conjugate
gradient method with the gradient given by

@ {� ln q(G)}
@(vec(G)) = E[�]

 O
n

E
h
⇤

(n)
i!

vec(G)

+ E[⌧ ]
X

(i1,...,iN )2⌦

( O
n

E
h
u

(n)
in

u

(n)T
in

i!
vec(G)

)

� E[⌧ ]
X

(i1,...,iN )2⌦

 
Y
i1···iN

O
n

E
h
u

(n)
in

i!
(35)

Thus, multilinear operations can be applied without explicitly
computation of kronecker products, resulting in reduced com-
putational complexity of O (M

Q
n

R
n

) and reduced memory
cost of O (

Q
n

R
n

), which scales linearly with data size and
model complexity.

As can be derived, the variational posterior distribution over�
U

(n)
 

is factorized as

q
�
U

(n)
�
=

Y
in

N
⇣
u

(n)
in

���eu(n)
in

, 
(n)
in

⌘
, n = 1, . . . , N, (36)

where the posterior parameters can be updated by
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=
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O
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(k)
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u

(k)T
ik

, the summation is

performed over the observed data locations whose mode-n
index is fixed to i

n

. In other words, �

(n)
in

represents the
statistical information of mode-k (k 6= n) latent factors that
interact with u

(n)
in

. In (38), the complex posterior expectation
can be computed by

vec
n
E
h
G(n)�
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The computational complexity for inference of u
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O �
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�
, while the memory cost is O(

Q
n

R
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).
An intuitive interpretation of (38) is that the posterior co-
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combines prior information denoted by E[�(n)
]

and posterior information of interacted factors in other modes,
while the tradeoff between these two terms is controlled by
model residual E[⌧ ]. Hence, if updated E[�(n)

rn
] is quite large

and model is not well fitted, then the posterior variance of
r
n

th component will be easily forced to zero.
Given updated q

�
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�
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The variational posterior distribution over noise precision ⌧
can be derived as q(⌧) = Ga(⌧ |a⌧

M

, b⌧
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) whose parameters
are updated by
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The posterior expectation of model residuals over observed
entries can be evaluated by
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The computational complexity is O(M
Q

n

R
n

), if multilinear
operations have been applied.

Note that other hidden hyperparameters in ⇥ excep-
t {G, {U(n)}, ⌧} can be inferred essentially by the same
solutions with BSTD model. In addition, the lower bound
L(q) = E

q(⇥)[ln p(Y⌦,⇥)] + H(q(⇥)) can be also evalu-
ated with different expressions related to {G, {U(n)}, ⌧} (see
Appendix for details).

The predictive distributions over missing entries, given
observed entries, can be approximated by using variational
posterior distributions q(⇥) as follows
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where the posterior parameters can be obtained by
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Therefore, our model can provide not only predictions over
missing entries, but also the uncertainty of predictions, which
is quite important for some specific applications.

VI. ALGORITHM RELATED ISSUES

We denote Bayesian sparse Tucker models (i.e., BSTD and
BSTC) when two different group sparsity priors have been
employed by BSTD-T, BSTD-L, BSTC-T, BSTC-L respective-
ly, where T, L represent a hierarchical Student-t and Laplace
priors. The main procedure of model inference is described as
follows:

• Setting of top-level hyperparameters. For BSTD-
T and BSTC-T models, {a⌧0 , b⌧0 , a�0 , b�0 , a�0 , b�0} are
set to 1e-9. For BSTD-L and BSTC-L models,
{a⌧0 , b⌧0 , a�0 , b�0 , a�0 , b�0} are set to 1e-9. This setting results
in a noninformative prior, which ensures that model
inference is solely based on observed data. However, we
can also give a strong preference on a specific value by
setting the appropriate hyperparameters.

• Initialization of hidden parameters ⇥. For BSTD-T
and BSTC-T, ⇥ = {G, {U(n)}, {�(n)}, ⌧,�}. For BSTD-
L and BSTC-L, ⇥ = {G, {U(n)}, {�(n)}, ⌧,�, �}. G
does not need to be initialized due to that it will be
updated firstly. The latent dimensions can be initialized
by R

n

= I
n

, 8n or manually by R
n

< I
n

. {U(n)} can
be initialized as left singular vectors by mode-n SVD,
while an alternative one is sampling from N (0, 1). ⌧ is
initialized by 1/�2

Y denoting an inverse of data variance.
{�(n)},�, � are simply initialized to be 1.

• Variational model inference. For all the models, the
approximate inference can be updated sequentially in the
order of {G, {U(n)},�, {�(n)}, �, ⌧}.

• Model reduction. Pruning out zero-valued latent compo-
nents from {U(n)} as well as the associated slices from
G and associated components from {�(n)}.

• Lower bound of model evidence. The lower bound of
log-marginal likelihood is evaluated according to specific
models, which can be used to test for convergence.

• Predictive distribution. For BSTD models, the predic-
tive distribution can be inferred for recovering latent
tensor without noises. For BSTC modes, it can be inferred
for recovering missing entries.

For BSTD-T and BSTD-L models, the overall computation-
al complexity is O(

P
n

R3
n

+ N
Q

n

I
n

), while the memory
cost is O(

Q
n

R
n

+

Q
n

I
n

). For BSTC-T and BSTC-L mod-
els, the overall computational complexity is O(

P
n

I
n

R3
n

+

M
Q

n

R
n

P
n

I
n

), while the memory cost is O(

Q
n

R
n

+P
n

I
n

R
n

). Therefore, BSTD models are more computational
efficient than BSTC models, but it requires more memory. The
computational complexity of all models scales linearly with
data size, but polynomially with model complexity. Hence,
our models are suitable for relatively low multilinear rank
tensors. It should be noted that, because of automatic model
reduction, {R1, . . . , RN

} reduces rapidly in the first few
iterations, resulting in that computational complexity will be
decreased with number of iterations.

The key advantage of our models is automatic model
determination (i.e., learning multilinear rank), which enable
us to obtain an optimal low-rank Tucker approximation from
a noisy and incomplete tensor. Secondly, taking into account
uncertainty information of all model parameters by full poste-
rior inference, our method can effectively prevent overfitting
problem and provide predictive uncertainty as well. Thirdly,
a deterministic Bayesian inference with closed-form update
rules is derived for model learning, which is more efficient and
scalable than sampling based inference. Finally, our methods
are significantly convenient for practical applications since
they do not require any tuning parameters. However, one
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Demonstration of Learning Procedure

• Tensor:  20 x 20 x 20 with 70% missing elements 
• Multilinear rank: 2 x 3 x 3
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MRI Dataset
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TABLE I
CHEMOMETRICS DATA ANALYSIS BY TENSOR DECOMPOSITIONS. THE SNR OF NOISY DATA IS 0DB. R DENOTES INFERRED TENSOR

RANK. N/A INDICATES AN INAPPLICABLE CASE. RUNTIME IS MEASURED BY SECONDS.

Amino Flow Electronic Sugar Enzymatic
Original Noisy Original Noisy Original Noisy Original Noisy Original Noisy

HOOI RRSE 0.0245 0.0960 0.0321 0.0827 0.0328 0.0664 0.0386 0.0839 0.1677 0.2174

ARD-Tucker
R (4, 3, 3) (6, 3, 3) (5, 4, 3) (12, 48, 49) (1, 1, 1) (3, 2, 3) (5, 8, 7) (5, 8, 7) N/A N/A

RRSE 0.0260 0.0961 0.0476 0.4377 0.0328 0.1006 0.0387 0.0788 N/A N/A
Runtime 32 38 29 275 22 49 138 145 N/A N/A

BSTD-T R (3, 3, 3) (3, 3, 3) (3, 5, 3) (3, 4, 3) (1, 2, 1) (1, 46, 1) (6, 24, 6) (5, 11, 6) (1,1,1,1,1) (1,1,1,1,1)
RRSE 0.0245 0.0950 0.0321 0.0812 0.0328 0.0664 0.0387 0.0788 0.1677 0.2216

Runtime 2 2 2 2 2 5 15 15 3 8

BSTD-L R (3, 6, 3) (3, 3, 3) (3, 5, 3) (3, 4, 3) (1, 1, 1) (1, 24, 1) (7, 25, 6) (5, 11, 6) (1,1,1,1,1) (1,1,1,1,2)
RRSE 0.0222 0.0950 0.0321 0.0812 0.0328 0.0664 0.0353 0.0789 0.1677 0.2209

Runtime 5 4 2 4 2 5 15 15 8 7

TABLE II
CHEMOMETRICS DATA COMPLETION WITH 90% MISSING RATIO. STD(R) DENOTES STANDARD DEVIATION OF INFERRED TENSOR RANK.

Amino Flow Electronic Sugar Enzymatic
Std(R) RRSE Std(R) RRSE Std(R) RRSE Std(R) RRSE Std(R) RRSE

HaLRTC N/A 0.35±0.01 N/A 0.12± 0.02 N/A 0.06±0.01 N/A 0.18±0.00 N/A 0.68±0.04
iHOOI (0,51,17) 0.64±0.08 (0.3,0.3,0.3) 0.44±0.32 (5,38,2) 0.04±0.01 (0,2,0) 0.64±0.00 (0,0,0,0.3,0.5) 0.89±0.49

BSTC-T (0.4,0.4,0) 0.03±0.00 (0.5,0.6,0.4) 0.10±0.04 (0,0,0) 0.03±0 (2,1.5,0) 0.07±0.01 (0,0,0,0,0) 0.21±0.03
BSTC-L (0.5,0.4,0) 0.026±0.00 (0.5,0.5,0.3) 0.11±0.04 (0,0,0) 0.04±0 (1.4,0.7,0) 0.07±0.01 (0.4,0,0,0,0) 0.21±0.03

TABLE III
THE PERFORMANCE OF MRI COMPLETION EVALUATED BY PSNR AND RRSE. FOR NOISY MRI, THE STANDARD DERIVATION OF
GAUSSIAN NOISE IS 3% OF BRIGHTEST TISSUE. MRI TENSOR IS OF SIZE 181⇥ 217⇥ 165 AND EACH BLOCK TENSOR IS OF SIZE

50⇥ 50⇥ 10.

50% 60% 70% 80%
Original Noisy Original Noisy Original Noisy Original Noisy

BSTC-T 27.32 0.11 26.18 0.12 25.30 0.14 24.60 0.15 22.81 0.18 22.35 0.19 20.14 0.25 20.00 0.25
BSTC-L 26.91 0.11 25.57 0.13 24.84 0.15 23.95 0.16 22.76 0.19 22.09 0.20 20.12 0.25 19.80 0.26
iHOOI 22.69 0.19 21.45 0.22 22.47 0.19 21.16 0.22 21.63 0.21 20.11 0.25 18.65 0.30 17.89 0.32

HaLRTC 24.84 0.15 23.60 0.17 22.35 0.19 21.65 0.21 19.93 0.26 19.55 0.27 17.37 0.34 17.15 0.35
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(b) 80% missing

Fig. 6. Visualization of MRI data completion obtained by BSTC-T.

priors by the hierarchical representations. The model infer-
ences, especially for the non-conjugate Laplace priors, are
derived under variational Bayesian framework. Our models
can infer an optimal multilinear rank from whether a fully
or partially observed tensor by automatical model reduction,
yielding significant advantages for tensor completion. For al-
gorithm implementation, we propose several Theorems related
to multilinear operations to improve computational efficiency
and scalability. Empirical results on synthetic data as well
as chemometrics and neuroscience applications validated the

superiority of our models in terms of tensor decomposition
and completion.

The Appendix, Matlab codes and demonstration videos are
provided in supplementary materials.
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Fig. 6. Visualization of MRI data completion obtained by BSTC-T.

priors by the hierarchical representations. The model infer-
ences, especially for the non-conjugate Laplace priors, are
derived under variational Bayesian framework. Our models
can infer an optimal multilinear rank from whether a fully
or partially observed tensor by automatical model reduction,
yielding significant advantages for tensor completion. For al-
gorithm implementation, we propose several Theorems related
to multilinear operations to improve computational efficiency
and scalability. Empirical results on synthetic data as well
as chemometrics and neuroscience applications validated the

superiority of our models in terms of tensor decomposition
and completion.

The Appendix, Matlab codes and demonstration videos are
provided in supplementary materials.
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Bayesian Robust Tensor Factorization
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3

method that can handle both missing data and outlier-
s. It formulates the problem by a convex optimization
framework in which nuclear norm and L1-norm are
exploited as regularization terms on the low-rank
tensor and residual errors, respectively. However, it
essentially optimizes the multilinear rank and the pre-
dictive performance is sensitive to tuning parameters.
To our best knowledge, our paper is the first to present
a fully Bayesian model for robust tensor factorization
dealing with both missing data and outliers within
one framework.

3 PRELIMINARIES AND NOTATIONS

The order of a tensor is the number of dimensions,
also known as ways or modes. Vectors are denoted
by boldface lowercase letters, e.g., a. Matrices are
denoted by boldface capital letters, e.g., A. Higher-
order tensors (order � 3) are denoted by boldface
calligraphic letters, e.g., A. Given an N th order tensor
X 2 RI1⇥I2⇥···⇥I

N , its (i1, i2, . . . , iN )th entry is denot-
ed by X

i1i2...iN where the indices typically range from
1 to their capital version, e.g., i

n

= 1, 2, . . . , I
n

, n =

1, . . . , N .
The inner product of two tensors is defined by

hA,Bi = P

i1i2...iN
A

i1i2...iNB
i1i2...iN , and the squared

Frobenius norm by kAk2
F

= hA,Ai.
Definition 3.1. The generalized inner product of N � 3

vectors, matrices, or tensors is defined as a sum of
element-wise products. For example,

D

A(1), · · · ,A(N)
E

=

X

i,j

Y

n

A(n)
ij

. (1)

The Hadamard product is an entrywise product of
two vectors, matrices or tensors of the same sizes. For
instance, A 2 RI⇥J and B 2 RI⇥J , their Hadamard
product, denoted by A~B, is a matrix of size I ⇥ J .
Without loss of generality, the Hadamard product of
a set of matrices {A(n)}N

n=1 is simply denoted by

~
n

A(n)
= A(1) ~A(2) ~ · · ·~A(N). (2)

The Kronecker product [1] of matrices A 2 RI⇥J and
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Fig. 1. Bayesian robust tensor factorization.

4 BAYESIAN ROBUST CP FACTORIZATION

4.1 Model Specification
Let Y be an incomplete N th-order tensor of size
I1⇥I2⇥ · · ·⇥I
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with missing entries. Y⌦ denotes the
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Fig. 1).
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n

. The essential
difference between matrix factorization and tensor
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factorization is that the generalized inner product of
N(� 3) latent vectors allows us to capture multilinear
interactions reflecting the intrinsic structural property
of data, which however leads to much more difficul-
ties in model learning.

In practice, CP rank, i.e., the dimensionality of latent
space denoted by R, is unknown and considered as
a tuning parameter whose optimal selection is quite
challenging especially in the presence of missing data.
Since R controls the model complexity, we actually
seek an automatic model selection strategy that can
infer the true CP rank from partially observed data. To
achieve this, in contrast to rank minimization on X ,
we attempt to minimize the dimensionality of latent
space, which corresponds to column-wise sparsity of
factor matrices. Hence, we employ a sparsity inducing
prior over factor matrices by associating an individ-
ual hyperparameter to each latent dimension. More
specifically, a hierarchical prior is equally specified
over N factor matrices, which is expressed by
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where ⇤ = diag(�) denotes an inverse covariance
matrix and is shared by latent factor matrices in all
modes. The hyperprior over � is an i.i.d. Gamma
distribution Ga(x|a, b) = b

a

x
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�bx

�(a) where �(a) is the
Gamma function.

Due to the sparsity property, the initialization of R
is usually set to its maximum possible value, while the
effective dimensionality can be inferred automatically
under Bayesian inference framework. For instance, if a
particular �

r

has a posterior distribution concentrated
at large values,
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a(n)
r

|8n 2 [1, N ]} will tend to be zero.
Since the priors are shared by N factor matrices, our
framework can learn the same sparsity pattern for
all factor matrices, yielding the minimum number of
rank-one tensors.

The sparse term S is modeled also by a hierarchical
sparsity inducing prior. More specifically, Gaussian
priors are placed on each data entry associated with
an individual precision hyperparameter on which an
i.i.d. Gamma hyperprior is placed, that is
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Note that when an individual parameter �
i1...iN goes

to infinity, the corresponding element in S is enforced
to be exact zero.

The priors in (7) and (8) are related to the frame-
work of sparse Bayesian learning (SBL) [44] which
is usually employed for variable selections. Since
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Fig. 2. The probabilistic graphical model of Bayesian
robust CP factorization of an incomplete tensor.

Laplacian and Student-t distributions are commonly
applied to enforcing sparsity, we may question why
the choice of a Gaussian prior should express any
preference for sparsity. In fact, (8) can be interpreted as
an infinite zero-mean Gaussian mixture with mixture
coefficients drawn from a Gamma distribution, which
is thus a hierarchical view of Student-t distribution.
In other words, the marginal prior of S⌦ is an i.i.d.
Student-t distribution with the sparsity controlled by
(a�0 , b

�

0) to some extent. For the case of noninformative
hyperprior with a�0 = b�0 = 0, we obtain the improper
marginal prior p(S

i1...iN ) / 1/|S
i1...iN |. Note that

if a�0 = 1, the hyperprior becomes an exponential
distribution, such that the marginal prior over S⌦ is
a Laplacian distribution. The elegance of this strategy
therefore lies in the use of hierarchical modeling to
obtain a prior which encourages sparsity while keep-
ing fully conjugate exponential-family distributions
throughout, which leads to the possibility of the fully
Bayesian treatment. Although our setting is related
to SBL, the crucial difference lies in that our model
specification can achieve column-wise sparsity, and
the statistical property is shared by a set of factor
matrices {A(n)}N

n=1.
To complete the model, we also place a hyperprior

over the noise precision ⌧ , that is

p(⌧) = Ga(⌧ |a⌧0 , b⌧0). (9)

Finally, the probabilistic graphical model of robust
tensor factorization is illustrated in Fig. 2. For simplic-
ity of notations, all unknowns including both latent
factor matrices and hyperparameters are collected and
denoted together by ⇥ = {A(1), . . . ,A(N),�,S⌦,�, ⌧}.
Therefore, the joint distribution of the model, i.e.,
p(Y⌦,⇥), can be expressed by
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In general, we can simply perform MAP estima-
tion of ⇥ from the log-joint distribution (see Sec. 1
of Appendix) and most existing tensor factorization
based on optimization approaches can be interpreted
as point estimation by either maximum likelihood or
MAP principles. However, in this study, we aim to
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factorization is that the generalized inner product of
N(� 3) latent vectors allows us to capture multilinear
interactions reflecting the intrinsic structural property
of data, which however leads to much more difficul-
ties in model learning.

In practice, CP rank, i.e., the dimensionality of latent
space denoted by R, is unknown and considered as
a tuning parameter whose optimal selection is quite
challenging especially in the presence of missing data.
Since R controls the model complexity, we actually
seek an automatic model selection strategy that can
infer the true CP rank from partially observed data. To
achieve this, in contrast to rank minimization on X ,
we attempt to minimize the dimensionality of latent
space, which corresponds to column-wise sparsity of
factor matrices. Hence, we employ a sparsity inducing
prior over factor matrices by associating an individ-
ual hyperparameter to each latent dimension. More
specifically, a hierarchical prior is equally specified
over N factor matrices, which is expressed by
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matrix and is shared by latent factor matrices in all
modes. The hyperprior over � is an i.i.d. Gamma
distribution Ga(x|a, b) = b
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�(a) where �(a) is the
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Due to the sparsity property, the initialization of R
is usually set to its maximum possible value, while the
effective dimensionality can be inferred automatically
under Bayesian inference framework. For instance, if a
particular �
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has a posterior distribution concentrated
at large values,
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|8n 2 [1, N ]} will tend to be zero.
Since the priors are shared by N factor matrices, our
framework can learn the same sparsity pattern for
all factor matrices, yielding the minimum number of
rank-one tensors.

The sparse term S is modeled also by a hierarchical
sparsity inducing prior. More specifically, Gaussian
priors are placed on each data entry associated with
an individual precision hyperparameter on which an
i.i.d. Gamma hyperprior is placed, that is
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Note that when an individual parameter �
i1...iN goes

to infinity, the corresponding element in S is enforced
to be exact zero.

The priors in (7) and (8) are related to the frame-
work of sparse Bayesian learning (SBL) [44] which
is usually employed for variable selections. Since
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Laplacian and Student-t distributions are commonly
applied to enforcing sparsity, we may question why
the choice of a Gaussian prior should express any
preference for sparsity. In fact, (8) can be interpreted as
an infinite zero-mean Gaussian mixture with mixture
coefficients drawn from a Gamma distribution, which
is thus a hierarchical view of Student-t distribution.
In other words, the marginal prior of S⌦ is an i.i.d.
Student-t distribution with the sparsity controlled by
(a�0 , b
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0) to some extent. For the case of noninformative
hyperprior with a�0 = b�0 = 0, we obtain the improper
marginal prior p(S

i1...iN ) / 1/|S
i1...iN |. Note that

if a�0 = 1, the hyperprior becomes an exponential
distribution, such that the marginal prior over S⌦ is
a Laplacian distribution. The elegance of this strategy
therefore lies in the use of hierarchical modeling to
obtain a prior which encourages sparsity while keep-
ing fully conjugate exponential-family distributions
throughout, which leads to the possibility of the fully
Bayesian treatment. Although our setting is related
to SBL, the crucial difference lies in that our model
specification can achieve column-wise sparsity, and
the statistical property is shared by a set of factor
matrices {A(n)}N

n=1.
To complete the model, we also place a hyperprior

over the noise precision ⌧ , that is

p(⌧) = Ga(⌧ |a⌧0 , b⌧0). (9)

Finally, the probabilistic graphical model of robust
tensor factorization is illustrated in Fig. 2. For simplic-
ity of notations, all unknowns including both latent
factor matrices and hyperparameters are collected and
denoted together by ⇥ = {A(1), . . . ,A(N),�,S⌦,�, ⌧}.
Therefore, the joint distribution of the model, i.e.,
p(Y⌦,⇥), can be expressed by
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In general, we can simply perform MAP estima-
tion of ⇥ from the log-joint distribution (see Sec. 1
of Appendix) and most existing tensor factorization
based on optimization approaches can be interpreted
as point estimation by either maximum likelihood or
MAP principles. However, in this study, we aim to
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factorization is that the generalized inner product of
N(� 3) latent vectors allows us to capture multilinear
interactions reflecting the intrinsic structural property
of data, which however leads to much more difficul-
ties in model learning.

In practice, CP rank, i.e., the dimensionality of latent
space denoted by R, is unknown and considered as
a tuning parameter whose optimal selection is quite
challenging especially in the presence of missing data.
Since R controls the model complexity, we actually
seek an automatic model selection strategy that can
infer the true CP rank from partially observed data. To
achieve this, in contrast to rank minimization on X ,
we attempt to minimize the dimensionality of latent
space, which corresponds to column-wise sparsity of
factor matrices. Hence, we employ a sparsity inducing
prior over factor matrices by associating an individ-
ual hyperparameter to each latent dimension. More
specifically, a hierarchical prior is equally specified
over N factor matrices, which is expressed by
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where ⇤ = diag(�) denotes an inverse covariance
matrix and is shared by latent factor matrices in all
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distribution Ga(x|a, b) = b
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Due to the sparsity property, the initialization of R
is usually set to its maximum possible value, while the
effective dimensionality can be inferred automatically
under Bayesian inference framework. For instance, if a
particular �
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has a posterior distribution concentrated
at large values,
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|8n 2 [1, N ]} will tend to be zero.
Since the priors are shared by N factor matrices, our
framework can learn the same sparsity pattern for
all factor matrices, yielding the minimum number of
rank-one tensors.

The sparse term S is modeled also by a hierarchical
sparsity inducing prior. More specifically, Gaussian
priors are placed on each data entry associated with
an individual precision hyperparameter on which an
i.i.d. Gamma hyperprior is placed, that is
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to infinity, the corresponding element in S is enforced
to be exact zero.

The priors in (7) and (8) are related to the frame-
work of sparse Bayesian learning (SBL) [44] which
is usually employed for variable selections. Since
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Laplacian and Student-t distributions are commonly
applied to enforcing sparsity, we may question why
the choice of a Gaussian prior should express any
preference for sparsity. In fact, (8) can be interpreted as
an infinite zero-mean Gaussian mixture with mixture
coefficients drawn from a Gamma distribution, which
is thus a hierarchical view of Student-t distribution.
In other words, the marginal prior of S⌦ is an i.i.d.
Student-t distribution with the sparsity controlled by
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0) to some extent. For the case of noninformative
hyperprior with a�0 = b�0 = 0, we obtain the improper
marginal prior p(S
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i1...iN |. Note that

if a�0 = 1, the hyperprior becomes an exponential
distribution, such that the marginal prior over S⌦ is
a Laplacian distribution. The elegance of this strategy
therefore lies in the use of hierarchical modeling to
obtain a prior which encourages sparsity while keep-
ing fully conjugate exponential-family distributions
throughout, which leads to the possibility of the fully
Bayesian treatment. Although our setting is related
to SBL, the crucial difference lies in that our model
specification can achieve column-wise sparsity, and
the statistical property is shared by a set of factor
matrices {A(n)}N

n=1.
To complete the model, we also place a hyperprior

over the noise precision ⌧ , that is

p(⌧) = Ga(⌧ |a⌧0 , b⌧0). (9)

Finally, the probabilistic graphical model of robust
tensor factorization is illustrated in Fig. 2. For simplic-
ity of notations, all unknowns including both latent
factor matrices and hyperparameters are collected and
denoted together by ⇥ = {A(1), . . . ,A(N),�,S⌦,�, ⌧}.
Therefore, the joint distribution of the model, i.e.,
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tion of ⇥ from the log-joint distribution (see Sec. 1
of Appendix) and most existing tensor factorization
based on optimization approaches can be interpreted
as point estimation by either maximum likelihood or
MAP principles. However, in this study, we aim to
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factorization is that the generalized inner product of
N(� 3) latent vectors allows us to capture multilinear
interactions reflecting the intrinsic structural property
of data, which however leads to much more difficul-
ties in model learning.

In practice, CP rank, i.e., the dimensionality of latent
space denoted by R, is unknown and considered as
a tuning parameter whose optimal selection is quite
challenging especially in the presence of missing data.
Since R controls the model complexity, we actually
seek an automatic model selection strategy that can
infer the true CP rank from partially observed data. To
achieve this, in contrast to rank minimization on X ,
we attempt to minimize the dimensionality of latent
space, which corresponds to column-wise sparsity of
factor matrices. Hence, we employ a sparsity inducing
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Due to the sparsity property, the initialization of R
is usually set to its maximum possible value, while the
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under Bayesian inference framework. For instance, if a
particular �
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has a posterior distribution concentrated
at large values,
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|8n 2 [1, N ]} will tend to be zero.
Since the priors are shared by N factor matrices, our
framework can learn the same sparsity pattern for
all factor matrices, yielding the minimum number of
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The sparse term S is modeled also by a hierarchical
sparsity inducing prior. More specifically, Gaussian
priors are placed on each data entry associated with
an individual precision hyperparameter on which an
i.i.d. Gamma hyperprior is placed, that is
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Laplacian and Student-t distributions are commonly
applied to enforcing sparsity, we may question why
the choice of a Gaussian prior should express any
preference for sparsity. In fact, (8) can be interpreted as
an infinite zero-mean Gaussian mixture with mixture
coefficients drawn from a Gamma distribution, which
is thus a hierarchical view of Student-t distribution.
In other words, the marginal prior of S⌦ is an i.i.d.
Student-t distribution with the sparsity controlled by
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0) to some extent. For the case of noninformative
hyperprior with a�0 = b�0 = 0, we obtain the improper
marginal prior p(S

i1...iN ) / 1/|S
i1...iN |. Note that

if a�0 = 1, the hyperprior becomes an exponential
distribution, such that the marginal prior over S⌦ is
a Laplacian distribution. The elegance of this strategy
therefore lies in the use of hierarchical modeling to
obtain a prior which encourages sparsity while keep-
ing fully conjugate exponential-family distributions
throughout, which leads to the possibility of the fully
Bayesian treatment. Although our setting is related
to SBL, the crucial difference lies in that our model
specification can achieve column-wise sparsity, and
the statistical property is shared by a set of factor
matrices {A(n)}N
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To complete the model, we also place a hyperprior

over the noise precision ⌧ , that is

p(⌧) = Ga(⌧ |a⌧0 , b⌧0). (9)

Finally, the probabilistic graphical model of robust
tensor factorization is illustrated in Fig. 2. For simplic-
ity of notations, all unknowns including both latent
factor matrices and hyperparameters are collected and
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• Tensor size: 30 x 30 x 30 

• CP rank:  R = 3 

• Gaussian noise:  SNR = 
20dB 

• Missing rate:  80% 

• Outliers: rate = 5%, M= 
10*std(X); 

• Maximal rank is set to 10. 

Demo of the model 
learning procedure
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Videos with 90% missing pixels
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Tensor Completion

Low-rank
 approximation
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1. INTRODUCTION

Tensors are multi-dimensional arrays and high-order genera-
tion of vectors and matrices [1]. Most of the real world data
like color images, videos, multichannel electroencephalogra-
phy (EEG) signals, etc. are more than two dimensions. Ten-
sor data representation can keep the original form of data,
which is good for retaining high dimensional structure and
adjacent relation information of data. Due to the flexibility
and highly compressibility of tensor decomposition, in re-
cent decades, many tensor methodologies have been proposed
in various fields such as image and video completion [2, 3],
brain computer interface [4], signal processing [5, 6], etc.

The main concept of solving tensor completion problem
is that we use the observed entries of incomplete data to find
the tensor decomposition factors which contain the latent fea-
tures of the data, then we use the powerful feature represen-
tation ability of tensor decomposition factors to approximate
the missing entries. The most studied and popular decompo-
sition models in recent years are CANDECOMP/PARAFAC
(CP) decomposition [7] and Tucker decomposition [8]. They
have been applied in many data completion methods. CP
weighted optimization (CP-WOPT) [2] builds objective func-
tion by the Frobenius norm of weighted approximated tensor
and observed tensor, then it uses optimization method to find
the optimal CP factor matrices by the observed data. Bayesian
CP factorization [3] employs Bayesian probabilistic model to
find the best CP factor matrices and determine the rank of CP
tensor automatically at the same time. The method in [9] re-
covers low-n-rank tensor data with its convex relaxation by
alternating direction method of multipliers (ADM). Low-n-
rank Tucker completion method is used in [10] and the exper-
iments show better results than other nuclear norm minimiza-
tion methods.

Though CP and Tucker can reach relatively high perfor-
mance in low-order tensors, due to the nature limitations of
CP and Tucker, when it comes to high-order tensors and high
missing rate of data, the performance of these two decom-
position methods will decrease rapidly. Tensor-train (TT) de-
composition [11], which is free from the “curse of dimension-
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1. INTRODUCTION

Tensors are multi-dimensional arrays and high-order genera-
tion of vectors and matrices [1]. Most of the real world data
like color images, videos, multichannel electroencephalogra-
phy (EEG) signals, etc. are more than two dimensions. Ten-
sor data representation can keep the original form of data,
which is good for retaining high dimensional structure and
adjacent relation information of data. Due to the flexibility
and highly compressibility of tensor decomposition, in re-
cent decades, many tensor methodologies have been proposed
in various fields such as image and video completion [2, 3],
brain computer interface [4], signal processing [5, 6], etc.

The main concept of solving tensor completion problem
is that we use the observed entries of incomplete data to find
the tensor decomposition factors which contain the latent fea-
tures of the data, then we use the powerful feature represen-
tation ability of tensor decomposition factors to approximate
the missing entries. The most studied and popular decompo-
sition models in recent years are CANDECOMP/PARAFAC
(CP) decomposition [7] and Tucker decomposition [8]. They
have been applied in many data completion methods. CP
weighted optimization (CP-WOPT) [2] builds objective func-
tion by the Frobenius norm of weighted approximated tensor
and observed tensor, then it uses optimization method to find
the optimal CP factor matrices by the observed data. Bayesian
CP factorization [3] employs Bayesian probabilistic model to
find the best CP factor matrices and determine the rank of CP
tensor automatically at the same time. The method in [9] re-
covers low-n-rank tensor data with its convex relaxation by
alternating direction method of multipliers (ADM). Low-n-
rank Tucker completion method is used in [10] and the exper-
iments show better results than other nuclear norm minimiza-
tion methods.

Though CP and Tucker can reach relatively high perfor-
mance in low-order tensors, due to the nature limitations of
CP and Tucker, when it comes to high-order tensors and high
missing rate of data, the performance of these two decom-
position methods will decrease rapidly. Tensor-train (TT) de-
composition [11], which is free from the “curse of dimension-
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Solving scheme 3: 
tensor decomposition by gradient-based optimization 



             Decompose a tensor                               to TT format:

For each element:
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X 2 RI1⇥I2⇥···⇥IN X :

[Oseledets, et al., 2011]

Tensor train decomposition (TTD)

tensor train:



Tensor Completion

Tensor train stochastic gradient descent (TT-SGD)

[Yuan, et al., 2018]

For one observed entry:

eral real world data experiments, and the results in simulation
data and image data show that our method outperforms the
state-of-the-art approaches.

2. NOTATIONS AND TENSOR-TRAIN
DECOMPOSITION

2.1. Notations

In this paper, we adopt the notations from [1]. Scalars are
denoted by normal lowercase letters, e.g., x, and vectors are
denoted by boldface lowercase letters, e.g., x. Matrices are
denoted by boldface capital letters, e.g., X. Tensors of order
N � 3 are denoted by boldface Euler script letters, e.g., X .
X

(n) denotes the nth matrix of a matrix sequence, and the
representations of vector and tensor sequence are denoted in
the same way. When given a tensor X 2 RI1⇥I2⇥···⇥IN , the
(i1, i2, · · · , iN )th element of X is denoted by x

i1i2···iN or
X (i1, i2, · · · , iN ).

The inner product of two tensors X , Y 2 RI1⇥I2⇥···⇥IN

is defined as hX ,Yi =
P

i1

P
i2
· · ·

P
iN

x
i1i2···iN y

i1i2···iN .
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The gradient for according slice of core tensor:

Loss function:

Where

The approximation of TTD:
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After the objective function and gradients are obtained, the core tensors can

be optimized by various optimization algorithms. The optimization procedure

of the TT-WOPT is listed in Algorithm 1.

Algorithm 1 Tensor-train Weighted Optimization (TT-WOPT)

1: Input: incomplete tensor Y, weight tensor W and TT-rank r.

2: Initialization: core tensors G(1),G(2), · · · ,G(N)of approximated tensor X .

3: While the optimization stopping condition is not satisfied

4: Compute Xw = W⇤ ⌧ G(1),G(2), · · · ,G(N) �.

5: For n=1:N

6: Compute gradients of every core tensor according to equation (9).

7: End

8: Update G(1),G(2), · · · ,G(N) by gradient descend method.

9: End while

10: Output: G(1),G(2), · · · ,G(N).

3.2. Tensor-train Stochastic Gradient Descent (TT-SGD) Algorithm

As seen from equation (5), TT-WOPT uses whole scale of the observed data

for every iteration. The computation of the gradients is redundant because the

space of missing entries are still used for calculation. If the scale of data is

extremely huge and the number of missing entries is high, then only a small

amount of observed entries is useful. In this situation, TT-WOPT will waste a

lot of computational storage and the computation will become time-consuming.

In order to solve the problems of TT-WOPT as mentioned above, we propose
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1. INTRODUCTION

Tensors are multi-dimensional arrays and high-order genera-
tion of vectors and matrices [1]. Most of the real world data
like color images, videos, multichannel electroencephalogra-
phy (EEG) signals, etc. are more than two dimensions. Ten-
sor data representation can keep the original form of data,
which is good for retaining high dimensional structure and
adjacent relation information of data. Due to the flexibility
and highly compressibility of tensor decomposition, in re-
cent decades, many tensor methodologies have been proposed
in various fields such as image and video completion [2, 3],
brain computer interface [4], signal processing [5, 6], etc.

The main concept of solving tensor completion problem
is that we use the observed entries of incomplete data to find
the tensor decomposition factors which contain the latent fea-
tures of the data, then we use the powerful feature represen-
tation ability of tensor decomposition factors to approximate
the missing entries. The most studied and popular decompo-
sition models in recent years are CANDECOMP/PARAFAC
(CP) decomposition [7] and Tucker decomposition [8]. They
have been applied in many data completion methods. CP
weighted optimization (CP-WOPT) [2] builds objective func-
tion by the Frobenius norm of weighted approximated tensor
and observed tensor, then it uses optimization method to find
the optimal CP factor matrices by the observed data. Bayesian
CP factorization [3] employs Bayesian probabilistic model to
find the best CP factor matrices and determine the rank of CP
tensor automatically at the same time. The method in [9] re-
covers low-n-rank tensor data with its convex relaxation by
alternating direction method of multipliers (ADM). Low-n-
rank Tucker completion method is used in [10] and the exper-
iments show better results than other nuclear norm minimiza-
tion methods.

Though CP and Tucker can reach relatively high perfor-
mance in low-order tensors, due to the nature limitations of
CP and Tucker, when it comes to high-order tensors and high
missing rate of data, the performance of these two decom-
position methods will decrease rapidly. Tensor-train (TT) de-
composition [11], which is free from the “curse of dimension-

Low-rank TT approximation
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1. INTRODUCTION

Tensors are multi-dimensional arrays and high-order genera-
tion of vectors and matrices [1]. Most of the real world data
like color images, videos, multichannel electroencephalogra-
phy (EEG) signals, etc. are more than two dimensions. Ten-
sor data representation can keep the original form of data,
which is good for retaining high dimensional structure and
adjacent relation information of data. Due to the flexibility
and highly compressibility of tensor decomposition, in re-
cent decades, many tensor methodologies have been proposed
in various fields such as image and video completion [2, 3],
brain computer interface [4], signal processing [5, 6], etc.

The main concept of solving tensor completion problem
is that we use the observed entries of incomplete data to find
the tensor decomposition factors which contain the latent fea-
tures of the data, then we use the powerful feature represen-
tation ability of tensor decomposition factors to approximate
the missing entries. The most studied and popular decompo-
sition models in recent years are CANDECOMP/PARAFAC
(CP) decomposition [7] and Tucker decomposition [8]. They
have been applied in many data completion methods. CP
weighted optimization (CP-WOPT) [2] builds objective func-
tion by the Frobenius norm of weighted approximated tensor
and observed tensor, then it uses optimization method to find
the optimal CP factor matrices by the observed data. Bayesian
CP factorization [3] employs Bayesian probabilistic model to
find the best CP factor matrices and determine the rank of CP
tensor automatically at the same time. The method in [9] re-
covers low-n-rank tensor data with its convex relaxation by
alternating direction method of multipliers (ADM). Low-n-
rank Tucker completion method is used in [10] and the exper-
iments show better results than other nuclear norm minimiza-
tion methods.

Though CP and Tucker can reach relatively high perfor-
mance in low-order tensors, due to the nature limitations of
CP and Tucker, when it comes to high-order tensors and high
missing rate of data, the performance of these two decom-
position methods will decrease rapidly. Tensor-train (TT) de-
composition [11], which is free from the “curse of dimension-
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tion of vectors and matrices [1]. Most of the real world data
like color images, videos, multichannel electroencephalogra-
phy (EEG) signals, etc. are more than two dimensions. Ten-
sor data representation can keep the original form of data,
which is good for retaining high dimensional structure and
adjacent relation information of data. Due to the flexibility
and highly compressibility of tensor decomposition, in re-
cent decades, many tensor methodologies have been proposed
in various fields such as image and video completion [2, 3],
brain computer interface [4], signal processing [5, 6], etc.

The main concept of solving tensor completion problem
is that we use the observed entries of incomplete data to find
the tensor decomposition factors which contain the latent fea-
tures of the data, then we use the powerful feature represen-
tation ability of tensor decomposition factors to approximate
the missing entries. The most studied and popular decompo-
sition models in recent years are CANDECOMP/PARAFAC
(CP) decomposition [7] and Tucker decomposition [8]. They
have been applied in many data completion methods. CP
weighted optimization (CP-WOPT) [2] builds objective func-
tion by the Frobenius norm of weighted approximated tensor
and observed tensor, then it uses optimization method to find
the optimal CP factor matrices by the observed data. Bayesian
CP factorization [3] employs Bayesian probabilistic model to
find the best CP factor matrices and determine the rank of CP
tensor automatically at the same time. The method in [9] re-
covers low-n-rank tensor data with its convex relaxation by
alternating direction method of multipliers (ADM). Low-n-
rank Tucker completion method is used in [10] and the exper-
iments show better results than other nuclear norm minimiza-
tion methods.

Though CP and Tucker can reach relatively high perfor-
mance in low-order tensors, due to the nature limitations of
CP and Tucker, when it comes to high-order tensors and high
missing rate of data, the performance of these two decom-
position methods will decrease rapidly. Tensor-train (TT) de-
composition [11], which is free from the “curse of dimension-
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Algorithm 3 Tensor-train Stochastic Gradient Descent (TTSGD)

1: Input: Incomplete tensor Y and TT � rank r.
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3.4. Computational Complexity

For tensorX 2 RI1⇥I2⇥···⇥IN with number of observed entriesM , we assume

all I1, I2, · · · , IN is equal to I, and r1 = r2 = · · · = r
N�1 = r. According equa-

tion 10, 20 and 15,we list the computational complexity of our three algorithms

for every iteration in table 1. Though the time complexity will exponentially

increase by data dimensions, STTOPT and TTSGD is free from dimensionality

so they can deal with large-scale data. Besides, TTSGD uses the least time

complexity and space complexity.

Table 1: Computational complexity of TTWOPT, STTOPT, TTSGD for every iteration

Algorithm Time complexity Space complexity
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4. Experiments

One advantage of gradient-based optimization is that we do not need too

tune so many hyper parameters, we can easily get any wanted accuracy within
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Higher-order tensor

TT-SGD algorithm

eral real world data experiments, and the results in simulation
data and image data show that our method outperforms the
state-of-the-art approaches.

2. NOTATIONS AND TENSOR-TRAIN
DECOMPOSITION

2.1. Notations

In this paper, we adopt the notations from [1]. Scalars are
denoted by normal lowercase letters, e.g., x, and vectors are
denoted by boldface lowercase letters, e.g., x. Matrices are
denoted by boldface capital letters, e.g., X. Tensors of order
N � 3 are denoted by boldface Euler script letters, e.g., X .
X

(n) denotes the nth matrix of a matrix sequence, and the
representations of vector and tensor sequence are denoted in
the same way. When given a tensor X 2 RI1⇥I2⇥···⇥IN , the
(i1, i2, · · · , iN )th element of X is denoted by x

i1i2···iN or
X (i1, i2, · · · , iN ).

The inner product of two tensors X , Y 2 RI1⇥I2⇥···⇥IN

is defined as hX ,Yi =
P

i1

P
i2
· · ·

P
iN

x
i1i2···iN y

i1i2···iN .
Furthermore, the Frobenius norm of X is defined by
kXk

F

=
p

hX ,X i. The Hadamard product is denoted
by ⇤ which is an element-wise product of vectors, matrices
or tensors of same sizes. The Kronecker product of two
matrices X 2 RI⇥K and Y 2 RJ⇥L is X⌦Y 2 RIJ⇥KL.

2.2. Tensor-train Decomposition

The most prominent advantage of tensor-train decomposition
is that the amount of model parameters will not grow expo-
nentially by data dimension. It decomposes a tensor into a
sequence of three-way tensor factors (core tensors). In partic-
ular, the TT decomposition of a tensor X 2 RI1⇥I2⇥···⇥IN

can be expressed as follow:

X =⌧ G(1),G(2), · · · ,G(N) �, (1)

where G(1),G(2), · · · ,G(N) is a sequence of three-way core
tensors of size r0⇥I1⇥r1, r1⇥I2⇥r2, · · · , rN�1⇥I

N

⇥r
N

,
r0 = r

N

= 1. r = {r0, r1, r2, · · · , rN�1, rN} is named TT-
rank which limits the size of every core tensor. Furthermore,
Each element of tensor X can be represented by core tensors
as follow:

x
i1i2···iN =

NY

n=1

G

(n)
in

, (2)

where G

(n)
in

is the i
n

th slice of the nth core tensor of size
r
n�1 ⇥ r

n

, n = 1, 2, · · · , N , i
n

2 {1, 2, · · · , I
n

}.

3. SPARSE TENSOR-TRAIN OPTIMIZATION

3.1. Our Previous Work

In our previous work [12], we proposed an algorithm called
Tensor-train Weighted OPTimization (TT-WOPT) which

achieves high performance in data completion task. How-
ever, TT-WOPT considers all the missing entries of data as
zero, and it computes the whole scale of tensor in every it-
eration. If the data scale is huge and missing rate is high,
TT-WOPT will cost much computer memory space and be
ineffective as it computes the whole scale tensor of which
only a small percentage of entries is useful.

3.2. STTO Algorithm

In order to solve the problems of TT-WOPT as mentioned
in Section 3.1, our proposed algorithm STTO, which only
uses observed entries to compute the gradient of every core
tensor is proposed. Consider Y is the observed tensor with
missing entries, X is the tensor approximated by core ten-
sors, and the number of all the observed entries is M . De-
fine the index of the mth observed entry as {im1 , im2 , · · · , im

N

},
m = 1, · · · ,M , we have y

m

= Y(im1 , im2 , · · · , im
N

), x
m

=
X (im1 , im2 , · · · , im

N

). According to equation (2), x
m

can be
written as:

x
m

=
NY

n=1

G

(n)
i

m
n
. (3)

For one observed entry of tensor Y , we formulate the objec-
tive function as:

f(G(1)
i

m
1
,G

(2)
i

m
2
, · · · ,G(N)

i

m
N

) =
1

2

�����ym �
NY

n=1

G

(n)
i

m
n

�����

2

F

. (4)

For n = 1, 2, · · · , N , and m = 1, · · · ,M , the partial deriva-
tives of every used slice G

(n)
i

m
n

of this entry is calculated by:

@f

@G
(n)
i

m
n

= (x
m

� y
m

)(G>n

i

m
n
G

<n

i

m
n
)T , (5)

where G

>n

i

m
n

=
NQ

n=n+1
G

(n)
i

m
n

, G<n

i

m
n

=
n�1Q
n=1

G

(n)
i

m
n

. If we con-

sider the incomplete tensor as a sparse tensor, only the ob-
served entries need to be enumerated. We arrange all the ob-
served entries into vector y 2 RM , and arrange the according
entries which are approximated by core tensors into x 2 RM .
Then the optimization objective function of all missing entries
can be formulated by:

f(G(1),G(2), · · · ,G(N)) =
1

2
ky � xk2

F

. (6)

By equation (3) and (4), the optimization objective function
can also be formulated as follow:

f(G(1),G(2), · · · ,G(N)) =
1

2

MX

m=1

ky
m

� x
m

k2
F

. (7)

So the sum gradient of every slice G

(n)
j

of every core tensor
is the accumulation of the slice gradients in equation (5) with

[Yuan, et al., 2018]

Algorithm 2 Tensor-train Stochastic Gradient Descent (TT-SGD)

1: Input: incomplete tensor Y and TT � rank r.

2: Initialization: core tensors G(1),G(2), · · · ,G(N)of approximated tensor X .

3: While the optimization stopping condition is not satisfied

4: Randomly sample one observed entry from Y w.r.t. index {i1, i2, · · · iN}.

5: For n=1:N

6: Compute the gradients of the according tensor slices by equation (11).

7: End

8: Update G
(1)
i1

,G
(2)
i2

, · · · ,G(N)
iN

by gradient descent method.

9: End while

10: Output: G(1),G(2), · · · ,G(N).

4. Experiment results

We conduct simulation experiments by synthetic data, and for real world

data experiments, we test our algorithms by color images, a hyperspectral image

and a video. Our two algorithms are compared with several state-of-the-art

algorithms: CP-WOPT [5], FBCP [6], HaLRTC and FaLRTC [16], and TLnR

[17]. We apply relative square error (RSE) of approximated tensor X and

observed tensor Y to evaluate the performance of each algorithm. RSE is defined

as:

RSE =
kY �Xk

F

kYk
F

. (12)

In addition, we define RSE ew as weighted RSE to evaluate the performance for

only the missing entries:

RSE ew =
kY ew �X ewk

F

kY ewk
F

, (13)

where Y ew = fW ⇤ Y and X ew = fW ⇤X . fW is a binary weight tensor which is

opposite to W and every entry satisfies:

ew
i1i2···iN =

8
<

:
1 if y

i1i2···iN is a missing entry,

0 if y
i1i2···iN is an observed entry.

(14)
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Algorithm 3 Tensor-train Stochastic Gradient Descent (TTSGD)

1: Input: Incomplete tensor Y and TT � rank r.

2: Initialization: core tensors G(1)
,G(2)

, · · · ,G(N)of approximated tensor X .

3: While the optimization stopping condition is not satisfied

4: Randomly sample one observed entry from Y.

5: For i=1:N

6: Compute @f
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(n)
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= (ym � xm)(G>n
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G<n
imn
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7: End

8: Update corresponding G
(n)
imn

by gradient descent method.

9: End while

10: Output: G(1)
,G(2)

, · · · ,G(N).

3.4. Computational Complexity

For tensorX 2 RI1⇥I2⇥···⇥IN with number of observed entriesM , we assume

all I1, I2, · · · , IN is equal to I, and r1 = r2 = · · · = r
N�1 = r. According equa-

tion 10, 20 and 15,we list the computational complexity of our three algorithms

for every iteration in table 1. Though the time complexity will exponentially

increase by data dimensions, STTOPT and TTSGD is free from dimensionality

so they can deal with large-scale data. Besides, TTSGD uses the least time

complexity and space complexity.

Table 1: Computational complexity of TTWOPT, STTOPT, TTSGD for every iteration

Algorithm Time complexity Space complexity

TTWOPT O(rN�1
I

N�1) O(IN + r

2
I

N�1)

STTOPT O(Mr

N�1) O(MIr)

TTSGD O(rN�1) O(Ir)

i2 = 1i2 = 2i2 = 3i2 = 4

4. Experiments

One advantage of gradient-based optimization is that we do not need too

tune so many hyper parameters, we can easily get any wanted accuracy within
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Fig. 1. Flow-diagram of the proposed BM4D algorithm. In both Hard-thresholding (left box) and Wiener-filtering (right box) stage, the grouping, collaborative
filtering and aggregation steps are performed for each reference cube of the observed volumetric data.

II. BM4D ALGORITHM

A. Observation Model

For the development of the BM4D algorithm, we consider noisy
volumetric observation z : X ! R of the form

z(x) = y(x) + ⌘(x), x 2 X, (1)

where y is the original, unknown, volumetric signal, x is a 3-D coor-
dinate belonging to the signal domain X ⇢ Z3, and ⌘(·) ⇠ N (0, �

2
)

is independent and identically distributed (i.i.d.) Gaussian noise with
zero mean and known standard deviation �.

B. Implementation

The objective of the proposed BM4D is to provide an estimate ŷ of
the original y from the noisy observation z. Similarly to the BM3D
algorithm, BM4D is implemented in two cascading stages, namely a
hard-thresholding and a Wiener-filtering stage, each comprising three
steps: grouping, collaborative filtering, and aggregation. The flow-
diagram of the BM4D implementation is illustrated in Fig. I.

1) Hard-thresholding stage: Let C

z

x

R

denote a cube of L⇥L⇥L

voxels, with L 2 N, extracted from z at the 3-D coordinate x

R

2 X ,
which identifies its top-left-front corner. In the hard-thresholding
stage, the four-dimensional groups are formed by stacking together,
along an additional fourth dimension, (three-dimensional) noisy cubes
similar to C

z

x

R

. Specifically, the similarity between two cubes is
measured via the photometric distance

d

`

C

z

x

i

, C

z

x

j

´

=

˛

˛

˛

˛

C

z

x

i
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z

x

j

˛

˛

˛

˛

2

2

L

3
, (2)

where || · ||22 denotes the sum of squared differences between corre-
sponding intensities of the two input cubes, and the denominator L

3

serves as normalization factor. No prefiltering is performed before the
cube-matching, therefore the noisy observations are directly tested for
similarity.

In the grouping step, a group consisting of mutually similar cubes
extracted from z is built for every (reference) cube C

z

x

R

. Two cubes
are considered similar if their distance (2) is smaller than or equal
to a predefined threshold ⌧

ht
match which thus controls the minimum

accepted cube-similarity. Formally, we first define a set containing
the indices of the cubes similar to C

z

x

R

as

S

z

x

R

=

n

x

i

2 X : d

`

C

z

x

R

, C

z

x

i

´

 ⌧

ht
match

o

. (3)

Then, such (3) is used to build the four-dimensional group

Gz

S

z

x

R

=

a

x

i

2S

z

x

R

C

z

x

i

, (4)

being
‘

the disjoint union operation. This process is exemplified
in Fig. I, where the reference cube, denoted by “R”, is matched to
a series of similar cubes located anywhere within the 3-D data. In
particular, the coordinate x

R

and the various x

i

in (3) correspond
to the tails and the heads of the arrows connecting the cubes,
respectively. Observe that, since the distance of any cube to itself
is always zero, from the definition of (3) follows that each group (4)
necessarily contains at least the reference cube C

z

x

R

.
During the collaborative filtering step, four 1-D decorrelating linear

transform, which we denote as a joint four-dimensional transform
T ht

4D

, are separately applied to every dimension of the group (4).
The so-obtained 4-D group spectrum is then shrunk coefficient by
coefficient by a hard-thresholding operator ⌥

ht with threshold value
��4D

as
⌥

ht
“

T ht
4D

“

Gz

S

z

x

R

””

. (5)

The transform T ht
4D

is assumed to have a DC term, which is never
shrunk during the collaborative filtering so that the mean value of the
group is preserved. Eventually, the filtered group, denoted as ˆGy

S

y

x

R

,
is produced by inverting the four-dimensional transform as

T ht�1
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, (6)

being each ˆ

C

y

x

i

an estimate of the original C

y

x

i

extracted from the
unknown volumetric data y.

The groups (6) are an overcomplete representation of the denoised
signal, because cubes in different groups, as well as cubes within the
same group, are likely to overlap; as a result, within the overlapping
regions, different cubes provides multiple, and in general different, es-
timates for the same voxel. In the aggregation step, such redundancy
is exploited through an adaptive convex combination to produce the
basic volumetric estimate
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where w

ht
x

R

are group-dependent weights, �

x

i

: X ! {0, 1} is the
characteristic (indicator) function of the domain of ˆ

C

y

x

i

(i.e. �

x

i

= 1

over the coordinates of the voxels of ˆ

C

y

x

i

and �

x

i

= 0 elsewhere),
and every ˆ

C

y

x

i

is assumed to be zero-padded outside its domain. Note
that, whereas in BM3D a 2-D Kaiser window of the same size of the
blocks is used to alleviate blocking artifacts in the aggregated estimate
[2], in the proposed BM4D we do not perform such windowing,
because of the small size of the cubes. The weights in (7) are defined
as

w

ht
x

R

=

1

�

2
N

ht
x

R

, (8)
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Fig. 1. Flow-diagram of the proposed BM4D algorithm. In both Hard-thresholding (left box) and Wiener-filtering (right box) stage, the grouping, collaborative
filtering and aggregation steps are performed for each reference cube of the observed volumetric data.
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the original y from the noisy observation z. Similarly to the BM3D
algorithm, BM4D is implemented in two cascading stages, namely a
hard-thresholding and a Wiener-filtering stage, each comprising three
steps: grouping, collaborative filtering, and aggregation. The flow-
diagram of the BM4D implementation is illustrated in Fig. I.
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voxels, with L 2 N, extracted from z at the 3-D coordinate x
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which identifies its top-left-front corner. In the hard-thresholding
stage, the four-dimensional groups are formed by stacking together,
along an additional fourth dimension, (three-dimensional) noisy cubes
similar to C
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. Specifically, the similarity between two cubes is
measured via the photometric distance
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where || · ||22 denotes the sum of squared differences between corre-
sponding intensities of the two input cubes, and the denominator L
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serves as normalization factor. No prefiltering is performed before the
cube-matching, therefore the noisy observations are directly tested for
similarity.

In the grouping step, a group consisting of mutually similar cubes
extracted from z is built for every (reference) cube C
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are considered similar if their distance (2) is smaller than or equal
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being
‘

the disjoint union operation. This process is exemplified
in Fig. I, where the reference cube, denoted by “R”, is matched to
a series of similar cubes located anywhere within the 3-D data. In
particular, the coordinate x

R

and the various x

i

in (3) correspond
to the tails and the heads of the arrows connecting the cubes,
respectively. Observe that, since the distance of any cube to itself
is always zero, from the definition of (3) follows that each group (4)
necessarily contains at least the reference cube C

z
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R

.
During the collaborative filtering step, four 1-D decorrelating linear

transform, which we denote as a joint four-dimensional transform
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, are separately applied to every dimension of the group (4).
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is assumed to have a DC term, which is never
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extracted from the
unknown volumetric data y.

The groups (6) are an overcomplete representation of the denoised
signal, because cubes in different groups, as well as cubes within the
same group, are likely to overlap; as a result, within the overlapping
regions, different cubes provides multiple, and in general different, es-
timates for the same voxel. In the aggregation step, such redundancy
is exploited through an adaptive convex combination to produce the
basic volumetric estimate

ŷ

ht
=

P

x

R

2X

“

P

x

i

2S

z

x

R

w

ht
x

R

ˆ

C

y

x

i

”

P

x

R

2X

“

P

x

i

2S

z

x

R

w

ht
x

R

�

x

i

”

, (7)

where w

ht
x

R

are group-dependent weights, �

x

i

: X ! {0, 1} is the
characteristic (indicator) function of the domain of ˆ

C

y

x

i

(i.e. �

x

i

= 1

over the coordinates of the voxels of ˆ

C

y

x

i

and �

x

i

= 0 elsewhere),
and every ˆ

C

y

x

i

is assumed to be zero-padded outside its domain. Note
that, whereas in BM3D a 2-D Kaiser window of the same size of the
blocks is used to alleviate blocking artifacts in the aggregated estimate
[2], in the proposed BM4D we do not perform such windowing,
because of the small size of the cubes. The weights in (7) are defined
as
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Fig. 1. Flow-diagram of the proposed BM4D algorithm. In both Hard-thresholding (left box) and Wiener-filtering (right box) stage, the grouping, collaborative
filtering and aggregation steps are performed for each reference cube of the observed volumetric data.

II. BM4D ALGORITHM

A. Observation Model
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where y is the original, unknown, volumetric signal, x is a 3-D coor-
dinate belonging to the signal domain X ⇢ Z3, and ⌘(·) ⇠ N (0, �

2
)

is independent and identically distributed (i.i.d.) Gaussian noise with
zero mean and known standard deviation �.
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the original y from the noisy observation z. Similarly to the BM3D
algorithm, BM4D is implemented in two cascading stages, namely a
hard-thresholding and a Wiener-filtering stage, each comprising three
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diagram of the BM4D implementation is illustrated in Fig. I.
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Learning efficient tensor representations with ring 
structure networks (ICLR Workshop 2018)

Motivation:

Tensor train is too strict due to 
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Figure 1: The effects of noise corrupted tensor cores. From left to right, each figure shows noise
corruption by adding noise to one specific tensor core.
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Figure 2: A graphical representation of tensor ring decomposition.

limited representation ability and flexibility; ii) TT-ranks are bounded by the rank of k-unfolding
matricization, which might not be optimal; iii) the permutation of data tensor will yield an inconsistent
solution, i.e., TT representations and TT-ranks are sensitive to the order of tensor dimensions. Hence,
finding the optimal permutation remains a challenging problem.

In this paper, we introduce a new structure of tensor networks, which can be considered as a
generalization of TT representations. First of all, we relax the condition over TT-ranks, i.e., r1 =

r

d+1 = 1, leading to an enhanced representation ability. Secondly, the strict ordering of multilinear
products between cores should be alleviated. Third, the cores should be treated equivalently by
making the model symmetric. To this end, we add a new connection between the first and the last
core tensors, yielding a circular tensor products of a set of cores (see Fig. 2). More specifically, we
consider that each tensor element is approximated by performing a trace operation over the sequential
multilinear products of cores. Since the trace operation ensures a scalar output, r1 = r

d+1 = 1 is
not necessary. In addition, the cores can be circularly shifted and treated equivalently due to the
properties of the trace operation. We call this model tensor ring (TR) decomposition and its cores
tensor ring (TR) representations. To learn TR representations, we firstly develop a non-iterative
TR-SVD algorithm that is similar to TT-SVD algorithm (Oseledets, 2011). To find the optimal lower
TR-ranks, a block-wise ALS algorithms is presented. Finally, we also propose a scalable algorithm
by using stochastic gradient descend, which can be applied to handling large-scale datasets.

Another interesting contribution is that we show the intrinsic structure or high order correlations
within a 2D image can be captured more efficiently than SVD by converting 2D matrix to a higher
order tensor. For example, given an image of size I ⇥ J , we can apply an appropriate tensorization
operation (see details in Sec. 5.2) to obtain a fourth order tensor, of which each mode controls one
specific scale of resolution. To demonstrate this, Fig. 1 shows the effects caused by noise corruption
of specific tensor cores. As we can see, the first mode corresponds to the small-scale patches, while
the 4th-mode corresponds to the large-scale partitions. We have shown in Sec. 5.2 that TR model can
represent the image more efficiently than the standard SVD.

2 TENSOR RING DECOMPOSITION

The TR decomposition aims to represent a high-order (or multi-dimensional) tensor by a sequence
of 3rd-order tensors that are multiplied circularly. Specifically, let T be a dth-order tensor of size
n1⇥n2⇥ · · ·⇥n

d

, denoted by T 2 Rn1⇥···⇥nd , TR representation is to decompose it into a sequence
of latent tensors Z

k

2 Rrk⇥nk⇥rk+1
, k = 1, 2, . . . , d, which can be expressed in an element-wise

form given by
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T (i1, i2, . . . , id) denotes the (i1, i2, . . . , id)th element of the tensor. Z
k

(i

k

) denotes the i

k

th lateral
slice matrix of the latent tensor Z

k

, which is of size r

k

⇥ r

k+1. Note that any two adjacent latent
tensors, Z

k

and Z
k+1, have a common dimension r

k+1 on their corresponding modes. The last
latent tensor Z

d

is of size r
d

⇥n

d

⇥r1, i.e., r
d+1 = r1, which ensures the product of these matrices is

a square matrix. These prerequisites play key roles in TR decomposition, resulting in some important
numerical properties. For simplicity, the latent tensor Z

k

can also be called the kth-core (or node).
The size of cores, r

k

, k = 1, 2, . . . , d, collected and denoted by a vector r = [r1, r2, . . . , rd]
T , are

called TR-ranks. From (1), we can observe that T (i1, i2, . . . , id) is equivalent to the trace of a
sequential product of matrices {Z

k

(i

k

)}. Based on (1), we can also express TR decomposition in the
tensor form, given by
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↵1,...,↵d=1
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k+1)th mode-2 fiber of tensor Z
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. The number of parameters in TR representation is O(dnr
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),

which is linear to the tensor order d as in TT representation.

The TR representation can also be illustrated graphically by a linear tensor network as shown in
Fig. 2. A node represents a tensor (including a matrix and a vector) whose order is denoted by the
number of edges. The number by an edge specifies the size of each mode (or dimension). The
connection between two nodes denotes a multilinear product operator between two tensors on a
specific mode. This is also called tensor contraction, which corresponds to the summation over the
indices of that mode. It should be noted that Z

d

is connected to Z1 by the summation over the
index ↵1, which is equivalent to the trace operation. For simplicity, we denote TR decomposition by
T = <(Z1,Z2, . . . ,Zd

).
Theorem 1 (Circular dimensional permutation invariance). Let T 2 Rn1⇥n2⇥...⇥nd be a dth-
order tensor and its TR decomposition is given by T = <(Z1,Z2, . . . ,Zd

). If we define
 �T k 2

Rnk+1⇥···⇥nd⇥n1⇥···⇥nk as the circularly shifted version along the dimensions of T by k, then we
have

 �T k
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,Z1, . . .Zk

).

A proof of Theorem 1 is provided in Appendix B.1.

It should be noted that circular dimensional permutation invariance is an essential feature that
distinguishes TR decomposition from TT decomposition. For TT decomposition, the product of
matrices must keep a strictly sequential order, yielding that the tensor with a circular dimension
shifting does not correspond to the shifting of tensor cores.

3 LEARNING ALGORITHMS

3.1 SEQUENTIAL SVDS

We propose the first algorithm for computing the TR decomposition using d sequential SVDs. This
algorithm will be called the TR-SVD algorithm.
Theorem 2. Let us assume T can be represented by a TR decomposition. If the k-unfolding matrix
Thki has Rank(Thki) = R

k+1, then there exists a TR decomposition with TR-ranks r which satisfies
that 9k, r1rk+1  R

k+1.

Proof. We can express TR decomposition in the form of k-unfolding matrix,
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Algorithms:
• Sequential SVDs 
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• Scalar representation
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summation over the indices of that mode. As we can see
from (2), Z1 and Z2 is multiplied along one dimension in-
dexed by ↵2, which is thus denoted by a connection together
with the size of that mode (i.e., r2) in the graph. It should be
noted that Z

d

is connected to Z1 by the summation over the
index ↵1, which corresponding to the trace operation. From
the graphical representation and mathematic expression in
(1), we can easily derive that TR representation is a circular
multilinear products of a sequence of 3rd-order tensors,
resulting in that the sequence can be shifted circularly
without changing the result essentially, which corresponds
to a circular shift of tensor modes. Since our model graph-
ically looks like a ring and its multilinear operations can
be circularly shifted, we thus call it naturally as tensor ring
decomposition. For simplicity, we denote TR decomposition
by T = <(Z1,Z2, . . . ,Zd

).
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Fig. 1. A graphical representation of the tensor ring decomposition

Theorem 2.1. Circular dimensional permutation invari-
ance. Let T 2 Rn1⇥n2⇥...⇥nd be a dth-order tensor and
its TR decomposition is given by T = <(Z1,Z2, . . . ,Zd

).
If we define

 �T k 2 Rnk+1⇥···⇥nd⇥n1⇥···⇥nk as circularly
shifting the dimensions of T by k, then we have

 �T k

=

<(Z
k+1, . . . ,Zd

,Z1, . . .Zk

).

It is obvious that (1) can be easily rewritten as

T (i1, i2, . . . , id) = Tr(Z2(i2),Z3(i3), . . . ,Zd

(i

d

),Z1(i1))

= · · · = Tr(Z
d

(i

d

),Z1(i1), . . . ,Zd�1(id�1)). (4)

Therefore, we have
 �T k

= <(Z
k+1, . . . ,Zd

,Z1, . . . ,Zk

).
It should be noted that this property is an essential

feature that distinguishes TR decomposition from the TT de-
composition. For TT decomposition, the product of matrices
must keep a strictly sequential order, which results in that
the cores for representing the same tensor with a circular
dimension shifting cannot keep invariance. Hence, it is
necessary to choose an optimal dimensional permutation
when applying the TT decomposition.

3 LEARNING ALGORITHMS

In this section, we develop several algorithms to learn the
TR model. Since the exact tensor decompositions usually
require heavy computation and storage, we focus on the
low-rank tensor approximation under the TR framework.
The selection of the optimum TR-ranks r 2 Rd is a challeng-
ing model selection problem. In general, r can be manually

given, or be optimized based on the specific objective func-
tion such as nuclear norm or maximum marginal likelihood.
Since the true noise distribution is unknown in practice, we
usually prefer to a low-rank approximation of the data with
a relative error that can be controlled in an arbitrary scale.
Therefore, given a tensor T , our main objective is to seek
a set of cores which can approximate T with a prescribed
relative error ✏

p

, while the TR-ranks are minimum, i.e.,

min

Z1,...,Zd

: r

s. t. : kT �<(Z1,Z2, . . . ,Zd

)k
F

 ✏

p

kT k
F

.

(5)

Definition 3.1. Let T 2 Rn1⇥n2⇥···⇥nd be a dth-order tensor.
The k-unfolding of T is a matrix, denoted by Thki of size
Q

k

i=1 ni

⇥Q

d

i=k+1 ni

, whose elements are defined by

Thki(i1 · · · ik, ik+1 · · · id) = T (i1, i2, . . . , id), (6)

where the first k indices enumerate the rows of Thki, and
the last d� k indices for its columns.

Definition 3.2. The mode-k unfolding matrix of T is denoted
by T[k] of size n

k

⇥Q

j 6=k

n

j

with its elements defined by

T[k](ik, ik+1 · · · idi1 · · · ik�1) = T (i1, i2, . . . , id), (7)

where kth index enumerate the rows of T[k], and the rest
d � 1 indices for its columns. Note that the classical mode-k
unfolding matrix is denoted by T(k) of size n

k

⇥Q

j 6=k

n

j

and
defined by

T(k)(ik, i1 · · · ik�1ik+1 · · · id) = T (i1, i2, . . . , id). (8)

The difference between these two types of mode-k unfold-
ing operations lie in the ordering of indices associated to the
d � 1 modes, which corresponds to a specific dimensional
permutation performed on T . We use these two type of
definitions for clarity and notation simplicity.

Definition 3.3. Let T = <(Z1,Z2, . . . ,Zd

) be a TR repre-
sentation of dth-order tensor, where Z

k

2 Rrk⇥nk⇥rk+1
, k =

1, . . . , d be a sequence of cores. Since the adjacent cores Z
k

and Z
k+1 have an equivalent mode size r

k+1, they can be
merged into a single core by multilinear products, which is
defined by Z(k,k+1) 2 Rrk⇥nknk+1⇥rk+2 whose lateral slice
matrices are given by

Z(k,k+1)
(i

k

i

k+1) = Z
k

(i

k

)Z
k+1(ik+1). (9)

Note that Z
k

, k = 1, . . . , d forms a circular sequence, imply-
ing that Z

d

is linked to Z1 as well. This merging operation
can be extended straightforwardly to multiple linked cores.

The new core obtained by merging multiple linked cores
Z1, . . . ,Zk�1, called a subchain, is defined and denoted
by Z<k 2 Rr1⇥

Qk�1
j=1 nj⇥rk whose lateral slice matrices are

given by

Z<k

(i1 · · · ik�1) =

k�1
Y

j=1

Z
j

(i

j

). (10)

Similarly, the subchain tensor by merging multiple
linked cores Z

k+1, . . . ,Zd

is denoted by Z>k 2
Rrk+1⇥

Qd
j=k+1 nj⇥r1 whose lateral slice matrices are defined

as

Z>k

(i

k+1 · · · id) =
d

Y

j=k+1

Z
j

(i

j

). (11)
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with minimal possible compression ranks always exists and
can be computed by a sequence of SVD decompositions, or
by the cross approximation algorithm. In [40], [55], TT de-
composition is optimized by a suitable generalization of the
alternating least squares (ALS) algorithm and modified ALS
(MALS) algorithm which facilitates the self-adaptation of
ranks either by using SVDs or by employing a greedy algo-
rithm. The tensor completion by optimizing the low-rank TT
representations can be achieved by alternating directions fit-
ting [56] or by nonlinear conjugate gradient scheme within
the framework of Riemannian optimization [57]. Although
TT format has been widely applied in numerical analysis
and mathematic field, there are only few studies addressing
its applications to real dataset in machine learning field,
such as image classification and completion [58], [59], [60].
The limitations of TT decomposition include that i) the
constraint on TT-ranks, i.e., r1 = r

d+1 = 1, leads to the
limited representation ability and flexibility; ii) TT-ranks
always have a fixed pattern, i.e., smaller for the border
cores and larger for the middle cores, which might not be
the optimum for specific data tensor; iii) the multilinear
products of cores in TT must follow a strict order such that
the optimized TT cores highly depend on the permutation of
tensor dimensions. Hence, finding the optimal permutation
remains a challenging problem.

By taking into account these limitations of TT decom-
position, we introduce a new type of tensor decomposi-
tion which can be considered as a generalization of the
TT model. First of all, we consider to relax the condition
over TT-ranks, i.e., r1 = r

d+1 = 1, leading to the en-
hanced representation ability. Secondly, the strict ordering
of multilinear products between cores should be alleviated.
Third, the cores should be treated equivalently by making
the model symmetric. To this end, we found these goals
can be achieved by simply employing the trace operation.
More specifically, we consider that each tensor element is
approximated by performing a trace operation over the
sequential multilinear products of cores. Since the trace
operation ensures a scalar output, r1 = r

d+1 = 1 is not
necessary. In addition, the cores can be circularly shifted and
treated equivalently due to the properties of trace operation.
By using the graphical illustration (see Fig. 1), this concept
implies that the cores are interconnected circularly, which
looks like a ring structure. Hence, we call this model as
tensor ring (TR) decomposition and its cores as tensor ring
(TR) representations. Although the similar concept has been
mentioned and called MPS or tensor chain in few litera-
tures [37], [50], [61], the algorithms and properties have not
well explored yet. In this paper, the optimization algorithms
for TR decomposition will be investigated, whose objective
is to represent a higher-order tensor by the TR format that is
potentially powerful for large-scale multilinear optimization
problems.

The paper is organized as follows. In Section 2, the TR
model is presented in several different forms together with
its basic feature. Section 3 presents four different algorithms
for TR decomposition. In Section 4, we demonstrate how the
basic multilinear algebra can be performed by using the TR
format. The relations with existing tensor decompositions
are presented in Section 5. Section 6 shows experimental
results on both synthetic and real-world dataset, followed

by conclusion in Secition 7.

2 TENSOR RING MODEL

The tensor ring (TR) decomposition aims to represent a
high-order (or high-dimensional) tensor by a sequence of
3rd-order tensors that are multiplied circularly. Specifically,
let T be a dth-order tensor of size n1⇥n2⇥· · ·⇥n

d

, denoted
by T 2 Rn1⇥···⇥nd , TR representation is to decompose it
into a sequence of latent tensors Z

k

2 Rrk⇥nk⇥rk+1
, k =

1, 2, . . . , d, which can be expressed in an element-wise form
given by

T (i1, i2, . . . , id) =Tr {Z1(i1)Z2(i2) · · ·Zd

(i

d

)} ,

=Tr

(

d

Y

k=1

Z
k

(i

k

)

)

.

(1)

T (i1, i2, . . . , id) denotes (i1, i2, . . . , id)th element of the ten-
sor. Z

k

(i

k

) denotes the i

k

th lateral slice matrix of the latent
tensor Z

k

, which is of size r

k

⇥ r

k+1. Note that any two
adjacent latent tensors, Z

k

and Z
k+1, have a common di-

mension r

k+1 on their corresponding modes. The last latent
tensor Z

d

is of size r
d

⇥n

d

⇥r1, i.e., r
d+1 = r1, which ensures

the product of these matrices is a square matrix. These
prerequisites play key roles in TR decomposition, resulting
in some important numeric properties. For simplicity, the
latent tensor Z

k

can be also called kth-core (or node). The
size of cores, r

k

, k = 1, 2, . . . , d, collected and denoted by
a vector r = [r1, r2, . . . , rd]

T are called TR-ranks. From (1),
we can observe that the T (i1, i2, . . . , id) is equivalent to the
trace of a sequential product of matrices {Z

k

(i

k

)}. To further
describe the concept, we can also rewrite (1) in the index
form, which is

T (i1, i2, . . . , id) =

r1,...,rd
X

↵1,...,↵d=1

d

Y

k=1

Z

k

(↵

k

, i

k

,↵

k+1). (2)

Note that ↵

d+1 = ↵1 due to the trace operation. 8k 2
{1, . . . , d}, 1  ↵

k

 r

k

, 1  i

k

 n

k

, where k is the
index of tensor modes (dimensions); ↵

k

is the index of latent
dimensions; and i

k

is the index of data dimensions. From
(2), we can also easily express TR decomposition in the
tensor form, given by

T =

r1,...,rd
X

↵1,...,↵d=1

z1(↵1,↵2)�z2(↵2,↵3)� · · ·�zd(↵d

,↵1), (3)

where the symbol ‘�’ denotes the outer product of vectors
and z

k

(↵

k

,↵

k+1) 2 Rnk denotes the (↵
k

,↵

k+1)th mode-
2 fiber of tensor Z

k

. This indicates that the whole tensor
can be decomposed into a sum of rank-1 tensors that are
generated by d vectors taken from each core respectively.
The number of parameters in TR representation is O(dnr

2
),

which is linear to the tensor order d.
The TR representation can be also illustrated graphically

by a linear tensor network as shown in Fig. 1. The node
represents a tensor (including matrix and vector) whose or-
der is denoted by the number of edges. The number beside
the edges specifies the size of each mode (or dimension).
The connection between two nodes denotes a multilinear
product operator between two tensors on a specific mode,
also called tensor contraction, which corresponds to the
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with minimal possible compression ranks always exists and
can be computed by a sequence of SVD decompositions, or
by the cross approximation algorithm. In [40], [55], TT de-
composition is optimized by a suitable generalization of the
alternating least squares (ALS) algorithm and modified ALS
(MALS) algorithm which facilitates the self-adaptation of
ranks either by using SVDs or by employing a greedy algo-
rithm. The tensor completion by optimizing the low-rank TT
representations can be achieved by alternating directions fit-
ting [56] or by nonlinear conjugate gradient scheme within
the framework of Riemannian optimization [57]. Although
TT format has been widely applied in numerical analysis
and mathematic field, there are only few studies addressing
its applications to real dataset in machine learning field,
such as image classification and completion [58], [59], [60].
The limitations of TT decomposition include that i) the
constraint on TT-ranks, i.e., r1 = r

d+1 = 1, leads to the
limited representation ability and flexibility; ii) TT-ranks
always have a fixed pattern, i.e., smaller for the border
cores and larger for the middle cores, which might not be
the optimum for specific data tensor; iii) the multilinear
products of cores in TT must follow a strict order such that
the optimized TT cores highly depend on the permutation of
tensor dimensions. Hence, finding the optimal permutation
remains a challenging problem.

By taking into account these limitations of TT decom-
position, we introduce a new type of tensor decomposi-
tion which can be considered as a generalization of the
TT model. First of all, we consider to relax the condition
over TT-ranks, i.e., r1 = r

d+1 = 1, leading to the en-
hanced representation ability. Secondly, the strict ordering
of multilinear products between cores should be alleviated.
Third, the cores should be treated equivalently by making
the model symmetric. To this end, we found these goals
can be achieved by simply employing the trace operation.
More specifically, we consider that each tensor element is
approximated by performing a trace operation over the
sequential multilinear products of cores. Since the trace
operation ensures a scalar output, r1 = r

d+1 = 1 is not
necessary. In addition, the cores can be circularly shifted and
treated equivalently due to the properties of trace operation.
By using the graphical illustration (see Fig. 1), this concept
implies that the cores are interconnected circularly, which
looks like a ring structure. Hence, we call this model as
tensor ring (TR) decomposition and its cores as tensor ring
(TR) representations. Although the similar concept has been
mentioned and called MPS or tensor chain in few litera-
tures [37], [50], [61], the algorithms and properties have not
well explored yet. In this paper, the optimization algorithms
for TR decomposition will be investigated, whose objective
is to represent a higher-order tensor by the TR format that is
potentially powerful for large-scale multilinear optimization
problems.

The paper is organized as follows. In Section 2, the TR
model is presented in several different forms together with
its basic feature. Section 3 presents four different algorithms
for TR decomposition. In Section 4, we demonstrate how the
basic multilinear algebra can be performed by using the TR
format. The relations with existing tensor decompositions
are presented in Section 5. Section 6 shows experimental
results on both synthetic and real-world dataset, followed

by conclusion in Secition 7.

2 TENSOR RING MODEL

The tensor ring (TR) decomposition aims to represent a
high-order (or high-dimensional) tensor by a sequence of
3rd-order tensors that are multiplied circularly. Specifically,
let T be a dth-order tensor of size n1⇥n2⇥· · ·⇥n

d

, denoted
by T 2 Rn1⇥···⇥nd , TR representation is to decompose it
into a sequence of latent tensors Z
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1, 2, . . . , d, which can be expressed in an element-wise form
given by
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is of size r
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the product of these matrices is a square matrix. These
prerequisites play key roles in TR decomposition, resulting
in some important numeric properties. For simplicity, the
latent tensor Z

k

can be also called kth-core (or node). The
size of cores, r

k

, k = 1, 2, . . . , d, collected and denoted by
a vector r = [r1, r2, . . . , rd]

T are called TR-ranks. From (1),
we can observe that the T (i1, i2, . . . , id) is equivalent to the
trace of a sequential product of matrices {Z
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)}. To further
describe the concept, we can also rewrite (1) in the index
form, which is
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, where k is the
index of tensor modes (dimensions); ↵
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is the index of latent
dimensions; and i
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is the index of data dimensions. From
(2), we can also easily express TR decomposition in the
tensor form, given by

T =

r1,...,rd
X

↵1,...,↵d=1

z1(↵1,↵2)�z2(↵2,↵3)� · · ·�zd(↵d

,↵1), (3)

where the symbol ‘�’ denotes the outer product of vectors
and z
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(↵
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,↵

k+1) 2 Rnk denotes the (↵
k

,↵

k+1)th mode-
2 fiber of tensor Z
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. This indicates that the whole tensor
can be decomposed into a sum of rank-1 tensors that are
generated by d vectors taken from each core respectively.
The number of parameters in TR representation is O(dnr

2
),

which is linear to the tensor order d.
The TR representation can be also illustrated graphically

by a linear tensor network as shown in Fig. 1. The node
represents a tensor (including matrix and vector) whose or-
der is denoted by the number of edges. The number beside
the edges specifies the size of each mode (or dimension).
The connection between two nodes denotes a multilinear
product operator between two tensors on a specific mode,
also called tensor contraction, which corresponds to the
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summation over the indices of that mode. As we can see
from (2), Z1 and Z2 is multiplied along one dimension in-
dexed by ↵2, which is thus denoted by a connection together
with the size of that mode (i.e., r2) in the graph. It should be
noted that Z

d

is connected to Z1 by the summation over the
index ↵1, which corresponding to the trace operation. From
the graphical representation and mathematic expression in
(1), we can easily derive that TR representation is a circular
multilinear products of a sequence of 3rd-order tensors,
resulting in that the sequence can be shifted circularly
without changing the result essentially, which corresponds
to a circular shift of tensor modes. Since our model graph-
ically looks like a ring and its multilinear operations can
be circularly shifted, we thus call it naturally as tensor ring
decomposition. For simplicity, we denote TR decomposition
by T = <(Z1,Z2, . . . ,Zd

).
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Fig. 1. A graphical representation of the tensor ring decomposition

Theorem 2.1. Circular dimensional permutation invari-
ance. Let T 2 Rn1⇥n2⇥...⇥nd be a dth-order tensor and
its TR decomposition is given by T = <(Z1,Z2, . . . ,Zd

).
If we define

 �T k 2 Rnk+1⇥···⇥nd⇥n1⇥···⇥nk as circularly
shifting the dimensions of T by k, then we have

 �T k

=

<(Z
k+1, . . . ,Zd

,Z1, . . .Zk

).

It is obvious that (1) can be easily rewritten as

T (i1, i2, . . . , id) = Tr(Z2(i2),Z3(i3), . . . ,Zd

(i

d

),Z1(i1))

= · · · = Tr(Z
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(i

d

),Z1(i1), . . . ,Zd�1(id�1)). (4)

Therefore, we have
 �T k

= <(Z
k+1, . . . ,Zd

,Z1, . . . ,Zk

).
It should be noted that this property is an essential

feature that distinguishes TR decomposition from the TT de-
composition. For TT decomposition, the product of matrices
must keep a strictly sequential order, which results in that
the cores for representing the same tensor with a circular
dimension shifting cannot keep invariance. Hence, it is
necessary to choose an optimal dimensional permutation
when applying the TT decomposition.

3 LEARNING ALGORITHMS

In this section, we develop several algorithms to learn the
TR model. Since the exact tensor decompositions usually
require heavy computation and storage, we focus on the
low-rank tensor approximation under the TR framework.
The selection of the optimum TR-ranks r 2 Rd is a challeng-
ing model selection problem. In general, r can be manually

given, or be optimized based on the specific objective func-
tion such as nuclear norm or maximum marginal likelihood.
Since the true noise distribution is unknown in practice, we
usually prefer to a low-rank approximation of the data with
a relative error that can be controlled in an arbitrary scale.
Therefore, given a tensor T , our main objective is to seek
a set of cores which can approximate T with a prescribed
relative error ✏

p

, while the TR-ranks are minimum, i.e.,
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Definition 3.1. Let T 2 Rn1⇥n2⇥···⇥nd be a dth-order tensor.
The k-unfolding of T is a matrix, denoted by Thki of size
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, whose elements are defined by

Thki(i1 · · · ik, ik+1 · · · id) = T (i1, i2, . . . , id), (6)

where the first k indices enumerate the rows of Thki, and
the last d� k indices for its columns.
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by T[k] of size n
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with its elements defined by

T[k](ik, ik+1 · · · idi1 · · · ik�1) = T (i1, i2, . . . , id), (7)

where kth index enumerate the rows of T[k], and the rest
d � 1 indices for its columns. Note that the classical mode-k
unfolding matrix is denoted by T(k) of size n
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and
defined by

T(k)(ik, i1 · · · ik�1ik+1 · · · id) = T (i1, i2, . . . , id). (8)

The difference between these two types of mode-k unfold-
ing operations lie in the ordering of indices associated to the
d � 1 modes, which corresponds to a specific dimensional
permutation performed on T . We use these two type of
definitions for clarity and notation simplicity.

Definition 3.3. Let T = <(Z1,Z2, . . . ,Zd

) be a TR repre-
sentation of dth-order tensor, where Z
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1, . . . , d be a sequence of cores. Since the adjacent cores Z
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and Z
k+1 have an equivalent mode size r
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Note that Z
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, k = 1, . . . , d forms a circular sequence, imply-
ing that Z
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is linked to Z1 as well. This merging operation
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given by

Z<k

(i1 · · · ik�1) =

k�1
Y

j=1

Z
j

(i

j

). (10)

Similarly, the subchain tensor by merging multiple
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Circular dimensional 
permutation invariance
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might obtain different representations by choosing a differ-
ent mode as the start point. This indicates that TR-ranks
r is not necessary to be the global optimum in TR-SVD.
Therefore, we consider to develop other algorithms that can
find the optimum TR-ranks and are independent with the
start point.

3.2 ALS algorithm
In this section, we introduce an algorithm for TR decomposi-
tion by employing alternating least squares (ALS). The ALS
algorithm has been widely applied to most tensor decom-
position models such as CP and Tucker decompositions [1],
[40]. The main concept of ALS is optimizing one core while
the other cores are fixed, and this procedure will be repeated
until some convergence criterion is satisfied. Given a dth-
order tensor T , our goal is to optimize the cores with a
given TR-ranks r, i.e.,

min

Z1,...,Zd

kT �<(Z1, . . . ,Zd

)k
F

. (20)

Theorem 3.5. Given a TR decomposition T = <(Z1, . . . , Zd

),
its mode-k unfolding matrix can be written as

T[k] = Z
k(2)

⇣

Z 6=k

[2]

⌘

T

, (21)

where Z 6=k is a subchain obtained by merging d� 1 cores, which
is defined in (12).

Proof. According to the TR definition in (2), we have

T (i1, i2, . . . , id)

=

X

↵1,...,↵d

Z1(↵1, i1,↵2)Z2(↵2, i2,↵3) · · ·Zd

(↵

d

, i

d

,↵1)

=

X

↵k,↵k+1

n

Z

k

(↵

k

, i

k

,↵

k+1)
X

↵1,...,↵k�1
↵k+2...,↵d

Z

k+1(↵k+1, ik+1,↵k+2)

· · ·Z
d

(↵

d

, i

d

,↵1)Z1(↵1, i1,↵2) · · ·Zk�1(↵k�1, ik�1,↵k

)

o

=

X

↵k,↵k+1

n

Z

k

(↵

k

, i

k

,↵

k+1)Z
6=k

(↵

k+1, ik+1 · · · idi1 · · · ik�1,

↵

k

)

o

.

(22)
Hence, the mode-k unfolding matrix of T can be expressed
by

T[k](ik, ik+1 · · · idi1 · · · ik�1) =
X

↵k↵k+1

n

Z

k

(i

k

,↵

k

↵

k+1)

Z

6=k

(↵

k

↵

k+1, ik+1 · · · idi1 · · · ik�1)

o

.

(23)

This indicates a product of two matrices. By applying differ-
ent mode-k unfolding operations, we can easily justify the
formula in (21).

Based on Theorem 3.5, the objective function in (20)
can be optimized by solving d subproblems alternatively.
More specifically, having fixed all but one core, the problem
reduces to a linear least squares problem, which is

min

Zk(2)

�

�

�

�

T[k] � Z
k(2)

⇣

Z 6=k

[2]

⌘

T

�

�

�

�

F

, k = 1, . . . , d. (24)

Algorithm 2 TR-ALS
Input: A dth-order tensor T of size (n1 ⇥ · · ·⇥ n

d

) and the
predefined TR-ranks r.

Output: Cores Z
k

, k = 1, . . . , d of TR decomposition.
1: Initialize Z

k

2 Rrk⇥nk⇥rk+1 for k = 1, . . . , d as random
tensors from Gaussian distribution.

2: repeat
3: for k = 1 to d do
4: Compute the subchain Z 6=k by using (12).
5: Obtain Z 6=k

[2] of size
Q

d

j=1 nj

/n

k

⇥ r

k

r

k+1.
6: Z

k(2)  argmin kT[k] � Z
k(2)(Z

6=k

[2] )
T k

F

.
7: Normalize columns of Z

k(2), if k 6= d.
8: Z

k

 permute(reshape(Z
k(2), [nk

, r

k

, r

k+1]), [2, 1, 3]).
9: Relative error ✏ kT �<(Z1, . . . ,Zd

)k/kT k
F

10: end for
11: until Relative changes of ✏ is smaller than a specific

threshold (e.g. 10�6
), or maximum number of iterations

is reached.

Therefore, TR composition can be performed by ALS opti-
mizations, which is called TR-ALS algorithm. The detailed
procedure is shown in Alg. 2.

The cores can be initialized randomly with specified TR-
ranks. The iterations repeat until some combination of stop-
ping conditions is satisfied. Possible stopping conditions
include the following: little or no improvement in the objec-
tive function; the value of objective function being smaller
than a specific threshold; a predefined maximum number of
iterations is reached. The normalization is performed on all
cores except the last one that absorbs the weights. It should
be noted that the cores are not necessary to be orthogonal in
TR-ALS.

3.3 ALS with adaptive ranks
One important limitation of TR-ALS algorithm is that TR-
ranks must be specified and fixed, which may make the
algorithm difficult to obtain a desired accuracy. Although
we can try different TR-ranks and select the best one, the
computation cost will dramatically increase due to the large
number of possibilities when high dimensional tensors are
considered. Therefore, we attemp to develop an ALS algo-
rithm for TR decomposition with adaptive ranks, which is
simply called ALSAR algorithm.

The ALSAR algorithm is initialized with equivalent TR-
ranks, i.e., r1 = r2 = · · · = r

d

= 1. The core tensors
Z

k

, k = 1, . . . , d are initialized by random tensors which are
of size 1⇥ n

k

⇥ 1. For optimization of each core tensor Z
k

,
it was firstly updated according to ALS scheme, yielding
the updated approximation error ✏

old

. Then, we attempt
to increase the rank by r

k+1  r

k+1 + 1, which implies
that Z

k

,Z
k+1 must be updated with the increased sizes.

More specifically, based on the modified Z
k+1 by adding

more random entries, Z
k

is updated again yielding the new
approximation error ✏

new

. If the improvement of approxi-
mation error by increasing the rank r

k+1 satisfies a specific
criteria, then the increased rank is accepted otherwise it is
rejected. The acceptance criteria can be simply expressed by

|✏
old

� ✏

new

| > ⌧ |✏
old

� ✏

p

|, (25)

• Block-wise ALS algorithm
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summation over the indices of that mode. As we can see
from (2), Z1 and Z2 is multiplied along one dimension in-
dexed by ↵2, which is thus denoted by a connection together
with the size of that mode (i.e., r2) in the graph. It should be
noted that Z

d

is connected to Z1 by the summation over the
index ↵1, which corresponding to the trace operation. From
the graphical representation and mathematic expression in
(1), we can easily derive that TR representation is a circular
multilinear products of a sequence of 3rd-order tensors,
resulting in that the sequence can be shifted circularly
without changing the result essentially, which corresponds
to a circular shift of tensor modes. Since our model graph-
ically looks like a ring and its multilinear operations can
be circularly shifted, we thus call it naturally as tensor ring
decomposition. For simplicity, we denote TR decomposition
by T = <(Z1,Z2, . . . ,Zd

).

Tn1

n

d

· · ·

n

k

· · ·n2

= Z1

Z
d

· · ·

Z
k

· · ·Z2

n1

n

d

· · ·

n

k

· · ·n2

r1

r2

r

d

r

k+1

r

k

r3

Fig. 1. A graphical representation of the tensor ring decomposition

Theorem 2.1. Circular dimensional permutation invari-
ance. Let T 2 Rn1⇥n2⇥...⇥nd be a dth-order tensor and
its TR decomposition is given by T = <(Z1,Z2, . . . ,Zd

).
If we define

 �T k 2 Rnk+1⇥···⇥nd⇥n1⇥···⇥nk as circularly
shifting the dimensions of T by k, then we have

 �T k

=

<(Z
k+1, . . . ,Zd

,Z1, . . .Zk

).

It is obvious that (1) can be easily rewritten as

T (i1, i2, . . . , id) = Tr(Z2(i2),Z3(i3), . . . ,Zd

(i

d

),Z1(i1))

= · · · = Tr(Z
d

(i

d

),Z1(i1), . . . ,Zd�1(id�1)). (4)

Therefore, we have
 �T k

= <(Z
k+1, . . . ,Zd

,Z1, . . . ,Zk

).
It should be noted that this property is an essential

feature that distinguishes TR decomposition from the TT de-
composition. For TT decomposition, the product of matrices
must keep a strictly sequential order, which results in that
the cores for representing the same tensor with a circular
dimension shifting cannot keep invariance. Hence, it is
necessary to choose an optimal dimensional permutation
when applying the TT decomposition.

3 LEARNING ALGORITHMS

In this section, we develop several algorithms to learn the
TR model. Since the exact tensor decompositions usually
require heavy computation and storage, we focus on the
low-rank tensor approximation under the TR framework.
The selection of the optimum TR-ranks r 2 Rd is a challeng-
ing model selection problem. In general, r can be manually

given, or be optimized based on the specific objective func-
tion such as nuclear norm or maximum marginal likelihood.
Since the true noise distribution is unknown in practice, we
usually prefer to a low-rank approximation of the data with
a relative error that can be controlled in an arbitrary scale.
Therefore, given a tensor T , our main objective is to seek
a set of cores which can approximate T with a prescribed
relative error ✏

p

, while the TR-ranks are minimum, i.e.,

min

Z1,...,Zd

: r

s. t. : kT �<(Z1,Z2, . . . ,Zd

)k
F

 ✏

p

kT k
F

.

(5)

Definition 3.1. Let T 2 Rn1⇥n2⇥···⇥nd be a dth-order tensor.
The k-unfolding of T is a matrix, denoted by Thki of size
Q

k

i=1 ni

⇥Q

d

i=k+1 ni

, whose elements are defined by

Thki(i1 · · · ik, ik+1 · · · id) = T (i1, i2, . . . , id), (6)

where the first k indices enumerate the rows of Thki, and
the last d� k indices for its columns.

Definition 3.2. The mode-k unfolding matrix of T is denoted
by T[k] of size n

k

⇥Q

j 6=k

n

j

with its elements defined by

T[k](ik, ik+1 · · · idi1 · · · ik�1) = T (i1, i2, . . . , id), (7)

where kth index enumerate the rows of T[k], and the rest
d � 1 indices for its columns. Note that the classical mode-k
unfolding matrix is denoted by T(k) of size n

k

⇥Q

j 6=k

n

j

and
defined by

T(k)(ik, i1 · · · ik�1ik+1 · · · id) = T (i1, i2, . . . , id). (8)

The difference between these two types of mode-k unfold-
ing operations lie in the ordering of indices associated to the
d � 1 modes, which corresponds to a specific dimensional
permutation performed on T . We use these two type of
definitions for clarity and notation simplicity.

Definition 3.3. Let T = <(Z1,Z2, . . . ,Zd

) be a TR repre-
sentation of dth-order tensor, where Z

k

2 Rrk⇥nk⇥rk+1
, k =

1, . . . , d be a sequence of cores. Since the adjacent cores Z
k

and Z
k+1 have an equivalent mode size r

k+1, they can be
merged into a single core by multilinear products, which is
defined by Z(k,k+1) 2 Rrk⇥nknk+1⇥rk+2 whose lateral slice
matrices are given by

Z(k,k+1)
(i

k

i

k+1) = Z
k

(i

k

)Z
k+1(ik+1). (9)

Note that Z
k

, k = 1, . . . , d forms a circular sequence, imply-
ing that Z

d

is linked to Z1 as well. This merging operation
can be extended straightforwardly to multiple linked cores.

The new core obtained by merging multiple linked cores
Z1, . . . ,Zk�1, called a subchain, is defined and denoted
by Z<k 2 Rr1⇥

Qk�1
j=1 nj⇥rk whose lateral slice matrices are

given by

Z<k

(i1 · · · ik�1) =

k�1
Y

j=1

Z
j

(i

j

). (10)

Similarly, the subchain tensor by merging multiple
linked cores Z

k+1, . . . ,Zd

is denoted by Z>k 2
Rrk+1⇥

Qd
j=k+1 nj⇥r1 whose lateral slice matrices are defined

as

Z>k

(i

k+1 · · · id) =
d

Y

j=k+1

Z
j

(i

j

). (11)
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The subchain tensor by merging all cores except kth core
Z

k

, i.e., Z
k+1, . . . ,Zd

,Z1, . . . ,Zk�1, is denoted by Z 6=k 2
Rrk+1⇥

Qd
j=1,j 6=k nj⇥rk whose slice matrices are defined by

Z 6=k

(i

k+1 · · · idi1 . . . ik�1) =

d

Y

j=k+1

Z
j

(i

j

)

k�1
Y

j=1

Z
j

(i

j

). (12)

Analogously, we can also define subchains of Zk,
Z�k and Z 6=(k,k+1) in the same way. Note that a special
subchain by merging all cores is denoted by Z(1:d) of size
r1⇥

Q

d

j=1 nj

⇥r1 whose mode-2 fibers Z(1:d)
(↵1, :,↵1),↵1 =

1, . . . , r1 can be represented as TT representations, respec-
tively.

3.1 Sequential SVDs algorithm
We propose the first algorithm for computing the TR de-
composition using d sequential SVDs. This algorithm will
be called TR-SVD algorithm.

Theorem 3.4. Let us assume T can be represented by a TR de-
composition. If the k-unfolding matrix Thki has Rank(Thki) =
R

k+1, then there exists a TR decomposition with TR-ranks r
which satisfies that 9k, r1rk+1  R

k+1.

Proof. We can express TR decomposition in the form of k-
unfolding matrix,

Thki(i1 · · · ik, ik+1 · · · id) = Tr {Z1(i1)Z2(i2) · · ·Zd

(i

d

)}

= Tr

8

<

:

k

Y

j=1

Z
j

(i

j

)

d

Y

j=k+1

Z
j

(i

j

)

9

=

;

=

*

vec

0

@

k

Y

j=1

Z
j

(i

j

)

1

A

, vec

0

@

k+1
Y

j=d

ZT

j

(i

j

)

1

A

+

.

(13)

According to the definitions in (10)(11), (13) can be also
rewritten as

Thki(i1 · · · ik, ik+1 · · · id)
=

X

↵1↵k+1

Z

k

�

i1 · · · ik,↵1↵k+1

�

Z

>k

�

↵1↵k+1, ik+1 · · · id
�

.

(14)

Hence, we can obtain that Thki = Zk

(2)(Z
>k

[2] )
T , where the

subchain Zk

(2) is of size
Q

k

j=1 nj

⇥r1rk+1, and Z>k

[2] is of size
Q

d

j=k+1 nj

⇥ r1rk+1. Since the rank of Thki is R
k+1, we can

obtain that r1rk+1  R

k+1.

For TT-SVD algorithm, we usually need to choose a spe-
cific mode as the start point (e.g., the first mode). According
to (13)(14), TR decomposition can be easily written as

Th1i(i1, i2 · · · id) =
X

↵1,↵2

Z

1
(i1,↵1↵2)Z

>1
(↵1↵2, i2 · · · id).

(15)
Since the low-rank approximation of Th1i can be easily
obtained by the truncated SVD, which is

Th1i = U⌃VT

+E1, (16)

the first core Z1(i.e.,Z1
) of size r1 ⇥ n1 ⇥ r2 can be

obtained by the proper reshaping and permutation of U

and the subchain Z>1 of size r2 ⇥
Q

d

j=2 nj

⇥ r1 is obtained
by the proper reshaping and permutation of ⌃VT , which
corresponds to the rest d�1 dimensions of T . Subsequently,
we can further reshape the subchain Z>1 as a matrix
Z>1 2 Rr2n2⇥

Qd
j=3 njr1 which thus can be written as

Z

>1
(↵2i2, i3 · · · id↵1) =

X

↵3

Z2(↵2i2,↵3)Z
>2

(↵3, i3 · · · id↵1).

(17)
By applying truncated SVD, i.e., Z>1

= U⌃VT

+ E2,
we can obtain the second core Z2 of size (r2 ⇥ n2 ⇥ r3)

by appropriately reshaping U and the subchain Z>2 by
proper reshaping of ⌃VT . This procedure can be performed
sequentially to obtain all d cores Z

k

, k = 1, . . . , d.
As proved in [39], the approximation error by using such

sequential SVDs is given by

kT �<(Z1,Z2, . . . ,Zd

)k
F


v

u

u

t

d�1
X

k=1

kE
k

k2
F

. (18)

Hence, given a prescribed relative error ✏

p

, the truncation
threshold � can be set to ✏pp

d�1
kT k

F

. However, considering
that kE1kF corresponds to two ranks including both r1 and
r2, while kE

k

k
F

, 8k > 1 correspond to only one rank r

k+1.
Therefore, we modify the truncation threshold as

�

k

=

( p
2✏

p

kT k
F

/

p
d, k = 1,

✏

p

kT k
F

/

p
d, k > 1.

(19)

Finally, the TR-SVD algorithm is summarized in Alg. 1.

Algorithm 1 TR-SVD
Input: A dth-order tensor T of size (n1 ⇥ · · ·⇥ n

d

) and the
prescribed relative error ✏

p

.
Output: Cores Z

k

, k = 1, . . . , d of TR decomposition and
the TR-ranks r.

1: Compute truncation threshold �

k

for k = 1 and k > 1.
2: Choose one mode as the start point (e.g., the first mode)

and obtain the 1-unfolding matrix Th1i.
3: Low-rank approximation by applying �1-truncated

SVD: Th1i = U⌃VT

+E1.
4: Split ranks r1, r2 by

min

r1,r2

kr1 � r2k, s.t. r1r2 = rank
�1(Th1i).

5: Z1  permute(reshape(U, [n1, r1, r2]), [2, 1, 3]).
6: Z>1  permute(reshape(⌃VT

, [r1, r2,
Q

d

j=2 nj

]), [2, 3, 1]).
7: for k = 2 to d� 1 do
8: Z>k�1

= reshape(Z>k�1
, [r

k

n

k

, n

k+1 · · ·nd

r1]).
9: Compute �

k

-truncated SVD:

Z>k�1
= U⌃VT

+E
k

.

10: r

k+1  rank
�k(Z

>k�1
).

11: Z
k

 reshape(U, [r

k

, n

k

, r

k+1]).
12: Z>k  reshape(⌃VT

, [r

k+1,
Q

d

j=k+1 nj

, r1]).
13: end for

The cores obtained by TR-SVD algorithm are left-
orthogonal, which is ZT

kh2iZkh2i = I, for k = 2, . . . , d� 1. It
should be noted that TR-SVD is a non-recursive algorithm
that does not need iterations for convergence. However, it
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The subchain tensor by merging all cores except kth core
Z

k

, i.e., Z
k+1, . . . ,Zd

,Z1, . . . ,Zk�1, is denoted by Z 6=k 2
Rrk+1⇥

Qd
j=1,j 6=k nj⇥rk whose slice matrices are defined by

Z 6=k

(i

k+1 · · · idi1 . . . ik�1) =

d

Y

j=k+1

Z
j

(i

j

)

k�1
Y

j=1

Z
j

(i

j

). (12)

Analogously, we can also define subchains of Zk,
Z�k and Z 6=(k,k+1) in the same way. Note that a special
subchain by merging all cores is denoted by Z(1:d) of size
r1⇥

Q

d

j=1 nj

⇥r1 whose mode-2 fibers Z(1:d)
(↵1, :,↵1),↵1 =

1, . . . , r1 can be represented as TT representations, respec-
tively.

3.1 Sequential SVDs algorithm
We propose the first algorithm for computing the TR de-
composition using d sequential SVDs. This algorithm will
be called TR-SVD algorithm.

Theorem 3.4. Let us assume T can be represented by a TR de-
composition. If the k-unfolding matrix Thki has Rank(Thki) =
R

k+1, then there exists a TR decomposition with TR-ranks r
which satisfies that 9k, r1rk+1  R

k+1.

Proof. We can express TR decomposition in the form of k-
unfolding matrix,

Thki(i1 · · · ik, ik+1 · · · id) = Tr {Z1(i1)Z2(i2) · · ·Zd

(i

d

)}

= Tr

8

<

:

k

Y

j=1

Z
j

(i

j

)

d

Y

j=k+1

Z
j

(i

j

)

9

=

;

=

*

vec

0

@

k

Y

j=1

Z
j

(i

j

)

1

A

, vec

0

@

k+1
Y

j=d

ZT

j

(i

j

)

1

A

+

.

(13)

According to the definitions in (10)(11), (13) can be also
rewritten as

Thki(i1 · · · ik, ik+1 · · · id)
=

X

↵1↵k+1

Z

k

�

i1 · · · ik,↵1↵k+1

�

Z

>k

�

↵1↵k+1, ik+1 · · · id
�

.

(14)

Hence, we can obtain that Thki = Zk

(2)(Z
>k

[2] )
T , where the

subchain Zk

(2) is of size
Q

k

j=1 nj

⇥r1rk+1, and Z>k

[2] is of size
Q

d

j=k+1 nj

⇥ r1rk+1. Since the rank of Thki is R
k+1, we can

obtain that r1rk+1  R

k+1.

For TT-SVD algorithm, we usually need to choose a spe-
cific mode as the start point (e.g., the first mode). According
to (13)(14), TR decomposition can be easily written as

Th1i(i1, i2 · · · id) =
X

↵1,↵2

Z

1
(i1,↵1↵2)Z

>1
(↵1↵2, i2 · · · id).

(15)
Since the low-rank approximation of Th1i can be easily
obtained by the truncated SVD, which is

Th1i = U⌃VT

+E1, (16)

the first core Z1(i.e.,Z1
) of size r1 ⇥ n1 ⇥ r2 can be

obtained by the proper reshaping and permutation of U

and the subchain Z>1 of size r2 ⇥
Q

d

j=2 nj

⇥ r1 is obtained
by the proper reshaping and permutation of ⌃VT , which
corresponds to the rest d�1 dimensions of T . Subsequently,
we can further reshape the subchain Z>1 as a matrix
Z>1 2 Rr2n2⇥

Qd
j=3 njr1 which thus can be written as

Z

>1
(↵2i2, i3 · · · id↵1) =

X

↵3

Z2(↵2i2,↵3)Z
>2

(↵3, i3 · · · id↵1).

(17)
By applying truncated SVD, i.e., Z>1

= U⌃VT

+ E2,
we can obtain the second core Z2 of size (r2 ⇥ n2 ⇥ r3)

by appropriately reshaping U and the subchain Z>2 by
proper reshaping of ⌃VT . This procedure can be performed
sequentially to obtain all d cores Z

k

, k = 1, . . . , d.
As proved in [39], the approximation error by using such

sequential SVDs is given by

kT �<(Z1,Z2, . . . ,Zd

)k
F


v

u

u

t

d�1
X

k=1

kE
k

k2
F

. (18)

Hence, given a prescribed relative error ✏

p

, the truncation
threshold � can be set to ✏pp

d�1
kT k

F

. However, considering
that kE1kF corresponds to two ranks including both r1 and
r2, while kE

k

k
F

, 8k > 1 correspond to only one rank r

k+1.
Therefore, we modify the truncation threshold as

�

k

=

( p
2✏

p

kT k
F

/

p
d, k = 1,

✏

p

kT k
F

/

p
d, k > 1.

(19)

Finally, the TR-SVD algorithm is summarized in Alg. 1.

Algorithm 1 TR-SVD
Input: A dth-order tensor T of size (n1 ⇥ · · ·⇥ n

d

) and the
prescribed relative error ✏

p

.
Output: Cores Z

k

, k = 1, . . . , d of TR decomposition and
the TR-ranks r.

1: Compute truncation threshold �

k

for k = 1 and k > 1.
2: Choose one mode as the start point (e.g., the first mode)

and obtain the 1-unfolding matrix Th1i.
3: Low-rank approximation by applying �1-truncated

SVD: Th1i = U⌃VT

+E1.
4: Split ranks r1, r2 by

min

r1,r2

kr1 � r2k, s.t. r1r2 = rank
�1(Th1i).

5: Z1  permute(reshape(U, [n1, r1, r2]), [2, 1, 3]).
6: Z>1  permute(reshape(⌃VT

, [r1, r2,
Q

d

j=2 nj

]), [2, 3, 1]).
7: for k = 2 to d� 1 do
8: Z>k�1

= reshape(Z>k�1
, [r

k

n

k

, n

k+1 · · ·nd

r1]).
9: Compute �

k

-truncated SVD:

Z>k�1
= U⌃VT

+E
k

.

10: r

k+1  rank
�k(Z

>k�1
).

11: Z
k

 reshape(U, [r

k

, n

k

, r

k+1]).
12: Z>k  reshape(⌃VT

, [r

k+1,
Q

d

j=k+1 nj

, r1]).
13: end for

The cores obtained by TR-SVD algorithm are left-
orthogonal, which is ZT

kh2iZkh2i = I, for k = 2, . . . , d� 1. It
should be noted that TR-SVD is a non-recursive algorithm
that does not need iterations for convergence. However, it
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to adapt TR-ranks during optimization, but requires many
iterations. TR-BALS enables us to find the optimum TR-
ranks efficiently without dramatically increasing the com-
putational cost.

4 PROPERTIES OF TR REPRESENTATION

In this section, we discuss some interesting properties of
TR representation. By assuming that tensor data have been
already represented as TR decompositions, i.e., a sequence
of third-order cores, we justify and demonstrate that the
basic operations on tensors, such as addition, multilinear
product, Hadamard product, inner product and Frobenius norm,
can be performed efficiently by the appropriate operations
on each individual cores. These properties are crucial and
essentially important for processing large-scale or large-
dimensional tensors, due to the ability of converting a large
problem w.r.t. the original tensor into many small problems
w.r.t. individual cores.

Theorem 4.1. Let T 1 and T 2 be dth-order tensors of size
n1 ⇥ · · · ⇥ n

d

. If the TR decompositions of these two tensors
are T 1 = <(Z1, . . . ,Zd

) where Z
k

2 Rrk⇥nk⇥rk+1 and
T 2 = <(Y1, . . . ,Yd

), where Y
k

2 Rsk⇥nk⇥sk+1 , then the
addition of these two tensors, T 3 = T 1 + T 2, can be also
represented in the TR format given by T 3 = <(X 1, . . . ,X d

),
where X

k

2 Rqk⇥nk⇥qk+1 and q

k

= r

k

+ s

k

. Each core X
k

can
be computed by

X
k

(i

k

) =

✓

Z
k

(i

k

) 0

0 Y
k

(i

k

)

◆

,

i

k

= 1, . . . , n

k

,

k = 1, . . . , d.

(28)

Proof. According to the definition of TR decomposition, and
the cores shown in (28), the (i1, . . . , id)th element of tensor
T 3 can be written as

T3(i1, . . . , id) =Tr(X1(i1) . . .Xd

(i

d

))

=Tr

 

Q

d

k=1 Zk

(i

k

) 0

0

Q

d

k=1 Yk

(i

k

)

!

=Tr

 

d

Y

k=1

Z
k

(i

k

)

!

+ Tr

 

d

Y

k=1

Y
k

(i

k

)

!

=T1(i1, . . . , id) + T2(i1, . . . , id).

(29)

Hence, the addition of tensors in the TR format can be
performed by merging of their cores.

Note that the sizes of new cores are increased and not
optimal in general. This problem can be solved by the
rounding procedure [39].

Theorem 4.2. Let T 2 Rn1⇥···⇥nd be a dth-order tensor whose
TR representation is T = <(Z1, . . . ,Zd

) and u
k

2 Rnk
, k =

1, . . . , d be a set of vectors, then the multilinear products, denoted
by c = T ⇥1 uT

1 ⇥2 · · ·⇥d

uT

d

, can be computed by multilinear
product on each cores, which is

c = <(X1, . . . ,Xd

) where X
k

=

nk
X

ik=1

Z
k

(i

k

)u

k

(i

k

). (30)

Proof. The multilinear product between a tensor and vectors
can be expressed by

c =T ⇥1 u
T

1 ⇥2 · · ·⇥d

uT

d

=

X

i1,...,id

T (i1, . . . , id)u1(i1) · · ·ud

(i

d

)

=

X

i1,...,id

Tr

 

d

Y

k=1

Z
k

(i

k

)

!

u1(i1) · · ·ud

(i

d

)

=Tr

 

d

Y

k=1

 

nk
X

ik=1

Z
k

(i

k

)u

k

(i

k

)

!!

.

(31)

Thus, it can be written as a TR decomposition shown in
(30) where each core X

k

2 Rrk⇥rk+1 becomes a matrix. The
computational complexity is equal to O(dnr

2
).

From (31), we can see that the multilinear product be-
tween T and u

k

, k = 1, . . . , d can be also expressed as an
inner product of T and the rank-1 tensor, i.e.,

T ⇥1 u
T

1 ⇥2 · · ·⇥d

uT

d

= hT ,u1 � · · · � ud

i. (32)

It should be noted that the computational complexity in
the original tensor form is O(dn

d

), while it reduces to
O(dnr

2
+ dr

3
) that is linear to tensor order d by using TR

representation.

Theorem 4.3. Let T 1 and T 2 be dth-order tensors of size
n1 ⇥ · · ·⇥ n

d

. If the TR decompositions of these two tensors are
T 1 = <(Z1, . . . ,Zd

) where Z
k

2 Rrk⇥nk⇥rk+1 and T 2 =

<(Y1, . . . ,Yd

), where Y
k

2 Rsk⇥nk⇥sk+1 , then the Hadamard
product of these two tensors, T 3 = T 1 ~ T 2, can be also
represented in the TR format given by T 3 = <(X 1, . . . ,X d

),
where X

k

2 Rqk⇥nk⇥qk+1 and q

k

= r

k

⇤ s
k

. Each core X
k

can
be computed by

X
k

(i

k

) = Z
k

(i

k

)⌦Y
k

(i

k

), k = 1, . . . , d. (33)

Proof. Each element in tensor T 3 can be written as

T3(i1, . . . , id) =T1(i1, . . . , id)T2(i1, . . . , id)

=Tr

 

d

Y

k=1

Z
k

(i

k

)

!

Tr

 

d

Y

k=1

Y
k

(i

k

)

!

=Tr

( 

d

Y

k=1

Z
k

(i

k

)

!

⌦
 

d

Y

k=1

Y
k

(i

k

)

!)

=Tr

(

d

Y

k=1

⇣

Z
k

(i

k

)⌦Y
k

(i

k

)

⌘

)

.

(34)

Hence, T 3 can be also represented as TR format with its
cores computed by (33), which costs O(dnq

2
).

Furthermore, one can compute the inner product of two
tensors in TR representations. For two tensors T 1 and T 2,
it is defined as

hT 1,T 2i =
X

i1,...,id

T3(i1, . . . , id), (35)

where T 3 = T 1 ~ T 2. Thus, the inner product can be
computed by applying Hadamard product and then com-
puting the multilinear product between T 3 and vectors of
all ones, i.e., u

k

= 1, k = 1, . . . , d. In contrast to O(n

d

)

in the original tensor form, the computational complexity
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to adapt TR-ranks during optimization, but requires many
iterations. TR-BALS enables us to find the optimum TR-
ranks efficiently without dramatically increasing the com-
putational cost.

4 PROPERTIES OF TR REPRESENTATION

In this section, we discuss some interesting properties of
TR representation. By assuming that tensor data have been
already represented as TR decompositions, i.e., a sequence
of third-order cores, we justify and demonstrate that the
basic operations on tensors, such as addition, multilinear
product, Hadamard product, inner product and Frobenius norm,
can be performed efficiently by the appropriate operations
on each individual cores. These properties are crucial and
essentially important for processing large-scale or large-
dimensional tensors, due to the ability of converting a large
problem w.r.t. the original tensor into many small problems
w.r.t. individual cores.

Theorem 4.1. Let T 1 and T 2 be dth-order tensors of size
n1 ⇥ · · · ⇥ n

d

. If the TR decompositions of these two tensors
are T 1 = <(Z1, . . . ,Zd

) where Z
k

2 Rrk⇥nk⇥rk+1 and
T 2 = <(Y1, . . . ,Yd

), where Y
k

2 Rsk⇥nk⇥sk+1 , then the
addition of these two tensors, T 3 = T 1 + T 2, can be also
represented in the TR format given by T 3 = <(X 1, . . . ,X d

),
where X

k

2 Rqk⇥nk⇥qk+1 and q

k

= r

k

+ s

k

. Each core X
k

can
be computed by

X
k

(i

k

) =

✓

Z
k

(i

k

) 0

0 Y
k

(i

k

)

◆

,

i

k

= 1, . . . , n

k

,

k = 1, . . . , d.

(28)

Proof. According to the definition of TR decomposition, and
the cores shown in (28), the (i1, . . . , id)th element of tensor
T 3 can be written as

T3(i1, . . . , id) =Tr(X1(i1) . . .Xd

(i

d

))

=Tr

 

Q

d

k=1 Zk

(i

k

) 0

0

Q

d

k=1 Yk

(i

k

)

!

=Tr

 

d

Y

k=1

Z
k

(i

k

)

!

+ Tr

 

d

Y

k=1

Y
k

(i

k

)

!

=T1(i1, . . . , id) + T2(i1, . . . , id).

(29)

Hence, the addition of tensors in the TR format can be
performed by merging of their cores.

Note that the sizes of new cores are increased and not
optimal in general. This problem can be solved by the
rounding procedure [39].

Theorem 4.2. Let T 2 Rn1⇥···⇥nd be a dth-order tensor whose
TR representation is T = <(Z1, . . . ,Zd

) and u
k

2 Rnk
, k =

1, . . . , d be a set of vectors, then the multilinear products, denoted
by c = T ⇥1 uT

1 ⇥2 · · ·⇥d

uT

d

, can be computed by multilinear
product on each cores, which is

c = <(X1, . . . ,Xd

) where X
k

=

nk
X

ik=1

Z
k

(i

k

)u

k

(i

k

). (30)

Proof. The multilinear product between a tensor and vectors
can be expressed by

c =T ⇥1 u
T

1 ⇥2 · · ·⇥d

uT

d

=

X

i1,...,id

T (i1, . . . , id)u1(i1) · · ·ud

(i

d

)

=

X

i1,...,id

Tr

 

d

Y

k=1

Z
k

(i

k

)

!

u1(i1) · · ·ud

(i

d

)

=Tr

 

d

Y

k=1

 

nk
X

ik=1

Z
k

(i

k

)u

k

(i

k

)

!!

.

(31)

Thus, it can be written as a TR decomposition shown in
(30) where each core X

k

2 Rrk⇥rk+1 becomes a matrix. The
computational complexity is equal to O(dnr

2
).

From (31), we can see that the multilinear product be-
tween T and u

k

, k = 1, . . . , d can be also expressed as an
inner product of T and the rank-1 tensor, i.e.,

T ⇥1 u
T

1 ⇥2 · · ·⇥d

uT

d

= hT ,u1 � · · · � ud

i. (32)

It should be noted that the computational complexity in
the original tensor form is O(dn

d

), while it reduces to
O(dnr

2
+ dr

3
) that is linear to tensor order d by using TR

representation.

Theorem 4.3. Let T 1 and T 2 be dth-order tensors of size
n1 ⇥ · · ·⇥ n

d

. If the TR decompositions of these two tensors are
T 1 = <(Z1, . . . ,Zd

) where Z
k

2 Rrk⇥nk⇥rk+1 and T 2 =

<(Y1, . . . ,Yd

), where Y
k

2 Rsk⇥nk⇥sk+1 , then the Hadamard
product of these two tensors, T 3 = T 1 ~ T 2, can be also
represented in the TR format given by T 3 = <(X 1, . . . ,X d

),
where X

k

2 Rqk⇥nk⇥qk+1 and q

k

= r

k

⇤ s
k

. Each core X
k

can
be computed by

X
k

(i

k

) = Z
k

(i

k

)⌦Y
k

(i

k

), k = 1, . . . , d. (33)

Proof. Each element in tensor T 3 can be written as

T3(i1, . . . , id) =T1(i1, . . . , id)T2(i1, . . . , id)

=Tr

 

d

Y

k=1

Z
k

(i

k

)

!

Tr

 

d

Y

k=1

Y
k

(i

k

)

!

=Tr

( 

d

Y

k=1

Z
k

(i

k

)

!

⌦
 

d

Y

k=1

Y
k

(i

k

)

!)

=Tr

(

d

Y

k=1

⇣

Z
k

(i

k

)⌦Y
k

(i

k

)

⌘

)

.

(34)

Hence, T 3 can be also represented as TR format with its
cores computed by (33), which costs O(dnq

2
).

Furthermore, one can compute the inner product of two
tensors in TR representations. For two tensors T 1 and T 2,
it is defined as

hT 1,T 2i =
X

i1,...,id

T3(i1, . . . , id), (35)

where T 3 = T 1 ~ T 2. Thus, the inner product can be
computed by applying Hadamard product and then com-
puting the multilinear product between T 3 and vectors of
all ones, i.e., u

k

= 1, k = 1, . . . , d. In contrast to O(n

d

)

in the original tensor form, the computational complexity
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to adapt TR-ranks during optimization, but requires many
iterations. TR-BALS enables us to find the optimum TR-
ranks efficiently without dramatically increasing the com-
putational cost.

4 PROPERTIES OF TR REPRESENTATION

In this section, we discuss some interesting properties of
TR representation. By assuming that tensor data have been
already represented as TR decompositions, i.e., a sequence
of third-order cores, we justify and demonstrate that the
basic operations on tensors, such as addition, multilinear
product, Hadamard product, inner product and Frobenius norm,
can be performed efficiently by the appropriate operations
on each individual cores. These properties are crucial and
essentially important for processing large-scale or large-
dimensional tensors, due to the ability of converting a large
problem w.r.t. the original tensor into many small problems
w.r.t. individual cores.

Theorem 4.1. Let T 1 and T 2 be dth-order tensors of size
n1 ⇥ · · · ⇥ n

d

. If the TR decompositions of these two tensors
are T 1 = <(Z1, . . . ,Zd

) where Z
k

2 Rrk⇥nk⇥rk+1 and
T 2 = <(Y1, . . . ,Yd

), where Y
k

2 Rsk⇥nk⇥sk+1 , then the
addition of these two tensors, T 3 = T 1 + T 2, can be also
represented in the TR format given by T 3 = <(X 1, . . . ,X d

),
where X

k

2 Rqk⇥nk⇥qk+1 and q

k

= r

k

+ s

k

. Each core X
k

can
be computed by

X
k

(i

k

) =

✓

Z
k

(i

k

) 0

0 Y
k

(i

k

)

◆

,

i

k

= 1, . . . , n

k

,

k = 1, . . . , d.

(28)

Proof. According to the definition of TR decomposition, and
the cores shown in (28), the (i1, . . . , id)th element of tensor
T 3 can be written as

T3(i1, . . . , id) =Tr(X1(i1) . . .Xd

(i

d

))

=Tr

 

Q

d

k=1 Zk

(i

k

) 0

0

Q

d

k=1 Yk

(i

k

)

!

=Tr

 

d

Y

k=1

Z
k

(i

k

)

!

+ Tr

 

d

Y

k=1

Y
k

(i

k

)

!

=T1(i1, . . . , id) + T2(i1, . . . , id).

(29)

Hence, the addition of tensors in the TR format can be
performed by merging of their cores.

Note that the sizes of new cores are increased and not
optimal in general. This problem can be solved by the
rounding procedure [39].

Theorem 4.2. Let T 2 Rn1⇥···⇥nd be a dth-order tensor whose
TR representation is T = <(Z1, . . . ,Zd

) and u
k

2 Rnk
, k =

1, . . . , d be a set of vectors, then the multilinear products, denoted
by c = T ⇥1 uT

1 ⇥2 · · ·⇥d

uT

d

, can be computed by multilinear
product on each cores, which is

c = <(X1, . . . ,Xd

) where X
k

=

nk
X

ik=1

Z
k

(i

k

)u

k

(i

k

). (30)

Proof. The multilinear product between a tensor and vectors
can be expressed by

c =T ⇥1 u
T

1 ⇥2 · · ·⇥d

uT

d

=

X

i1,...,id

T (i1, . . . , id)u1(i1) · · ·ud

(i

d

)

=

X

i1,...,id

Tr

 

d

Y

k=1

Z
k

(i

k

)

!

u1(i1) · · ·ud

(i

d

)

=Tr

 

d

Y

k=1

 

nk
X

ik=1

Z
k

(i

k

)u

k

(i

k

)

!!

.

(31)

Thus, it can be written as a TR decomposition shown in
(30) where each core X

k

2 Rrk⇥rk+1 becomes a matrix. The
computational complexity is equal to O(dnr

2
).

From (31), we can see that the multilinear product be-
tween T and u

k

, k = 1, . . . , d can be also expressed as an
inner product of T and the rank-1 tensor, i.e.,

T ⇥1 u
T

1 ⇥2 · · ·⇥d

uT

d

= hT ,u1 � · · · � ud

i. (32)

It should be noted that the computational complexity in
the original tensor form is O(dn

d

), while it reduces to
O(dnr

2
+ dr

3
) that is linear to tensor order d by using TR

representation.

Theorem 4.3. Let T 1 and T 2 be dth-order tensors of size
n1 ⇥ · · ·⇥ n

d

. If the TR decompositions of these two tensors are
T 1 = <(Z1, . . . ,Zd

) where Z
k

2 Rrk⇥nk⇥rk+1 and T 2 =

<(Y1, . . . ,Yd

), where Y
k

2 Rsk⇥nk⇥sk+1 , then the Hadamard
product of these two tensors, T 3 = T 1 ~ T 2, can be also
represented in the TR format given by T 3 = <(X 1, . . . ,X d

),
where X

k

2 Rqk⇥nk⇥qk+1 and q

k

= r

k

⇤ s
k

. Each core X
k

can
be computed by

X
k

(i

k

) = Z
k

(i

k

)⌦Y
k

(i

k

), k = 1, . . . , d. (33)

Proof. Each element in tensor T 3 can be written as

T3(i1, . . . , id) =T1(i1, . . . , id)T2(i1, . . . , id)

=Tr

 

d

Y

k=1

Z
k

(i

k

)

!

Tr

 

d

Y

k=1

Y
k

(i

k

)

!

=Tr

( 

d

Y

k=1

Z
k

(i

k

)

!

⌦
 

d

Y

k=1

Y
k

(i

k

)

!)

=Tr

(

d

Y

k=1

⇣

Z
k

(i

k

)⌦Y
k

(i

k

)

⌘

)

.

(34)

Hence, T 3 can be also represented as TR format with its
cores computed by (33), which costs O(dnq

2
).

Furthermore, one can compute the inner product of two
tensors in TR representations. For two tensors T 1 and T 2,
it is defined as

hT 1,T 2i =
X

i1,...,id

T3(i1, . . . , id), (35)

where T 3 = T 1 ~ T 2. Thus, the inner product can be
computed by applying Hadamard product and then com-
puting the multilinear product between T 3 and vectors of
all ones, i.e., u

k

= 1, k = 1, . . . , d. In contrast to O(n

d

)

in the original tensor form, the computational complexity
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to adapt TR-ranks during optimization, but requires many
iterations. TR-BALS enables us to find the optimum TR-
ranks efficiently without dramatically increasing the com-
putational cost.

4 PROPERTIES OF TR REPRESENTATION

In this section, we discuss some interesting properties of
TR representation. By assuming that tensor data have been
already represented as TR decompositions, i.e., a sequence
of third-order cores, we justify and demonstrate that the
basic operations on tensors, such as addition, multilinear
product, Hadamard product, inner product and Frobenius norm,
can be performed efficiently by the appropriate operations
on each individual cores. These properties are crucial and
essentially important for processing large-scale or large-
dimensional tensors, due to the ability of converting a large
problem w.r.t. the original tensor into many small problems
w.r.t. individual cores.

Theorem 4.1. Let T 1 and T 2 be dth-order tensors of size
n1 ⇥ · · · ⇥ n

d

. If the TR decompositions of these two tensors
are T 1 = <(Z1, . . . ,Zd

) where Z
k

2 Rrk⇥nk⇥rk+1 and
T 2 = <(Y1, . . . ,Yd

), where Y
k

2 Rsk⇥nk⇥sk+1 , then the
addition of these two tensors, T 3 = T 1 + T 2, can be also
represented in the TR format given by T 3 = <(X 1, . . . ,X d

),
where X

k

2 Rqk⇥nk⇥qk+1 and q

k

= r

k

+ s

k

. Each core X
k

can
be computed by

X
k

(i

k

) =

✓

Z
k

(i

k

) 0

0 Y
k

(i

k

)

◆

,

i

k

= 1, . . . , n

k

,

k = 1, . . . , d.

(28)

Proof. According to the definition of TR decomposition, and
the cores shown in (28), the (i1, . . . , id)th element of tensor
T 3 can be written as

T3(i1, . . . , id) =Tr(X1(i1) . . .Xd

(i

d

))

=Tr

 

Q

d

k=1 Zk

(i

k

) 0

0

Q

d

k=1 Yk

(i

k

)

!

=Tr

 

d

Y

k=1

Z
k

(i

k

)

!

+ Tr

 

d

Y

k=1

Y
k

(i

k

)

!

=T1(i1, . . . , id) + T2(i1, . . . , id).

(29)

Hence, the addition of tensors in the TR format can be
performed by merging of their cores.

Note that the sizes of new cores are increased and not
optimal in general. This problem can be solved by the
rounding procedure [39].

Theorem 4.2. Let T 2 Rn1⇥···⇥nd be a dth-order tensor whose
TR representation is T = <(Z1, . . . ,Zd

) and u
k

2 Rnk
, k =

1, . . . , d be a set of vectors, then the multilinear products, denoted
by c = T ⇥1 uT

1 ⇥2 · · ·⇥d

uT

d

, can be computed by multilinear
product on each cores, which is

c = <(X1, . . . ,Xd

) where X
k

=

nk
X

ik=1

Z
k

(i

k

)u

k

(i

k

). (30)

Proof. The multilinear product between a tensor and vectors
can be expressed by

c =T ⇥1 u
T

1 ⇥2 · · ·⇥d

uT

d

=

X

i1,...,id

T (i1, . . . , id)u1(i1) · · ·ud

(i

d

)

=

X

i1,...,id

Tr

 

d

Y

k=1

Z
k

(i

k

)

!

u1(i1) · · ·ud

(i

d

)

=Tr

 

d

Y

k=1

 

nk
X

ik=1

Z
k

(i

k

)u

k

(i

k

)

!!

.

(31)

Thus, it can be written as a TR decomposition shown in
(30) where each core X

k

2 Rrk⇥rk+1 becomes a matrix. The
computational complexity is equal to O(dnr

2
).

From (31), we can see that the multilinear product be-
tween T and u

k

, k = 1, . . . , d can be also expressed as an
inner product of T and the rank-1 tensor, i.e.,

T ⇥1 u
T

1 ⇥2 · · ·⇥d

uT

d

= hT ,u1 � · · · � ud

i. (32)

It should be noted that the computational complexity in
the original tensor form is O(dn

d

), while it reduces to
O(dnr

2
+ dr

3
) that is linear to tensor order d by using TR

representation.

Theorem 4.3. Let T 1 and T 2 be dth-order tensors of size
n1 ⇥ · · ·⇥ n

d

. If the TR decompositions of these two tensors are
T 1 = <(Z1, . . . ,Zd

) where Z
k

2 Rrk⇥nk⇥rk+1 and T 2 =

<(Y1, . . . ,Yd

), where Y
k

2 Rsk⇥nk⇥sk+1 , then the Hadamard
product of these two tensors, T 3 = T 1 ~ T 2, can be also
represented in the TR format given by T 3 = <(X 1, . . . ,X d

),
where X

k

2 Rqk⇥nk⇥qk+1 and q

k

= r

k

⇤ s
k

. Each core X
k

can
be computed by

X
k

(i

k

) = Z
k

(i

k

)⌦Y
k

(i

k

), k = 1, . . . , d. (33)

Proof. Each element in tensor T 3 can be written as

T3(i1, . . . , id) =T1(i1, . . . , id)T2(i1, . . . , id)

=Tr

 

d

Y

k=1

Z
k

(i

k

)

!

Tr

 

d

Y

k=1

Y
k

(i

k

)

!

=Tr

( 

d

Y

k=1

Z
k

(i

k

)

!

⌦
 

d

Y

k=1

Y
k

(i

k

)

!)

=Tr

(

d

Y

k=1

⇣

Z
k

(i

k

)⌦Y
k

(i

k

)

⌘

)

.

(34)

Hence, T 3 can be also represented as TR format with its
cores computed by (33), which costs O(dnq

2
).

Furthermore, one can compute the inner product of two
tensors in TR representations. For two tensors T 1 and T 2,
it is defined as

hT 1,T 2i =
X

i1,...,id

T3(i1, . . . , id), (35)

where T 3 = T 1 ~ T 2. Thus, the inner product can be
computed by applying Hadamard product and then com-
puting the multilinear product between T 3 and vectors of
all ones, i.e., u

k

= 1, k = 1, . . . , d. In contrast to O(n

d

)

in the original tensor form, the computational complexity
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to adapt TR-ranks during optimization, but requires many
iterations. TR-BALS enables us to find the optimum TR-
ranks efficiently without dramatically increasing the com-
putational cost.

4 PROPERTIES OF TR REPRESENTATION

In this section, we discuss some interesting properties of
TR representation. By assuming that tensor data have been
already represented as TR decompositions, i.e., a sequence
of third-order cores, we justify and demonstrate that the
basic operations on tensors, such as addition, multilinear
product, Hadamard product, inner product and Frobenius norm,
can be performed efficiently by the appropriate operations
on each individual cores. These properties are crucial and
essentially important for processing large-scale or large-
dimensional tensors, due to the ability of converting a large
problem w.r.t. the original tensor into many small problems
w.r.t. individual cores.

Theorem 4.1. Let T 1 and T 2 be dth-order tensors of size
n1 ⇥ · · · ⇥ n

d

. If the TR decompositions of these two tensors
are T 1 = <(Z1, . . . ,Zd

) where Z
k

2 Rrk⇥nk⇥rk+1 and
T 2 = <(Y1, . . . ,Yd

), where Y
k

2 Rsk⇥nk⇥sk+1 , then the
addition of these two tensors, T 3 = T 1 + T 2, can be also
represented in the TR format given by T 3 = <(X 1, . . . ,X d

),
where X

k

2 Rqk⇥nk⇥qk+1 and q

k

= r

k

+ s

k

. Each core X
k

can
be computed by

X
k

(i

k

) =

✓

Z
k

(i

k

) 0

0 Y
k

(i

k

)

◆

,

i

k

= 1, . . . , n

k

,

k = 1, . . . , d.

(28)

Proof. According to the definition of TR decomposition, and
the cores shown in (28), the (i1, . . . , id)th element of tensor
T 3 can be written as

T3(i1, . . . , id) =Tr(X1(i1) . . .Xd

(i

d

))

=Tr

 

Q

d

k=1 Zk

(i

k

) 0

0

Q

d

k=1 Yk

(i

k

)

!

=Tr

 

d

Y

k=1

Z
k

(i

k

)

!

+ Tr

 

d

Y

k=1

Y
k

(i

k

)

!

=T1(i1, . . . , id) + T2(i1, . . . , id).

(29)

Hence, the addition of tensors in the TR format can be
performed by merging of their cores.

Note that the sizes of new cores are increased and not
optimal in general. This problem can be solved by the
rounding procedure [39].

Theorem 4.2. Let T 2 Rn1⇥···⇥nd be a dth-order tensor whose
TR representation is T = <(Z1, . . . ,Zd

) and u
k

2 Rnk
, k =

1, . . . , d be a set of vectors, then the multilinear products, denoted
by c = T ⇥1 uT

1 ⇥2 · · ·⇥d

uT

d

, can be computed by multilinear
product on each cores, which is

c = <(X1, . . . ,Xd

) where X
k

=

nk
X

ik=1

Z
k

(i

k

)u

k

(i

k

). (30)

Proof. The multilinear product between a tensor and vectors
can be expressed by

c =T ⇥1 u
T

1 ⇥2 · · ·⇥d

uT

d

=

X

i1,...,id

T (i1, . . . , id)u1(i1) · · ·ud

(i

d

)

=

X

i1,...,id

Tr

 

d

Y

k=1

Z
k

(i

k

)

!

u1(i1) · · ·ud

(i

d

)

=Tr

 

d

Y

k=1

 

nk
X

ik=1

Z
k

(i

k

)u

k

(i

k

)

!!

.

(31)

Thus, it can be written as a TR decomposition shown in
(30) where each core X

k

2 Rrk⇥rk+1 becomes a matrix. The
computational complexity is equal to O(dnr

2
).

From (31), we can see that the multilinear product be-
tween T and u

k

, k = 1, . . . , d can be also expressed as an
inner product of T and the rank-1 tensor, i.e.,

T ⇥1 u
T

1 ⇥2 · · ·⇥d

uT

d

= hT ,u1 � · · · � ud

i. (32)

It should be noted that the computational complexity in
the original tensor form is O(dn

d

), while it reduces to
O(dnr

2
+ dr

3
) that is linear to tensor order d by using TR

representation.

Theorem 4.3. Let T 1 and T 2 be dth-order tensors of size
n1 ⇥ · · ·⇥ n

d

. If the TR decompositions of these two tensors are
T 1 = <(Z1, . . . ,Zd

) where Z
k

2 Rrk⇥nk⇥rk+1 and T 2 =

<(Y1, . . . ,Yd

), where Y
k

2 Rsk⇥nk⇥sk+1 , then the Hadamard
product of these two tensors, T 3 = T 1 ~ T 2, can be also
represented in the TR format given by T 3 = <(X 1, . . . ,X d

),
where X

k

2 Rqk⇥nk⇥qk+1 and q

k

= r

k

⇤ s
k

. Each core X
k

can
be computed by

X
k

(i

k

) = Z
k

(i

k

)⌦Y
k

(i

k

), k = 1, . . . , d. (33)

Proof. Each element in tensor T 3 can be written as

T3(i1, . . . , id) =T1(i1, . . . , id)T2(i1, . . . , id)

=Tr

 

d

Y

k=1

Z
k

(i

k

)

!

Tr

 

d

Y

k=1

Y
k

(i

k

)

!

=Tr

( 

d

Y

k=1

Z
k

(i

k

)

!

⌦
 

d

Y

k=1

Y
k

(i

k

)

!)

=Tr

(

d

Y

k=1

⇣

Z
k

(i

k

)⌦Y
k

(i

k

)

⌘

)

.

(34)

Hence, T 3 can be also represented as TR format with its
cores computed by (33), which costs O(dnq

2
).

Furthermore, one can compute the inner product of two
tensors in TR representations. For two tensors T 1 and T 2,
it is defined as

hT 1,T 2i =
X

i1,...,id

T3(i1, . . . , id), (35)

where T 3 = T 1 ~ T 2. Thus, the inner product can be
computed by applying Hadamard product and then com-
puting the multilinear product between T 3 and vectors of
all ones, i.e., u

k

= 1, k = 1, . . . , d. In contrast to O(n

d

)

in the original tensor form, the computational complexity
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to adapt TR-ranks during optimization, but requires many
iterations. TR-BALS enables us to find the optimum TR-
ranks efficiently without dramatically increasing the com-
putational cost.

4 PROPERTIES OF TR REPRESENTATION

In this section, we discuss some interesting properties of
TR representation. By assuming that tensor data have been
already represented as TR decompositions, i.e., a sequence
of third-order cores, we justify and demonstrate that the
basic operations on tensors, such as addition, multilinear
product, Hadamard product, inner product and Frobenius norm,
can be performed efficiently by the appropriate operations
on each individual cores. These properties are crucial and
essentially important for processing large-scale or large-
dimensional tensors, due to the ability of converting a large
problem w.r.t. the original tensor into many small problems
w.r.t. individual cores.

Theorem 4.1. Let T 1 and T 2 be dth-order tensors of size
n1 ⇥ · · · ⇥ n

d

. If the TR decompositions of these two tensors
are T 1 = <(Z1, . . . ,Zd

) where Z
k

2 Rrk⇥nk⇥rk+1 and
T 2 = <(Y1, . . . ,Yd

), where Y
k

2 Rsk⇥nk⇥sk+1 , then the
addition of these two tensors, T 3 = T 1 + T 2, can be also
represented in the TR format given by T 3 = <(X 1, . . . ,X d

),
where X

k

2 Rqk⇥nk⇥qk+1 and q

k

= r

k

+ s

k

. Each core X
k

can
be computed by

X
k

(i

k

) =

✓

Z
k

(i

k

) 0

0 Y
k

(i

k

)

◆

,

i

k

= 1, . . . , n

k

,

k = 1, . . . , d.

(28)

Proof. According to the definition of TR decomposition, and
the cores shown in (28), the (i1, . . . , id)th element of tensor
T 3 can be written as

T3(i1, . . . , id) =Tr(X1(i1) . . .Xd

(i

d

))

=Tr

 

Q

d

k=1 Zk

(i

k

) 0

0

Q

d

k=1 Yk

(i

k

)

!

=Tr

 

d

Y

k=1

Z
k

(i

k

)

!

+ Tr

 

d

Y

k=1

Y
k

(i

k

)

!

=T1(i1, . . . , id) + T2(i1, . . . , id).

(29)

Hence, the addition of tensors in the TR format can be
performed by merging of their cores.

Note that the sizes of new cores are increased and not
optimal in general. This problem can be solved by the
rounding procedure [39].

Theorem 4.2. Let T 2 Rn1⇥···⇥nd be a dth-order tensor whose
TR representation is T = <(Z1, . . . ,Zd

) and u
k

2 Rnk
, k =

1, . . . , d be a set of vectors, then the multilinear products, denoted
by c = T ⇥1 uT

1 ⇥2 · · ·⇥d

uT

d

, can be computed by multilinear
product on each cores, which is

c = <(X1, . . . ,Xd

) where X
k

=

nk
X

ik=1

Z
k

(i

k

)u

k

(i

k

). (30)

Proof. The multilinear product between a tensor and vectors
can be expressed by

c =T ⇥1 u
T

1 ⇥2 · · ·⇥d

uT

d

=

X

i1,...,id

T (i1, . . . , id)u1(i1) · · ·ud

(i

d

)

=

X

i1,...,id

Tr

 

d

Y

k=1

Z
k

(i

k

)

!

u1(i1) · · ·ud

(i

d

)

=Tr

 

d

Y

k=1

 

nk
X

ik=1

Z
k

(i

k

)u

k

(i

k

)

!!

.

(31)

Thus, it can be written as a TR decomposition shown in
(30) where each core X

k

2 Rrk⇥rk+1 becomes a matrix. The
computational complexity is equal to O(dnr

2
).

From (31), we can see that the multilinear product be-
tween T and u

k

, k = 1, . . . , d can be also expressed as an
inner product of T and the rank-1 tensor, i.e.,

T ⇥1 u
T

1 ⇥2 · · ·⇥d

uT

d

= hT ,u1 � · · · � ud

i. (32)

It should be noted that the computational complexity in
the original tensor form is O(dn

d

), while it reduces to
O(dnr

2
+ dr

3
) that is linear to tensor order d by using TR

representation.

Theorem 4.3. Let T 1 and T 2 be dth-order tensors of size
n1 ⇥ · · ·⇥ n

d

. If the TR decompositions of these two tensors are
T 1 = <(Z1, . . . ,Zd

) where Z
k

2 Rrk⇥nk⇥rk+1 and T 2 =

<(Y1, . . . ,Yd

), where Y
k

2 Rsk⇥nk⇥sk+1 , then the Hadamard
product of these two tensors, T 3 = T 1 ~ T 2, can be also
represented in the TR format given by T 3 = <(X 1, . . . ,X d

),
where X

k

2 Rqk⇥nk⇥qk+1 and q

k

= r

k

⇤ s
k

. Each core X
k

can
be computed by

X
k

(i

k

) = Z
k

(i

k

)⌦Y
k

(i

k

), k = 1, . . . , d. (33)

Proof. Each element in tensor T 3 can be written as

T3(i1, . . . , id) =T1(i1, . . . , id)T2(i1, . . . , id)

=Tr

 

d

Y

k=1

Z
k

(i

k

)

!

Tr

 

d

Y

k=1

Y
k

(i

k

)

!

=Tr

( 

d

Y

k=1

Z
k

(i

k

)

!

⌦
 

d

Y

k=1

Y
k

(i

k

)

!)

=Tr

(

d

Y

k=1

⇣

Z
k

(i

k

)⌦Y
k

(i

k

)

⌘

)

.

(34)

Hence, T 3 can be also represented as TR format with its
cores computed by (33), which costs O(dnq

2
).

Furthermore, one can compute the inner product of two
tensors in TR representations. For two tensors T 1 and T 2,
it is defined as

hT 1,T 2i =
X

i1,...,id

T3(i1, . . . , id), (35)

where T 3 = T 1 ~ T 2. Thus, the inner product can be
computed by applying Hadamard product and then com-
puting the multilinear product between T 3 and vectors of
all ones, i.e., u

k

= 1, k = 1, . . . , d. In contrast to O(n

d

)

in the original tensor form, the computational complexity
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to adapt TR-ranks during optimization, but requires many
iterations. TR-BALS enables us to find the optimum TR-
ranks efficiently without dramatically increasing the com-
putational cost.

4 PROPERTIES OF TR REPRESENTATION

In this section, we discuss some interesting properties of
TR representation. By assuming that tensor data have been
already represented as TR decompositions, i.e., a sequence
of third-order cores, we justify and demonstrate that the
basic operations on tensors, such as addition, multilinear
product, Hadamard product, inner product and Frobenius norm,
can be performed efficiently by the appropriate operations
on each individual cores. These properties are crucial and
essentially important for processing large-scale or large-
dimensional tensors, due to the ability of converting a large
problem w.r.t. the original tensor into many small problems
w.r.t. individual cores.

Theorem 4.1. Let T 1 and T 2 be dth-order tensors of size
n1 ⇥ · · · ⇥ n

d

. If the TR decompositions of these two tensors
are T 1 = <(Z1, . . . ,Zd

) where Z
k

2 Rrk⇥nk⇥rk+1 and
T 2 = <(Y1, . . . ,Yd

), where Y
k

2 Rsk⇥nk⇥sk+1 , then the
addition of these two tensors, T 3 = T 1 + T 2, can be also
represented in the TR format given by T 3 = <(X 1, . . . ,X d

),
where X

k

2 Rqk⇥nk⇥qk+1 and q

k

= r

k

+ s

k

. Each core X
k

can
be computed by

X
k

(i

k

) =

✓

Z
k

(i

k

) 0

0 Y
k

(i

k

)

◆

,

i

k

= 1, . . . , n

k

,

k = 1, . . . , d.

(28)

Proof. According to the definition of TR decomposition, and
the cores shown in (28), the (i1, . . . , id)th element of tensor
T 3 can be written as

T3(i1, . . . , id) =Tr(X1(i1) . . .Xd

(i

d

))

=Tr

 

Q

d

k=1 Zk

(i

k

) 0

0

Q

d

k=1 Yk

(i

k

)

!

=Tr

 

d

Y

k=1

Z
k

(i

k

)

!

+ Tr

 

d

Y

k=1

Y
k

(i

k

)

!

=T1(i1, . . . , id) + T2(i1, . . . , id).

(29)

Hence, the addition of tensors in the TR format can be
performed by merging of their cores.

Note that the sizes of new cores are increased and not
optimal in general. This problem can be solved by the
rounding procedure [39].

Theorem 4.2. Let T 2 Rn1⇥···⇥nd be a dth-order tensor whose
TR representation is T = <(Z1, . . . ,Zd

) and u
k

2 Rnk
, k =

1, . . . , d be a set of vectors, then the multilinear products, denoted
by c = T ⇥1 uT

1 ⇥2 · · ·⇥d

uT

d

, can be computed by multilinear
product on each cores, which is

c = <(X1, . . . ,Xd

) where X
k

=

nk
X

ik=1

Z
k

(i

k

)u

k

(i

k

). (30)

Proof. The multilinear product between a tensor and vectors
can be expressed by

c =T ⇥1 u
T

1 ⇥2 · · ·⇥d

uT

d

=

X

i1,...,id

T (i1, . . . , id)u1(i1) · · ·ud

(i

d

)

=

X

i1,...,id

Tr

 

d

Y

k=1

Z
k

(i

k

)

!

u1(i1) · · ·ud

(i

d

)

=Tr

 

d

Y

k=1

 

nk
X

ik=1

Z
k

(i

k

)u

k

(i

k

)

!!

.

(31)

Thus, it can be written as a TR decomposition shown in
(30) where each core X

k

2 Rrk⇥rk+1 becomes a matrix. The
computational complexity is equal to O(dnr

2
).

From (31), we can see that the multilinear product be-
tween T and u

k

, k = 1, . . . , d can be also expressed as an
inner product of T and the rank-1 tensor, i.e.,

T ⇥1 u
T

1 ⇥2 · · ·⇥d

uT

d

= hT ,u1 � · · · � ud

i. (32)

It should be noted that the computational complexity in
the original tensor form is O(dn

d

), while it reduces to
O(dnr

2
+ dr

3
) that is linear to tensor order d by using TR

representation.

Theorem 4.3. Let T 1 and T 2 be dth-order tensors of size
n1 ⇥ · · ·⇥ n

d

. If the TR decompositions of these two tensors are
T 1 = <(Z1, . . . ,Zd

) where Z
k

2 Rrk⇥nk⇥rk+1 and T 2 =

<(Y1, . . . ,Yd

), where Y
k

2 Rsk⇥nk⇥sk+1 , then the Hadamard
product of these two tensors, T 3 = T 1 ~ T 2, can be also
represented in the TR format given by T 3 = <(X 1, . . . ,X d

),
where X

k

2 Rqk⇥nk⇥qk+1 and q

k

= r

k

⇤ s
k

. Each core X
k

can
be computed by

X
k

(i

k

) = Z
k

(i

k

)⌦Y
k

(i

k

), k = 1, . . . , d. (33)

Proof. Each element in tensor T 3 can be written as

T3(i1, . . . , id) =T1(i1, . . . , id)T2(i1, . . . , id)

=Tr

 

d

Y

k=1

Z
k

(i

k

)

!

Tr

 

d

Y

k=1

Y
k

(i

k

)

!

=Tr

( 

d

Y

k=1

Z
k

(i

k

)

!

⌦
 

d

Y

k=1

Y
k

(i

k

)

!)

=Tr

(

d

Y

k=1

⇣

Z
k

(i

k

)⌦Y
k

(i

k

)

⌘

)

.

(34)

Hence, T 3 can be also represented as TR format with its
cores computed by (33), which costs O(dnq

2
).

Furthermore, one can compute the inner product of two
tensors in TR representations. For two tensors T 1 and T 2,
it is defined as

hT 1,T 2i =
X

i1,...,id

T3(i1, . . . , id), (35)

where T 3 = T 1 ~ T 2. Thus, the inner product can be
computed by applying Hadamard product and then com-
puting the multilinear product between T 3 and vectors of
all ones, i.e., u

k

= 1, k = 1, . . . , d. In contrast to O(n

d

)

in the original tensor form, the computational complexity
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to adapt TR-ranks during optimization, but requires many
iterations. TR-BALS enables us to find the optimum TR-
ranks efficiently without dramatically increasing the com-
putational cost.

4 PROPERTIES OF TR REPRESENTATION

In this section, we discuss some interesting properties of
TR representation. By assuming that tensor data have been
already represented as TR decompositions, i.e., a sequence
of third-order cores, we justify and demonstrate that the
basic operations on tensors, such as addition, multilinear
product, Hadamard product, inner product and Frobenius norm,
can be performed efficiently by the appropriate operations
on each individual cores. These properties are crucial and
essentially important for processing large-scale or large-
dimensional tensors, due to the ability of converting a large
problem w.r.t. the original tensor into many small problems
w.r.t. individual cores.

Theorem 4.1. Let T 1 and T 2 be dth-order tensors of size
n1 ⇥ · · · ⇥ n

d

. If the TR decompositions of these two tensors
are T 1 = <(Z1, . . . ,Zd

) where Z
k

2 Rrk⇥nk⇥rk+1 and
T 2 = <(Y1, . . . ,Yd

), where Y
k

2 Rsk⇥nk⇥sk+1 , then the
addition of these two tensors, T 3 = T 1 + T 2, can be also
represented in the TR format given by T 3 = <(X 1, . . . ,X d

),
where X

k

2 Rqk⇥nk⇥qk+1 and q

k

= r

k

+ s

k

. Each core X
k

can
be computed by

X
k

(i

k

) =

✓

Z
k

(i

k

) 0

0 Y
k

(i

k

)

◆

,

i

k

= 1, . . . , n

k

,

k = 1, . . . , d.

(28)

Proof. According to the definition of TR decomposition, and
the cores shown in (28), the (i1, . . . , id)th element of tensor
T 3 can be written as

T3(i1, . . . , id) =Tr(X1(i1) . . .Xd

(i

d

))

=Tr

 

Q

d

k=1 Zk

(i

k

) 0

0

Q

d

k=1 Yk

(i

k

)

!

=Tr

 

d

Y

k=1

Z
k

(i

k

)

!

+ Tr

 

d

Y

k=1

Y
k

(i

k

)

!

=T1(i1, . . . , id) + T2(i1, . . . , id).

(29)

Hence, the addition of tensors in the TR format can be
performed by merging of their cores.

Note that the sizes of new cores are increased and not
optimal in general. This problem can be solved by the
rounding procedure [39].

Theorem 4.2. Let T 2 Rn1⇥···⇥nd be a dth-order tensor whose
TR representation is T = <(Z1, . . . ,Zd

) and u
k

2 Rnk
, k =

1, . . . , d be a set of vectors, then the multilinear products, denoted
by c = T ⇥1 uT

1 ⇥2 · · ·⇥d

uT

d

, can be computed by multilinear
product on each cores, which is

c = <(X1, . . . ,Xd

) where X
k

=

nk
X

ik=1

Z
k

(i

k

)u

k

(i

k

). (30)

Proof. The multilinear product between a tensor and vectors
can be expressed by

c =T ⇥1 u
T

1 ⇥2 · · ·⇥d

uT

d

=

X

i1,...,id

T (i1, . . . , id)u1(i1) · · ·ud

(i

d

)

=

X

i1,...,id

Tr

 

d

Y

k=1

Z
k

(i

k

)

!

u1(i1) · · ·ud

(i

d

)

=Tr

 

d

Y

k=1

 

nk
X

ik=1

Z
k

(i

k

)u

k

(i

k

)

!!

.

(31)

Thus, it can be written as a TR decomposition shown in
(30) where each core X

k

2 Rrk⇥rk+1 becomes a matrix. The
computational complexity is equal to O(dnr

2
).

From (31), we can see that the multilinear product be-
tween T and u

k

, k = 1, . . . , d can be also expressed as an
inner product of T and the rank-1 tensor, i.e.,

T ⇥1 u
T

1 ⇥2 · · ·⇥d

uT

d

= hT ,u1 � · · · � ud

i. (32)

It should be noted that the computational complexity in
the original tensor form is O(dn

d

), while it reduces to
O(dnr

2
+ dr

3
) that is linear to tensor order d by using TR

representation.

Theorem 4.3. Let T 1 and T 2 be dth-order tensors of size
n1 ⇥ · · ·⇥ n

d

. If the TR decompositions of these two tensors are
T 1 = <(Z1, . . . ,Zd

) where Z
k

2 Rrk⇥nk⇥rk+1 and T 2 =

<(Y1, . . . ,Yd

), where Y
k

2 Rsk⇥nk⇥sk+1 , then the Hadamard
product of these two tensors, T 3 = T 1 ~ T 2, can be also
represented in the TR format given by T 3 = <(X 1, . . . ,X d

),
where X

k

2 Rqk⇥nk⇥qk+1 and q

k

= r

k

⇤ s
k

. Each core X
k

can
be computed by

X
k

(i

k

) = Z
k

(i

k

)⌦Y
k

(i

k

), k = 1, . . . , d. (33)

Proof. Each element in tensor T 3 can be written as

T3(i1, . . . , id) =T1(i1, . . . , id)T2(i1, . . . , id)

=Tr

 

d

Y

k=1

Z
k

(i

k

)

!

Tr

 

d

Y

k=1

Y
k

(i

k

)

!

=Tr

( 

d

Y

k=1

Z
k

(i

k

)

!

⌦
 

d

Y

k=1

Y
k

(i

k

)

!)

=Tr

(

d

Y

k=1

⇣

Z
k

(i

k

)⌦Y
k

(i

k

)

⌘

)

.

(34)

Hence, T 3 can be also represented as TR format with its
cores computed by (33), which costs O(dnq

2
).

Furthermore, one can compute the inner product of two
tensors in TR representations. For two tensors T 1 and T 2,
it is defined as

hT 1,T 2i =
X

i1,...,id

T3(i1, . . . , id), (35)

where T 3 = T 1 ~ T 2. Thus, the inner product can be
computed by applying Hadamard product and then com-
puting the multilinear product between T 3 and vectors of
all ones, i.e., u

k

= 1, k = 1, . . . , d. In contrast to O(n

d

)

in the original tensor form, the computational complexity
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to adapt TR-ranks during optimization, but requires many
iterations. TR-BALS enables us to find the optimum TR-
ranks efficiently without dramatically increasing the com-
putational cost.

4 PROPERTIES OF TR REPRESENTATION

In this section, we discuss some interesting properties of
TR representation. By assuming that tensor data have been
already represented as TR decompositions, i.e., a sequence
of third-order cores, we justify and demonstrate that the
basic operations on tensors, such as addition, multilinear
product, Hadamard product, inner product and Frobenius norm,
can be performed efficiently by the appropriate operations
on each individual cores. These properties are crucial and
essentially important for processing large-scale or large-
dimensional tensors, due to the ability of converting a large
problem w.r.t. the original tensor into many small problems
w.r.t. individual cores.

Theorem 4.1. Let T 1 and T 2 be dth-order tensors of size
n1 ⇥ · · · ⇥ n

d

. If the TR decompositions of these two tensors
are T 1 = <(Z1, . . . ,Zd

) where Z
k

2 Rrk⇥nk⇥rk+1 and
T 2 = <(Y1, . . . ,Yd

), where Y
k

2 Rsk⇥nk⇥sk+1 , then the
addition of these two tensors, T 3 = T 1 + T 2, can be also
represented in the TR format given by T 3 = <(X 1, . . . ,X d

),
where X

k

2 Rqk⇥nk⇥qk+1 and q

k

= r

k

+ s

k

. Each core X
k

can
be computed by

X
k

(i

k

) =

✓

Z
k

(i

k

) 0

0 Y
k

(i

k

)

◆

,

i

k

= 1, . . . , n

k

,

k = 1, . . . , d.

(28)

Proof. According to the definition of TR decomposition, and
the cores shown in (28), the (i1, . . . , id)th element of tensor
T 3 can be written as

T3(i1, . . . , id) =Tr(X1(i1) . . .Xd

(i

d

))

=Tr

 

Q

d

k=1 Zk

(i

k

) 0

0

Q

d

k=1 Yk

(i

k

)

!

=Tr

 

d

Y

k=1

Z
k

(i

k

)

!

+ Tr

 

d

Y

k=1

Y
k

(i

k

)

!

=T1(i1, . . . , id) + T2(i1, . . . , id).

(29)

Hence, the addition of tensors in the TR format can be
performed by merging of their cores.

Note that the sizes of new cores are increased and not
optimal in general. This problem can be solved by the
rounding procedure [39].

Theorem 4.2. Let T 2 Rn1⇥···⇥nd be a dth-order tensor whose
TR representation is T = <(Z1, . . . ,Zd

) and u
k

2 Rnk
, k =

1, . . . , d be a set of vectors, then the multilinear products, denoted
by c = T ⇥1 uT

1 ⇥2 · · ·⇥d

uT

d

, can be computed by multilinear
product on each cores, which is

c = <(X1, . . . ,Xd

) where X
k

=

nk
X

ik=1

Z
k

(i

k

)u

k

(i

k

). (30)

Proof. The multilinear product between a tensor and vectors
can be expressed by

c =T ⇥1 u
T

1 ⇥2 · · ·⇥d

uT

d

=

X

i1,...,id

T (i1, . . . , id)u1(i1) · · ·ud

(i

d

)

=

X

i1,...,id

Tr

 

d

Y

k=1

Z
k

(i

k

)

!

u1(i1) · · ·ud

(i

d

)

=Tr

 

d

Y

k=1

 

nk
X

ik=1

Z
k

(i

k

)u

k

(i

k

)

!!

.

(31)

Thus, it can be written as a TR decomposition shown in
(30) where each core X

k

2 Rrk⇥rk+1 becomes a matrix. The
computational complexity is equal to O(dnr

2
).

From (31), we can see that the multilinear product be-
tween T and u

k

, k = 1, . . . , d can be also expressed as an
inner product of T and the rank-1 tensor, i.e.,

T ⇥1 u
T

1 ⇥2 · · ·⇥d

uT

d

= hT ,u1 � · · · � ud

i. (32)

It should be noted that the computational complexity in
the original tensor form is O(dn

d

), while it reduces to
O(dnr

2
+ dr

3
) that is linear to tensor order d by using TR

representation.

Theorem 4.3. Let T 1 and T 2 be dth-order tensors of size
n1 ⇥ · · ·⇥ n

d

. If the TR decompositions of these two tensors are
T 1 = <(Z1, . . . ,Zd

) where Z
k

2 Rrk⇥nk⇥rk+1 and T 2 =

<(Y1, . . . ,Yd

), where Y
k

2 Rsk⇥nk⇥sk+1 , then the Hadamard
product of these two tensors, T 3 = T 1 ~ T 2, can be also
represented in the TR format given by T 3 = <(X 1, . . . ,X d

),
where X

k

2 Rqk⇥nk⇥qk+1 and q

k

= r

k

⇤ s
k

. Each core X
k

can
be computed by

X
k

(i

k

) = Z
k

(i

k

)⌦Y
k

(i

k

), k = 1, . . . , d. (33)

Proof. Each element in tensor T 3 can be written as

T3(i1, . . . , id) =T1(i1, . . . , id)T2(i1, . . . , id)

=Tr

 

d

Y

k=1

Z
k

(i

k

)

!

Tr

 

d

Y

k=1

Y
k

(i

k

)

!

=Tr

( 

d

Y

k=1

Z
k

(i

k

)

!

⌦
 

d

Y

k=1

Y
k

(i

k

)

!)

=Tr

(

d

Y

k=1

⇣

Z
k

(i

k

)⌦Y
k

(i

k

)

⌘

)

.

(34)

Hence, T 3 can be also represented as TR format with its
cores computed by (33), which costs O(dnq

2
).

Furthermore, one can compute the inner product of two
tensors in TR representations. For two tensors T 1 and T 2,
it is defined as

hT 1,T 2i =
X

i1,...,id

T3(i1, . . . , id), (35)

where T 3 = T 1 ~ T 2. Thus, the inner product can be
computed by applying Hadamard product and then com-
puting the multilinear product between T 3 and vectors of
all ones, i.e., u

k

= 1, k = 1, . . . , d. In contrast to O(n

d

)

in the original tensor form, the computational complexity
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to adapt TR-ranks during optimization, but requires many
iterations. TR-BALS enables us to find the optimum TR-
ranks efficiently without dramatically increasing the com-
putational cost.

4 PROPERTIES OF TR REPRESENTATION

In this section, we discuss some interesting properties of
TR representation. By assuming that tensor data have been
already represented as TR decompositions, i.e., a sequence
of third-order cores, we justify and demonstrate that the
basic operations on tensors, such as addition, multilinear
product, Hadamard product, inner product and Frobenius norm,
can be performed efficiently by the appropriate operations
on each individual cores. These properties are crucial and
essentially important for processing large-scale or large-
dimensional tensors, due to the ability of converting a large
problem w.r.t. the original tensor into many small problems
w.r.t. individual cores.

Theorem 4.1. Let T 1 and T 2 be dth-order tensors of size
n1 ⇥ · · · ⇥ n

d

. If the TR decompositions of these two tensors
are T 1 = <(Z1, . . . ,Zd

) where Z
k

2 Rrk⇥nk⇥rk+1 and
T 2 = <(Y1, . . . ,Yd

), where Y
k

2 Rsk⇥nk⇥sk+1 , then the
addition of these two tensors, T 3 = T 1 + T 2, can be also
represented in the TR format given by T 3 = <(X 1, . . . ,X d

),
where X

k

2 Rqk⇥nk⇥qk+1 and q

k

= r

k

+ s

k

. Each core X
k

can
be computed by

X
k

(i

k

) =

✓

Z
k

(i

k

) 0

0 Y
k

(i

k

)

◆

,

i

k

= 1, . . . , n

k

,

k = 1, . . . , d.

(28)

Proof. According to the definition of TR decomposition, and
the cores shown in (28), the (i1, . . . , id)th element of tensor
T 3 can be written as

T3(i1, . . . , id) =Tr(X1(i1) . . .Xd

(i

d

))

=Tr

 

Q

d

k=1 Zk

(i

k

) 0

0

Q

d

k=1 Yk

(i

k

)

!

=Tr

 

d

Y

k=1

Z
k

(i

k

)

!

+ Tr

 

d

Y

k=1

Y
k

(i

k

)

!

=T1(i1, . . . , id) + T2(i1, . . . , id).

(29)

Hence, the addition of tensors in the TR format can be
performed by merging of their cores.

Note that the sizes of new cores are increased and not
optimal in general. This problem can be solved by the
rounding procedure [39].

Theorem 4.2. Let T 2 Rn1⇥···⇥nd be a dth-order tensor whose
TR representation is T = <(Z1, . . . ,Zd

) and u
k

2 Rnk
, k =

1, . . . , d be a set of vectors, then the multilinear products, denoted
by c = T ⇥1 uT

1 ⇥2 · · ·⇥d

uT

d

, can be computed by multilinear
product on each cores, which is

c = <(X1, . . . ,Xd

) where X
k

=

nk
X

ik=1

Z
k

(i

k

)u

k

(i

k

). (30)

Proof. The multilinear product between a tensor and vectors
can be expressed by

c =T ⇥1 u
T

1 ⇥2 · · ·⇥d

uT

d

=

X

i1,...,id

T (i1, . . . , id)u1(i1) · · ·ud

(i

d

)

=

X

i1,...,id

Tr

 

d

Y

k=1

Z
k

(i

k

)

!

u1(i1) · · ·ud

(i

d

)

=Tr

 

d

Y

k=1

 

nk
X

ik=1

Z
k

(i

k

)u

k

(i

k

)

!!

.

(31)

Thus, it can be written as a TR decomposition shown in
(30) where each core X

k

2 Rrk⇥rk+1 becomes a matrix. The
computational complexity is equal to O(dnr

2
).

From (31), we can see that the multilinear product be-
tween T and u

k

, k = 1, . . . , d can be also expressed as an
inner product of T and the rank-1 tensor, i.e.,

T ⇥1 u
T

1 ⇥2 · · ·⇥d

uT

d

= hT ,u1 � · · · � ud

i. (32)

It should be noted that the computational complexity in
the original tensor form is O(dn

d

), while it reduces to
O(dnr

2
+ dr

3
) that is linear to tensor order d by using TR

representation.

Theorem 4.3. Let T 1 and T 2 be dth-order tensors of size
n1 ⇥ · · ·⇥ n

d

. If the TR decompositions of these two tensors are
T 1 = <(Z1, . . . ,Zd

) where Z
k

2 Rrk⇥nk⇥rk+1 and T 2 =

<(Y1, . . . ,Yd

), where Y
k

2 Rsk⇥nk⇥sk+1 , then the Hadamard
product of these two tensors, T 3 = T 1 ~ T 2, can be also
represented in the TR format given by T 3 = <(X 1, . . . ,X d

),
where X

k

2 Rqk⇥nk⇥qk+1 and q

k

= r

k

⇤ s
k

. Each core X
k

can
be computed by

X
k

(i

k

) = Z
k

(i

k

)⌦Y
k

(i

k

), k = 1, . . . , d. (33)

Proof. Each element in tensor T 3 can be written as

T3(i1, . . . , id) =T1(i1, . . . , id)T2(i1, . . . , id)

=Tr

 

d

Y

k=1

Z
k

(i

k

)

!

Tr

 

d

Y

k=1

Y
k

(i

k

)

!

=Tr

( 

d

Y

k=1

Z
k

(i

k

)

!

⌦
 

d

Y

k=1

Y
k

(i

k

)

!)

=Tr

(

d

Y

k=1

⇣

Z
k

(i

k

)⌦Y
k

(i

k

)

⌘

)

.

(34)

Hence, T 3 can be also represented as TR format with its
cores computed by (33), which costs O(dnq

2
).

Furthermore, one can compute the inner product of two
tensors in TR representations. For two tensors T 1 and T 2,
it is defined as

hT 1,T 2i =
X

i1,...,id

T3(i1, . . . , id), (35)

where T 3 = T 1 ~ T 2. Thus, the inner product can be
computed by applying Hadamard product and then com-
puting the multilinear product between T 3 and vectors of
all ones, i.e., u

k

= 1, k = 1, . . . , d. In contrast to O(n

d

)

in the original tensor form, the computational complexity
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to adapt TR-ranks during optimization, but requires many
iterations. TR-BALS enables us to find the optimum TR-
ranks efficiently without dramatically increasing the com-
putational cost.

4 PROPERTIES OF TR REPRESENTATION

In this section, we discuss some interesting properties of
TR representation. By assuming that tensor data have been
already represented as TR decompositions, i.e., a sequence
of third-order cores, we justify and demonstrate that the
basic operations on tensors, such as addition, multilinear
product, Hadamard product, inner product and Frobenius norm,
can be performed efficiently by the appropriate operations
on each individual cores. These properties are crucial and
essentially important for processing large-scale or large-
dimensional tensors, due to the ability of converting a large
problem w.r.t. the original tensor into many small problems
w.r.t. individual cores.

Theorem 4.1. Let T 1 and T 2 be dth-order tensors of size
n1 ⇥ · · · ⇥ n

d

. If the TR decompositions of these two tensors
are T 1 = <(Z1, . . . ,Zd

) where Z
k

2 Rrk⇥nk⇥rk+1 and
T 2 = <(Y1, . . . ,Yd

), where Y
k

2 Rsk⇥nk⇥sk+1 , then the
addition of these two tensors, T 3 = T 1 + T 2, can be also
represented in the TR format given by T 3 = <(X 1, . . . ,X d

),
where X

k

2 Rqk⇥nk⇥qk+1 and q

k

= r

k

+ s

k

. Each core X
k

can
be computed by

X
k

(i

k

) =

✓

Z
k

(i

k

) 0

0 Y
k

(i

k

)

◆

,

i

k

= 1, . . . , n

k

,

k = 1, . . . , d.

(28)

Proof. According to the definition of TR decomposition, and
the cores shown in (28), the (i1, . . . , id)th element of tensor
T 3 can be written as

T3(i1, . . . , id) =Tr(X1(i1) . . .Xd

(i

d

))

=Tr

 

Q

d

k=1 Zk

(i

k

) 0

0

Q

d

k=1 Yk

(i

k

)

!

=Tr

 

d

Y

k=1

Z
k

(i

k

)

!

+ Tr

 

d

Y

k=1

Y
k

(i

k

)

!

=T1(i1, . . . , id) + T2(i1, . . . , id).

(29)

Hence, the addition of tensors in the TR format can be
performed by merging of their cores.

Note that the sizes of new cores are increased and not
optimal in general. This problem can be solved by the
rounding procedure [39].

Theorem 4.2. Let T 2 Rn1⇥···⇥nd be a dth-order tensor whose
TR representation is T = <(Z1, . . . ,Zd

) and u
k

2 Rnk
, k =

1, . . . , d be a set of vectors, then the multilinear products, denoted
by c = T ⇥1 uT

1 ⇥2 · · ·⇥d

uT

d

, can be computed by multilinear
product on each cores, which is

c = <(X1, . . . ,Xd

) where X
k

=

nk
X

ik=1

Z
k

(i

k

)u

k

(i

k

). (30)

Proof. The multilinear product between a tensor and vectors
can be expressed by

c =T ⇥1 u
T

1 ⇥2 · · ·⇥d

uT

d

=

X

i1,...,id

T (i1, . . . , id)u1(i1) · · ·ud

(i

d

)

=

X

i1,...,id

Tr

 

d

Y

k=1

Z
k

(i

k

)

!

u1(i1) · · ·ud

(i

d

)

=Tr

 

d

Y

k=1

 

nk
X

ik=1

Z
k

(i

k

)u

k

(i

k

)

!!

.

(31)

Thus, it can be written as a TR decomposition shown in
(30) where each core X

k

2 Rrk⇥rk+1 becomes a matrix. The
computational complexity is equal to O(dnr

2
).

From (31), we can see that the multilinear product be-
tween T and u

k

, k = 1, . . . , d can be also expressed as an
inner product of T and the rank-1 tensor, i.e.,

T ⇥1 u
T

1 ⇥2 · · ·⇥d

uT

d

= hT ,u1 � · · · � ud

i. (32)

It should be noted that the computational complexity in
the original tensor form is O(dn

d

), while it reduces to
O(dnr

2
+ dr

3
) that is linear to tensor order d by using TR

representation.

Theorem 4.3. Let T 1 and T 2 be dth-order tensors of size
n1 ⇥ · · ·⇥ n

d

. If the TR decompositions of these two tensors are
T 1 = <(Z1, . . . ,Zd

) where Z
k

2 Rrk⇥nk⇥rk+1 and T 2 =

<(Y1, . . . ,Yd

), where Y
k

2 Rsk⇥nk⇥sk+1 , then the Hadamard
product of these two tensors, T 3 = T 1 ~ T 2, can be also
represented in the TR format given by T 3 = <(X 1, . . . ,X d

),
where X

k

2 Rqk⇥nk⇥qk+1 and q

k

= r

k

⇤ s
k

. Each core X
k

can
be computed by

X
k

(i

k

) = Z
k

(i

k

)⌦Y
k

(i

k

), k = 1, . . . , d. (33)

Proof. Each element in tensor T 3 can be written as

T3(i1, . . . , id) =T1(i1, . . . , id)T2(i1, . . . , id)

=Tr

 

d

Y

k=1

Z
k

(i

k

)

!

Tr

 

d

Y

k=1

Y
k

(i

k

)

!

=Tr

( 

d

Y

k=1

Z
k

(i

k

)

!

⌦
 

d

Y

k=1

Y
k

(i

k

)

!)

=Tr

(

d

Y

k=1

⇣

Z
k

(i

k

)⌦Y
k

(i

k

)

⌘

)

.

(34)

Hence, T 3 can be also represented as TR format with its
cores computed by (33), which costs O(dnq

2
).

Furthermore, one can compute the inner product of two
tensors in TR representations. For two tensors T 1 and T 2,
it is defined as

hT 1,T 2i =
X

i1,...,id

T3(i1, . . . , id), (35)

where T 3 = T 1 ~ T 2. Thus, the inner product can be
computed by applying Hadamard product and then com-
puting the multilinear product between T 3 and vectors of
all ones, i.e., u

k

= 1, k = 1, . . . , d. In contrast to O(n

d

)

in the original tensor form, the computational complexity
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is equal to O(dnq

2
+ dq

3
) that is linear to d by using TR

representation. Similarly, we can also compute Frobenius
norm kT k

F

=

phT ,T i in the TR representation.
In summary, by using TR representations, many impor-

tant multilinear operations can be performed by operations
on their cores with smaller sizes, resulting in that the com-
putational complexity scales linearly to the tensor order.

5 RELATION TO OTHER MODELS

In this section, we discuss the relations between TR model
and the classical tensor decompositions including CPD,
Tucker and TT models. All these tensor decompositions
can be viewed as the transformed representation of a given
tensor. The number of parameters in CPD is O(dnr) that
is linear to tensor order, however, its optimization problem
is difficult and convergence is slow. The Tucker model is
stable and can approximate an arbitrary tensor as close as
possible, however, its number of parameters is O(dnr+ r

d

)

that is exponential to tensor order. In contrast, TT and
TR decompositions have similar representation power to
Tucker model, while their number of paramters is O(dnr

2
)

that is linear to tensor order.
It should be noted that (i) TR model has a more general-

ized and powerful representation ability than TT model, due
to relaxation of the strict condition r1 = r

d+1 = 1 in TT. In
fact, TT decomposition can be viewed as a special case of TR
model, as demonstrated in Sec. 5.3. (ii) TR-ranks are usually
smaller than TT-ranks because TR model can be represented
as a linear combination of TT decompositions whose cores
are partially shared. (iii) TR model is more flexible than TT,
because TR-ranks can be equally distributed in the cores,
but TT-ranks have a relatively fixed pattern, i.e., smaller
in border cores and larger in middle cores. (iv) Another
important advantage of TR model over TT model is the
circular dimensional permutation invariance (see Theorem
2.1). In contrast, the sequential multilinear products of cores
in TT must follow a strict order such that the optimized TT
cores highly depend on permutation of the original tensor.

5.1 CP decomposition
The cannonical polyadic decomposition (CPD) aims to rep-
resent a dth-order tensor T by a sum of rank-one tensors,
given by

T =

r

X

↵=1

u(1)
↵

� · · · � u(d)
↵

, (36)

where each rank-one tensor is represented by an outer
product of d vectors. It can be also written in the element-
wise form given by

T (i1, . . . , id) =

D

u(1)
i1

, . . . ,u(d)
id

E

, (37)

where h·, . . . , ·i denotes an inner product of a set of vectors,
i.e., u(k)

ik
2 Rr

, k = 1, . . . , d.
By defining V

k

(i

k

) = diag(u(k)
ik

) which is a diagonal
matrix for each fixed i

k

and k, where k = 1, . . . , d, i
k

=

1, . . . , n

k

, we can rewrite (37) as

T (i1, . . . , id) = Tr(V1(i1)V2(i2) · · ·Vd

(i

d

)). (38)

Hence, CPD can be viewed as a special case of TR decompo-
sition T = <(V1, . . . ,Vd

) where the cores V
k

, k = 1, . . . , d

are of size r ⇥ n

k

⇥ r and each lateral slice matrix V
k

(i

k

) is
a diagonal matrix of size r ⇥ r.

5.2 Tucker decomposition
The Tucker decomposition aims to represent a dth-order
tensor T by a multilinear product between a core tensor
G 2 Rr1⇥···⇥rd and factor matrices U(k) 2 Rnk⇥rk

, k =

1, . . . , d, which is expressed by

T = G ⇥1 U
(1) ⇥2 · · ·⇥d

U(d)
= [[G,U(1)

, . . . ,U(d)
]]. (39)

By assuming the core tensor G can be represented by a
TR decomposition G = <(V1, . . . ,Vd

), the Tucker decom-
position (39) in the element-wise form can be rewritten as

T (i1, . . . , id)

= <(V1, . . . ,Vd

)⇥1 u
(1)T

(i1)⇥2 · · ·⇥d

u(d)T
(i

d

)

= Tr

(

d

Y

k=1

 

rk
X

↵k=1

V
k

(↵

k

)u

(k)
(i

k

,↵

k

)

!)

= Tr

(

d

Y

k=1

⇣

V
k

⇥2 u
(k)T

(i

k

)

⌘

)

,

(40)

where the second step is derived by applying Theorem 4.2.
Hence, Tucker model can be represented as a TR decompo-
sition T = <(Z1, . . . ,Zd

) where the cores are computed
by the multilinear products between TR cores representing
G and the factor matrices, respectively, which is

Z
k

= V
k

⇥2 U
(k)

, k = 1, . . . , d. (41)

5.3 TT decomposition
The tensor train decomposition aims to represent a dth-
order tensor T by a sequence of cores G

k

, k = 1, . . . , d,
where the first core G1 2 Rn1⇥r2 and the last core
G

d

2 Rrd⇥nd are matrices while the other cores G
k

2
Rrk⇥nk⇥rk+1

, k = 2, . . . , d� 1 are 3rd-order tensors. Specif-
ically, TT decomposition in the element-wise form is ex-
pressed as

T (i1, . . . , id) = g1(i1)
TG2(i2) · · ·Gd�1(id�1)gd

(i

d

), (42)

where g1(i1) is the i1th row vector of G1, g
d

(i

d

) is the i

d

th
column vector of G

d

, and G
k

(i

k

), k = 2, . . . , d � 1 are the
i

k

th lateral slice matrices of G
k

.
According to the definition of TR decomposition in (1),

it is obvious that TT decomposition is a special case of
TR decomposition where the first and the last cores are
matrices, i.e., r1 = r

d+1 = 1. On the other hand, TR
decomposition can be also rewritten as

T (i1, . . . , id) = Tr {Z1(i1)Z2(i2) · · ·Zd

(i

d

)}

=

r1
X

↵1=1

z1(↵1, i1, :)
TZ2(i2) · · ·Zd�1(id�1)zd(:, id,↵1)

(43)

where z1(↵1, i1, :) 2 Rr2 is the ↵1th row vector of the
matrix Z1(i1) and z

d

(:, i

d

,↵1) is the ↵1th column vector
of the matrix Z

d

(i

d

). Therefore, TR decomposition can be
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is equal to O(dnq

2
+ dq

3
) that is linear to d by using TR

representation. Similarly, we can also compute Frobenius
norm kT k

F

=

phT ,T i in the TR representation.
In summary, by using TR representations, many impor-

tant multilinear operations can be performed by operations
on their cores with smaller sizes, resulting in that the com-
putational complexity scales linearly to the tensor order.

5 RELATION TO OTHER MODELS

In this section, we discuss the relations between TR model
and the classical tensor decompositions including CPD,
Tucker and TT models. All these tensor decompositions
can be viewed as the transformed representation of a given
tensor. The number of parameters in CPD is O(dnr) that
is linear to tensor order, however, its optimization problem
is difficult and convergence is slow. The Tucker model is
stable and can approximate an arbitrary tensor as close as
possible, however, its number of parameters is O(dnr+ r

d

)

that is exponential to tensor order. In contrast, TT and
TR decompositions have similar representation power to
Tucker model, while their number of paramters is O(dnr

2
)

that is linear to tensor order.
It should be noted that (i) TR model has a more general-

ized and powerful representation ability than TT model, due
to relaxation of the strict condition r1 = r

d+1 = 1 in TT. In
fact, TT decomposition can be viewed as a special case of TR
model, as demonstrated in Sec. 5.3. (ii) TR-ranks are usually
smaller than TT-ranks because TR model can be represented
as a linear combination of TT decompositions whose cores
are partially shared. (iii) TR model is more flexible than TT,
because TR-ranks can be equally distributed in the cores,
but TT-ranks have a relatively fixed pattern, i.e., smaller
in border cores and larger in middle cores. (iv) Another
important advantage of TR model over TT model is the
circular dimensional permutation invariance (see Theorem
2.1). In contrast, the sequential multilinear products of cores
in TT must follow a strict order such that the optimized TT
cores highly depend on permutation of the original tensor.

5.1 CP decomposition
The cannonical polyadic decomposition (CPD) aims to rep-
resent a dth-order tensor T by a sum of rank-one tensors,
given by

T =

r

X

↵=1

u(1)
↵

� · · · � u(d)
↵

, (36)

where each rank-one tensor is represented by an outer
product of d vectors. It can be also written in the element-
wise form given by

T (i1, . . . , id) =

D

u(1)
i1

, . . . ,u(d)
id

E

, (37)

where h·, . . . , ·i denotes an inner product of a set of vectors,
i.e., u(k)

ik
2 Rr

, k = 1, . . . , d.
By defining V

k

(i

k

) = diag(u(k)
ik

) which is a diagonal
matrix for each fixed i

k

and k, where k = 1, . . . , d, i
k

=

1, . . . , n

k

, we can rewrite (37) as

T (i1, . . . , id) = Tr(V1(i1)V2(i2) · · ·Vd

(i

d

)). (38)

Hence, CPD can be viewed as a special case of TR decompo-
sition T = <(V1, . . . ,Vd

) where the cores V
k

, k = 1, . . . , d

are of size r ⇥ n

k

⇥ r and each lateral slice matrix V
k

(i

k

) is
a diagonal matrix of size r ⇥ r.

5.2 Tucker decomposition
The Tucker decomposition aims to represent a dth-order
tensor T by a multilinear product between a core tensor
G 2 Rr1⇥···⇥rd and factor matrices U(k) 2 Rnk⇥rk

, k =

1, . . . , d, which is expressed by

T = G ⇥1 U
(1) ⇥2 · · ·⇥d

U(d)
= [[G,U(1)

, . . . ,U(d)
]]. (39)

By assuming the core tensor G can be represented by a
TR decomposition G = <(V1, . . . ,Vd

), the Tucker decom-
position (39) in the element-wise form can be rewritten as

T (i1, . . . , id)

= <(V1, . . . ,Vd

)⇥1 u
(1)T

(i1)⇥2 · · ·⇥d

u(d)T
(i

d

)

= Tr

(

d

Y

k=1

 

rk
X

↵k=1

V
k

(↵

k

)u

(k)
(i

k

,↵

k

)

!)

= Tr

(

d

Y

k=1

⇣

V
k

⇥2 u
(k)T

(i

k

)

⌘

)

,

(40)

where the second step is derived by applying Theorem 4.2.
Hence, Tucker model can be represented as a TR decompo-
sition T = <(Z1, . . . ,Zd

) where the cores are computed
by the multilinear products between TR cores representing
G and the factor matrices, respectively, which is

Z
k

= V
k

⇥2 U
(k)

, k = 1, . . . , d. (41)

5.3 TT decomposition
The tensor train decomposition aims to represent a dth-
order tensor T by a sequence of cores G

k

, k = 1, . . . , d,
where the first core G1 2 Rn1⇥r2 and the last core
G

d

2 Rrd⇥nd are matrices while the other cores G
k

2
Rrk⇥nk⇥rk+1

, k = 2, . . . , d� 1 are 3rd-order tensors. Specif-
ically, TT decomposition in the element-wise form is ex-
pressed as

T (i1, . . . , id) = g1(i1)
TG2(i2) · · ·Gd�1(id�1)gd

(i

d

), (42)

where g1(i1) is the i1th row vector of G1, g
d

(i

d

) is the i

d

th
column vector of G

d

, and G
k

(i

k

), k = 2, . . . , d � 1 are the
i

k

th lateral slice matrices of G
k

.
According to the definition of TR decomposition in (1),

it is obvious that TT decomposition is a special case of
TR decomposition where the first and the last cores are
matrices, i.e., r1 = r

d+1 = 1. On the other hand, TR
decomposition can be also rewritten as

T (i1, . . . , id) = Tr {Z1(i1)Z2(i2) · · ·Zd

(i

d

)}

=

r1
X

↵1=1

z1(↵1, i1, :)
TZ2(i2) · · ·Zd�1(id�1)zd(:, id,↵1)

(43)

where z1(↵1, i1, :) 2 Rr2 is the ↵1th row vector of the
matrix Z1(i1) and z

d

(:, i

d

,↵1) is the ↵1th column vector
of the matrix Z

d

(i

d

). Therefore, TR decomposition can be
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is equal to O(dnq

2
+ dq

3
) that is linear to d by using TR

representation. Similarly, we can also compute Frobenius
norm kT k

F

=

phT ,T i in the TR representation.
In summary, by using TR representations, many impor-

tant multilinear operations can be performed by operations
on their cores with smaller sizes, resulting in that the com-
putational complexity scales linearly to the tensor order.

5 RELATION TO OTHER MODELS

In this section, we discuss the relations between TR model
and the classical tensor decompositions including CPD,
Tucker and TT models. All these tensor decompositions
can be viewed as the transformed representation of a given
tensor. The number of parameters in CPD is O(dnr) that
is linear to tensor order, however, its optimization problem
is difficult and convergence is slow. The Tucker model is
stable and can approximate an arbitrary tensor as close as
possible, however, its number of parameters is O(dnr+ r

d

)

that is exponential to tensor order. In contrast, TT and
TR decompositions have similar representation power to
Tucker model, while their number of paramters is O(dnr

2
)

that is linear to tensor order.
It should be noted that (i) TR model has a more general-

ized and powerful representation ability than TT model, due
to relaxation of the strict condition r1 = r

d+1 = 1 in TT. In
fact, TT decomposition can be viewed as a special case of TR
model, as demonstrated in Sec. 5.3. (ii) TR-ranks are usually
smaller than TT-ranks because TR model can be represented
as a linear combination of TT decompositions whose cores
are partially shared. (iii) TR model is more flexible than TT,
because TR-ranks can be equally distributed in the cores,
but TT-ranks have a relatively fixed pattern, i.e., smaller
in border cores and larger in middle cores. (iv) Another
important advantage of TR model over TT model is the
circular dimensional permutation invariance (see Theorem
2.1). In contrast, the sequential multilinear products of cores
in TT must follow a strict order such that the optimized TT
cores highly depend on permutation of the original tensor.

5.1 CP decomposition
The cannonical polyadic decomposition (CPD) aims to rep-
resent a dth-order tensor T by a sum of rank-one tensors,
given by

T =

r

X

↵=1

u(1)
↵

� · · · � u(d)
↵

, (36)

where each rank-one tensor is represented by an outer
product of d vectors. It can be also written in the element-
wise form given by

T (i1, . . . , id) =

D

u(1)
i1

, . . . ,u(d)
id

E

, (37)

where h·, . . . , ·i denotes an inner product of a set of vectors,
i.e., u(k)

ik
2 Rr

, k = 1, . . . , d.
By defining V

k

(i

k

) = diag(u(k)
ik

) which is a diagonal
matrix for each fixed i

k

and k, where k = 1, . . . , d, i
k

=

1, . . . , n

k

, we can rewrite (37) as

T (i1, . . . , id) = Tr(V1(i1)V2(i2) · · ·Vd

(i

d

)). (38)

Hence, CPD can be viewed as a special case of TR decompo-
sition T = <(V1, . . . ,Vd

) where the cores V
k

, k = 1, . . . , d

are of size r ⇥ n

k

⇥ r and each lateral slice matrix V
k

(i

k

) is
a diagonal matrix of size r ⇥ r.

5.2 Tucker decomposition
The Tucker decomposition aims to represent a dth-order
tensor T by a multilinear product between a core tensor
G 2 Rr1⇥···⇥rd and factor matrices U(k) 2 Rnk⇥rk

, k =

1, . . . , d, which is expressed by

T = G ⇥1 U
(1) ⇥2 · · ·⇥d

U(d)
= [[G,U(1)

, . . . ,U(d)
]]. (39)

By assuming the core tensor G can be represented by a
TR decomposition G = <(V1, . . . ,Vd

), the Tucker decom-
position (39) in the element-wise form can be rewritten as

T (i1, . . . , id)

= <(V1, . . . ,Vd

)⇥1 u
(1)T

(i1)⇥2 · · ·⇥d

u(d)T
(i

d

)

= Tr

(

d

Y

k=1

 

rk
X

↵k=1

V
k

(↵

k

)u

(k)
(i

k

,↵

k

)

!)

= Tr

(

d

Y

k=1

⇣

V
k

⇥2 u
(k)T

(i

k

)

⌘

)

,

(40)

where the second step is derived by applying Theorem 4.2.
Hence, Tucker model can be represented as a TR decompo-
sition T = <(Z1, . . . ,Zd

) where the cores are computed
by the multilinear products between TR cores representing
G and the factor matrices, respectively, which is

Z
k

= V
k

⇥2 U
(k)

, k = 1, . . . , d. (41)

5.3 TT decomposition
The tensor train decomposition aims to represent a dth-
order tensor T by a sequence of cores G

k

, k = 1, . . . , d,
where the first core G1 2 Rn1⇥r2 and the last core
G

d

2 Rrd⇥nd are matrices while the other cores G
k

2
Rrk⇥nk⇥rk+1

, k = 2, . . . , d� 1 are 3rd-order tensors. Specif-
ically, TT decomposition in the element-wise form is ex-
pressed as

T (i1, . . . , id) = g1(i1)
TG2(i2) · · ·Gd�1(id�1)gd

(i

d

), (42)

where g1(i1) is the i1th row vector of G1, g
d

(i

d

) is the i

d

th
column vector of G

d

, and G
k

(i

k

), k = 2, . . . , d � 1 are the
i

k

th lateral slice matrices of G
k

.
According to the definition of TR decomposition in (1),

it is obvious that TT decomposition is a special case of
TR decomposition where the first and the last cores are
matrices, i.e., r1 = r

d+1 = 1. On the other hand, TR
decomposition can be also rewritten as

T (i1, . . . , id) = Tr {Z1(i1)Z2(i2) · · ·Zd

(i

d

)}

=

r1
X

↵1=1

z1(↵1, i1, :)
TZ2(i2) · · ·Zd�1(id�1)zd(:, id,↵1)

(43)

where z1(↵1, i1, :) 2 Rr2 is the ↵1th row vector of the
matrix Z1(i1) and z

d

(:, i

d

,↵1) is the ↵1th column vector
of the matrix Z

d

(i

d

). Therefore, TR decomposition can be
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is equal to O(dnq

2
+ dq

3
) that is linear to d by using TR

representation. Similarly, we can also compute Frobenius
norm kT k

F

=

phT ,T i in the TR representation.
In summary, by using TR representations, many impor-

tant multilinear operations can be performed by operations
on their cores with smaller sizes, resulting in that the com-
putational complexity scales linearly to the tensor order.

5 RELATION TO OTHER MODELS

In this section, we discuss the relations between TR model
and the classical tensor decompositions including CPD,
Tucker and TT models. All these tensor decompositions
can be viewed as the transformed representation of a given
tensor. The number of parameters in CPD is O(dnr) that
is linear to tensor order, however, its optimization problem
is difficult and convergence is slow. The Tucker model is
stable and can approximate an arbitrary tensor as close as
possible, however, its number of parameters is O(dnr+ r

d

)

that is exponential to tensor order. In contrast, TT and
TR decompositions have similar representation power to
Tucker model, while their number of paramters is O(dnr

2
)

that is linear to tensor order.
It should be noted that (i) TR model has a more general-

ized and powerful representation ability than TT model, due
to relaxation of the strict condition r1 = r

d+1 = 1 in TT. In
fact, TT decomposition can be viewed as a special case of TR
model, as demonstrated in Sec. 5.3. (ii) TR-ranks are usually
smaller than TT-ranks because TR model can be represented
as a linear combination of TT decompositions whose cores
are partially shared. (iii) TR model is more flexible than TT,
because TR-ranks can be equally distributed in the cores,
but TT-ranks have a relatively fixed pattern, i.e., smaller
in border cores and larger in middle cores. (iv) Another
important advantage of TR model over TT model is the
circular dimensional permutation invariance (see Theorem
2.1). In contrast, the sequential multilinear products of cores
in TT must follow a strict order such that the optimized TT
cores highly depend on permutation of the original tensor.

5.1 CP decomposition
The cannonical polyadic decomposition (CPD) aims to rep-
resent a dth-order tensor T by a sum of rank-one tensors,
given by

T =

r

X

↵=1

u(1)
↵

� · · · � u(d)
↵

, (36)

where each rank-one tensor is represented by an outer
product of d vectors. It can be also written in the element-
wise form given by

T (i1, . . . , id) =

D

u(1)
i1

, . . . ,u(d)
id

E

, (37)

where h·, . . . , ·i denotes an inner product of a set of vectors,
i.e., u(k)

ik
2 Rr

, k = 1, . . . , d.
By defining V

k

(i

k

) = diag(u(k)
ik

) which is a diagonal
matrix for each fixed i

k

and k, where k = 1, . . . , d, i
k

=

1, . . . , n

k

, we can rewrite (37) as

T (i1, . . . , id) = Tr(V1(i1)V2(i2) · · ·Vd

(i

d

)). (38)

Hence, CPD can be viewed as a special case of TR decompo-
sition T = <(V1, . . . ,Vd

) where the cores V
k

, k = 1, . . . , d

are of size r ⇥ n

k

⇥ r and each lateral slice matrix V
k

(i

k

) is
a diagonal matrix of size r ⇥ r.

5.2 Tucker decomposition
The Tucker decomposition aims to represent a dth-order
tensor T by a multilinear product between a core tensor
G 2 Rr1⇥···⇥rd and factor matrices U(k) 2 Rnk⇥rk

, k =

1, . . . , d, which is expressed by

T = G ⇥1 U
(1) ⇥2 · · ·⇥d

U(d)
= [[G,U(1)

, . . . ,U(d)
]]. (39)

By assuming the core tensor G can be represented by a
TR decomposition G = <(V1, . . . ,Vd

), the Tucker decom-
position (39) in the element-wise form can be rewritten as

T (i1, . . . , id)

= <(V1, . . . ,Vd

)⇥1 u
(1)T

(i1)⇥2 · · ·⇥d

u(d)T
(i

d

)

= Tr

(

d

Y

k=1

 

rk
X

↵k=1

V
k

(↵

k

)u

(k)
(i

k

,↵

k

)

!)

= Tr

(

d

Y

k=1

⇣

V
k

⇥2 u
(k)T

(i

k

)

⌘

)

,

(40)

where the second step is derived by applying Theorem 4.2.
Hence, Tucker model can be represented as a TR decompo-
sition T = <(Z1, . . . ,Zd

) where the cores are computed
by the multilinear products between TR cores representing
G and the factor matrices, respectively, which is

Z
k

= V
k

⇥2 U
(k)

, k = 1, . . . , d. (41)

5.3 TT decomposition
The tensor train decomposition aims to represent a dth-
order tensor T by a sequence of cores G

k

, k = 1, . . . , d,
where the first core G1 2 Rn1⇥r2 and the last core
G

d

2 Rrd⇥nd are matrices while the other cores G
k

2
Rrk⇥nk⇥rk+1

, k = 2, . . . , d� 1 are 3rd-order tensors. Specif-
ically, TT decomposition in the element-wise form is ex-
pressed as

T (i1, . . . , id) = g1(i1)
TG2(i2) · · ·Gd�1(id�1)gd

(i

d

), (42)

where g1(i1) is the i1th row vector of G1, g
d

(i

d

) is the i

d

th
column vector of G

d

, and G
k

(i

k

), k = 2, . . . , d � 1 are the
i

k

th lateral slice matrices of G
k

.
According to the definition of TR decomposition in (1),

it is obvious that TT decomposition is a special case of
TR decomposition where the first and the last cores are
matrices, i.e., r1 = r

d+1 = 1. On the other hand, TR
decomposition can be also rewritten as

T (i1, . . . , id) = Tr {Z1(i1)Z2(i2) · · ·Zd

(i

d

)}

=

r1
X

↵1=1

z1(↵1, i1, :)
TZ2(i2) · · ·Zd�1(id�1)zd(:, id,↵1)

(43)

where z1(↵1, i1, :) 2 Rr2 is the ↵1th row vector of the
matrix Z1(i1) and z

d

(:, i

d

,↵1) is the ↵1th column vector
of the matrix Z

d

(i

d

). Therefore, TR decomposition can be
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is equal to O(dnq

2
+ dq

3
) that is linear to d by using TR

representation. Similarly, we can also compute Frobenius
norm kT k

F

=

phT ,T i in the TR representation.
In summary, by using TR representations, many impor-

tant multilinear operations can be performed by operations
on their cores with smaller sizes, resulting in that the com-
putational complexity scales linearly to the tensor order.

5 RELATION TO OTHER MODELS

In this section, we discuss the relations between TR model
and the classical tensor decompositions including CPD,
Tucker and TT models. All these tensor decompositions
can be viewed as the transformed representation of a given
tensor. The number of parameters in CPD is O(dnr) that
is linear to tensor order, however, its optimization problem
is difficult and convergence is slow. The Tucker model is
stable and can approximate an arbitrary tensor as close as
possible, however, its number of parameters is O(dnr+ r

d

)

that is exponential to tensor order. In contrast, TT and
TR decompositions have similar representation power to
Tucker model, while their number of paramters is O(dnr

2
)

that is linear to tensor order.
It should be noted that (i) TR model has a more general-

ized and powerful representation ability than TT model, due
to relaxation of the strict condition r1 = r

d+1 = 1 in TT. In
fact, TT decomposition can be viewed as a special case of TR
model, as demonstrated in Sec. 5.3. (ii) TR-ranks are usually
smaller than TT-ranks because TR model can be represented
as a linear combination of TT decompositions whose cores
are partially shared. (iii) TR model is more flexible than TT,
because TR-ranks can be equally distributed in the cores,
but TT-ranks have a relatively fixed pattern, i.e., smaller
in border cores and larger in middle cores. (iv) Another
important advantage of TR model over TT model is the
circular dimensional permutation invariance (see Theorem
2.1). In contrast, the sequential multilinear products of cores
in TT must follow a strict order such that the optimized TT
cores highly depend on permutation of the original tensor.

5.1 CP decomposition
The cannonical polyadic decomposition (CPD) aims to rep-
resent a dth-order tensor T by a sum of rank-one tensors,
given by

T =

r

X

↵=1

u(1)
↵

� · · · � u(d)
↵

, (36)

where each rank-one tensor is represented by an outer
product of d vectors. It can be also written in the element-
wise form given by

T (i1, . . . , id) =

D

u(1)
i1

, . . . ,u(d)
id

E

, (37)

where h·, . . . , ·i denotes an inner product of a set of vectors,
i.e., u(k)

ik
2 Rr

, k = 1, . . . , d.
By defining V

k

(i

k

) = diag(u(k)
ik

) which is a diagonal
matrix for each fixed i

k

and k, where k = 1, . . . , d, i
k

=

1, . . . , n

k

, we can rewrite (37) as

T (i1, . . . , id) = Tr(V1(i1)V2(i2) · · ·Vd

(i

d

)). (38)

Hence, CPD can be viewed as a special case of TR decompo-
sition T = <(V1, . . . ,Vd

) where the cores V
k

, k = 1, . . . , d

are of size r ⇥ n

k

⇥ r and each lateral slice matrix V
k

(i

k

) is
a diagonal matrix of size r ⇥ r.

5.2 Tucker decomposition
The Tucker decomposition aims to represent a dth-order
tensor T by a multilinear product between a core tensor
G 2 Rr1⇥···⇥rd and factor matrices U(k) 2 Rnk⇥rk

, k =

1, . . . , d, which is expressed by

T = G ⇥1 U
(1) ⇥2 · · ·⇥d

U(d)
= [[G,U(1)

, . . . ,U(d)
]]. (39)

By assuming the core tensor G can be represented by a
TR decomposition G = <(V1, . . . ,Vd

), the Tucker decom-
position (39) in the element-wise form can be rewritten as

T (i1, . . . , id)

= <(V1, . . . ,Vd

)⇥1 u
(1)T

(i1)⇥2 · · ·⇥d

u(d)T
(i

d

)

= Tr

(

d

Y

k=1

 

rk
X

↵k=1

V
k

(↵

k

)u

(k)
(i

k

,↵

k

)

!)

= Tr

(

d

Y

k=1

⇣

V
k

⇥2 u
(k)T

(i

k

)

⌘

)

,

(40)

where the second step is derived by applying Theorem 4.2.
Hence, Tucker model can be represented as a TR decompo-
sition T = <(Z1, . . . ,Zd

) where the cores are computed
by the multilinear products between TR cores representing
G and the factor matrices, respectively, which is

Z
k

= V
k

⇥2 U
(k)

, k = 1, . . . , d. (41)

5.3 TT decomposition
The tensor train decomposition aims to represent a dth-
order tensor T by a sequence of cores G

k

, k = 1, . . . , d,
where the first core G1 2 Rn1⇥r2 and the last core
G

d

2 Rrd⇥nd are matrices while the other cores G
k

2
Rrk⇥nk⇥rk+1

, k = 2, . . . , d� 1 are 3rd-order tensors. Specif-
ically, TT decomposition in the element-wise form is ex-
pressed as

T (i1, . . . , id) = g1(i1)
TG2(i2) · · ·Gd�1(id�1)gd

(i

d

), (42)

where g1(i1) is the i1th row vector of G1, g
d

(i

d

) is the i

d

th
column vector of G

d

, and G
k

(i

k

), k = 2, . . . , d � 1 are the
i

k

th lateral slice matrices of G
k

.
According to the definition of TR decomposition in (1),

it is obvious that TT decomposition is a special case of
TR decomposition where the first and the last cores are
matrices, i.e., r1 = r

d+1 = 1. On the other hand, TR
decomposition can be also rewritten as

T (i1, . . . , id) = Tr {Z1(i1)Z2(i2) · · ·Zd

(i

d

)}

=

r1
X

↵1=1

z1(↵1, i1, :)
TZ2(i2) · · ·Zd�1(id�1)zd(:, id,↵1)

(43)

where z1(↵1, i1, :) 2 Rr2 is the ↵1th row vector of the
matrix Z1(i1) and z

d

(:, i

d

,↵1) is the ↵1th column vector
of the matrix Z

d

(i

d

). Therefore, TR decomposition can be
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is equal to O(dnq

2
+ dq

3
) that is linear to d by using TR

representation. Similarly, we can also compute Frobenius
norm kT k

F

=

phT ,T i in the TR representation.
In summary, by using TR representations, many impor-

tant multilinear operations can be performed by operations
on their cores with smaller sizes, resulting in that the com-
putational complexity scales linearly to the tensor order.

5 RELATION TO OTHER MODELS

In this section, we discuss the relations between TR model
and the classical tensor decompositions including CPD,
Tucker and TT models. All these tensor decompositions
can be viewed as the transformed representation of a given
tensor. The number of parameters in CPD is O(dnr) that
is linear to tensor order, however, its optimization problem
is difficult and convergence is slow. The Tucker model is
stable and can approximate an arbitrary tensor as close as
possible, however, its number of parameters is O(dnr+ r

d

)

that is exponential to tensor order. In contrast, TT and
TR decompositions have similar representation power to
Tucker model, while their number of paramters is O(dnr

2
)

that is linear to tensor order.
It should be noted that (i) TR model has a more general-

ized and powerful representation ability than TT model, due
to relaxation of the strict condition r1 = r

d+1 = 1 in TT. In
fact, TT decomposition can be viewed as a special case of TR
model, as demonstrated in Sec. 5.3. (ii) TR-ranks are usually
smaller than TT-ranks because TR model can be represented
as a linear combination of TT decompositions whose cores
are partially shared. (iii) TR model is more flexible than TT,
because TR-ranks can be equally distributed in the cores,
but TT-ranks have a relatively fixed pattern, i.e., smaller
in border cores and larger in middle cores. (iv) Another
important advantage of TR model over TT model is the
circular dimensional permutation invariance (see Theorem
2.1). In contrast, the sequential multilinear products of cores
in TT must follow a strict order such that the optimized TT
cores highly depend on permutation of the original tensor.

5.1 CP decomposition
The cannonical polyadic decomposition (CPD) aims to rep-
resent a dth-order tensor T by a sum of rank-one tensors,
given by

T =

r

X

↵=1

u(1)
↵

� · · · � u(d)
↵

, (36)

where each rank-one tensor is represented by an outer
product of d vectors. It can be also written in the element-
wise form given by

T (i1, . . . , id) =

D

u(1)
i1

, . . . ,u(d)
id

E

, (37)

where h·, . . . , ·i denotes an inner product of a set of vectors,
i.e., u(k)

ik
2 Rr

, k = 1, . . . , d.
By defining V

k

(i

k

) = diag(u(k)
ik

) which is a diagonal
matrix for each fixed i

k

and k, where k = 1, . . . , d, i
k

=

1, . . . , n

k

, we can rewrite (37) as

T (i1, . . . , id) = Tr(V1(i1)V2(i2) · · ·Vd

(i

d

)). (38)

Hence, CPD can be viewed as a special case of TR decompo-
sition T = <(V1, . . . ,Vd

) where the cores V
k

, k = 1, . . . , d

are of size r ⇥ n

k

⇥ r and each lateral slice matrix V
k

(i

k

) is
a diagonal matrix of size r ⇥ r.

5.2 Tucker decomposition
The Tucker decomposition aims to represent a dth-order
tensor T by a multilinear product between a core tensor
G 2 Rr1⇥···⇥rd and factor matrices U(k) 2 Rnk⇥rk

, k =

1, . . . , d, which is expressed by

T = G ⇥1 U
(1) ⇥2 · · ·⇥d

U(d)
= [[G,U(1)

, . . . ,U(d)
]]. (39)

By assuming the core tensor G can be represented by a
TR decomposition G = <(V1, . . . ,Vd

), the Tucker decom-
position (39) in the element-wise form can be rewritten as

T (i1, . . . , id)

= <(V1, . . . ,Vd

)⇥1 u
(1)T

(i1)⇥2 · · ·⇥d

u(d)T
(i

d

)

= Tr

(

d

Y

k=1

 

rk
X

↵k=1

V
k

(↵

k

)u

(k)
(i

k

,↵

k

)

!)

= Tr

(

d

Y

k=1

⇣

V
k

⇥2 u
(k)T

(i

k

)

⌘

)

,

(40)

where the second step is derived by applying Theorem 4.2.
Hence, Tucker model can be represented as a TR decompo-
sition T = <(Z1, . . . ,Zd

) where the cores are computed
by the multilinear products between TR cores representing
G and the factor matrices, respectively, which is

Z
k

= V
k

⇥2 U
(k)

, k = 1, . . . , d. (41)

5.3 TT decomposition
The tensor train decomposition aims to represent a dth-
order tensor T by a sequence of cores G

k

, k = 1, . . . , d,
where the first core G1 2 Rn1⇥r2 and the last core
G

d

2 Rrd⇥nd are matrices while the other cores G
k

2
Rrk⇥nk⇥rk+1

, k = 2, . . . , d� 1 are 3rd-order tensors. Specif-
ically, TT decomposition in the element-wise form is ex-
pressed as

T (i1, . . . , id) = g1(i1)
TG2(i2) · · ·Gd�1(id�1)gd

(i

d

), (42)

where g1(i1) is the i1th row vector of G1, g
d

(i

d

) is the i

d

th
column vector of G

d

, and G
k

(i

k

), k = 2, . . . , d � 1 are the
i

k

th lateral slice matrices of G
k

.
According to the definition of TR decomposition in (1),

it is obvious that TT decomposition is a special case of
TR decomposition where the first and the last cores are
matrices, i.e., r1 = r

d+1 = 1. On the other hand, TR
decomposition can be also rewritten as

T (i1, . . . , id) = Tr {Z1(i1)Z2(i2) · · ·Zd

(i

d

)}

=

r1
X

↵1=1

z1(↵1, i1, :)
TZ2(i2) · · ·Zd�1(id�1)zd(:, id,↵1)

(43)

where z1(↵1, i1, :) 2 Rr2 is the ↵1th row vector of the
matrix Z1(i1) and z

d

(:, i

d

,↵1) is the ↵1th column vector
of the matrix Z

d

(i

d

). Therefore, TR decomposition can be
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is equal to O(dnq

2
+ dq

3
) that is linear to d by using TR

representation. Similarly, we can also compute Frobenius
norm kT k

F

=

phT ,T i in the TR representation.
In summary, by using TR representations, many impor-

tant multilinear operations can be performed by operations
on their cores with smaller sizes, resulting in that the com-
putational complexity scales linearly to the tensor order.

5 RELATION TO OTHER MODELS

In this section, we discuss the relations between TR model
and the classical tensor decompositions including CPD,
Tucker and TT models. All these tensor decompositions
can be viewed as the transformed representation of a given
tensor. The number of parameters in CPD is O(dnr) that
is linear to tensor order, however, its optimization problem
is difficult and convergence is slow. The Tucker model is
stable and can approximate an arbitrary tensor as close as
possible, however, its number of parameters is O(dnr+ r

d

)

that is exponential to tensor order. In contrast, TT and
TR decompositions have similar representation power to
Tucker model, while their number of paramters is O(dnr

2
)

that is linear to tensor order.
It should be noted that (i) TR model has a more general-

ized and powerful representation ability than TT model, due
to relaxation of the strict condition r1 = r

d+1 = 1 in TT. In
fact, TT decomposition can be viewed as a special case of TR
model, as demonstrated in Sec. 5.3. (ii) TR-ranks are usually
smaller than TT-ranks because TR model can be represented
as a linear combination of TT decompositions whose cores
are partially shared. (iii) TR model is more flexible than TT,
because TR-ranks can be equally distributed in the cores,
but TT-ranks have a relatively fixed pattern, i.e., smaller
in border cores and larger in middle cores. (iv) Another
important advantage of TR model over TT model is the
circular dimensional permutation invariance (see Theorem
2.1). In contrast, the sequential multilinear products of cores
in TT must follow a strict order such that the optimized TT
cores highly depend on permutation of the original tensor.

5.1 CP decomposition
The cannonical polyadic decomposition (CPD) aims to rep-
resent a dth-order tensor T by a sum of rank-one tensors,
given by

T =

r

X

↵=1

u(1)
↵

� · · · � u(d)
↵

, (36)

where each rank-one tensor is represented by an outer
product of d vectors. It can be also written in the element-
wise form given by

T (i1, . . . , id) =

D

u(1)
i1

, . . . ,u(d)
id

E

, (37)

where h·, . . . , ·i denotes an inner product of a set of vectors,
i.e., u(k)

ik
2 Rr

, k = 1, . . . , d.
By defining V

k

(i

k

) = diag(u(k)
ik

) which is a diagonal
matrix for each fixed i

k

and k, where k = 1, . . . , d, i
k

=

1, . . . , n

k

, we can rewrite (37) as

T (i1, . . . , id) = Tr(V1(i1)V2(i2) · · ·Vd

(i

d

)). (38)

Hence, CPD can be viewed as a special case of TR decompo-
sition T = <(V1, . . . ,Vd

) where the cores V
k

, k = 1, . . . , d

are of size r ⇥ n

k

⇥ r and each lateral slice matrix V
k

(i

k

) is
a diagonal matrix of size r ⇥ r.

5.2 Tucker decomposition
The Tucker decomposition aims to represent a dth-order
tensor T by a multilinear product between a core tensor
G 2 Rr1⇥···⇥rd and factor matrices U(k) 2 Rnk⇥rk

, k =

1, . . . , d, which is expressed by

T = G ⇥1 U
(1) ⇥2 · · ·⇥d

U(d)
= [[G,U(1)

, . . . ,U(d)
]]. (39)

By assuming the core tensor G can be represented by a
TR decomposition G = <(V1, . . . ,Vd

), the Tucker decom-
position (39) in the element-wise form can be rewritten as

T (i1, . . . , id)

= <(V1, . . . ,Vd

)⇥1 u
(1)T

(i1)⇥2 · · ·⇥d

u(d)T
(i
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)
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(
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)

,

(40)

where the second step is derived by applying Theorem 4.2.
Hence, Tucker model can be represented as a TR decompo-
sition T = <(Z1, . . . ,Zd

) where the cores are computed
by the multilinear products between TR cores representing
G and the factor matrices, respectively, which is

Z
k

= V
k

⇥2 U
(k)

, k = 1, . . . , d. (41)

5.3 TT decomposition
The tensor train decomposition aims to represent a dth-
order tensor T by a sequence of cores G

k

, k = 1, . . . , d,
where the first core G1 2 Rn1⇥r2 and the last core
G

d

2 Rrd⇥nd are matrices while the other cores G
k

2
Rrk⇥nk⇥rk+1

, k = 2, . . . , d� 1 are 3rd-order tensors. Specif-
ically, TT decomposition in the element-wise form is ex-
pressed as

T (i1, . . . , id) = g1(i1)
TG2(i2) · · ·Gd�1(id�1)gd

(i

d

), (42)

where g1(i1) is the i1th row vector of G1, g
d

(i

d

) is the i

d

th
column vector of G

d

, and G
k

(i

k

), k = 2, . . . , d � 1 are the
i

k

th lateral slice matrices of G
k

.
According to the definition of TR decomposition in (1),

it is obvious that TT decomposition is a special case of
TR decomposition where the first and the last cores are
matrices, i.e., r1 = r

d+1 = 1. On the other hand, TR
decomposition can be also rewritten as

T (i1, . . . , id) = Tr {Z1(i1)Z2(i2) · · ·Zd

(i

d

)}

=

r1
X

↵1=1

z1(↵1, i1, :)
TZ2(i2) · · ·Zd�1(id�1)zd(:, id,↵1)

(43)

where z1(↵1, i1, :) 2 Rr2 is the ↵1th row vector of the
matrix Z1(i1) and z

d

(:, i

d

,↵1) is the ↵1th column vector
of the matrix Z

d

(i

d

). Therefore, TR decomposition can be
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is equal to O(dnq

2
+ dq

3
) that is linear to d by using TR

representation. Similarly, we can also compute Frobenius
norm kT k

F

=

phT ,T i in the TR representation.
In summary, by using TR representations, many impor-

tant multilinear operations can be performed by operations
on their cores with smaller sizes, resulting in that the com-
putational complexity scales linearly to the tensor order.

5 RELATION TO OTHER MODELS

In this section, we discuss the relations between TR model
and the classical tensor decompositions including CPD,
Tucker and TT models. All these tensor decompositions
can be viewed as the transformed representation of a given
tensor. The number of parameters in CPD is O(dnr) that
is linear to tensor order, however, its optimization problem
is difficult and convergence is slow. The Tucker model is
stable and can approximate an arbitrary tensor as close as
possible, however, its number of parameters is O(dnr+ r

d

)

that is exponential to tensor order. In contrast, TT and
TR decompositions have similar representation power to
Tucker model, while their number of paramters is O(dnr

2
)

that is linear to tensor order.
It should be noted that (i) TR model has a more general-

ized and powerful representation ability than TT model, due
to relaxation of the strict condition r1 = r

d+1 = 1 in TT. In
fact, TT decomposition can be viewed as a special case of TR
model, as demonstrated in Sec. 5.3. (ii) TR-ranks are usually
smaller than TT-ranks because TR model can be represented
as a linear combination of TT decompositions whose cores
are partially shared. (iii) TR model is more flexible than TT,
because TR-ranks can be equally distributed in the cores,
but TT-ranks have a relatively fixed pattern, i.e., smaller
in border cores and larger in middle cores. (iv) Another
important advantage of TR model over TT model is the
circular dimensional permutation invariance (see Theorem
2.1). In contrast, the sequential multilinear products of cores
in TT must follow a strict order such that the optimized TT
cores highly depend on permutation of the original tensor.

5.1 CP decomposition
The cannonical polyadic decomposition (CPD) aims to rep-
resent a dth-order tensor T by a sum of rank-one tensors,
given by

T =

r

X

↵=1

u(1)
↵

� · · · � u(d)
↵

, (36)

where each rank-one tensor is represented by an outer
product of d vectors. It can be also written in the element-
wise form given by

T (i1, . . . , id) =

D

u(1)
i1

, . . . ,u(d)
id

E

, (37)

where h·, . . . , ·i denotes an inner product of a set of vectors,
i.e., u(k)

ik
2 Rr

, k = 1, . . . , d.
By defining V

k

(i

k

) = diag(u(k)
ik

) which is a diagonal
matrix for each fixed i

k

and k, where k = 1, . . . , d, i
k

=

1, . . . , n

k

, we can rewrite (37) as

T (i1, . . . , id) = Tr(V1(i1)V2(i2) · · ·Vd

(i

d

)). (38)

Hence, CPD can be viewed as a special case of TR decompo-
sition T = <(V1, . . . ,Vd

) where the cores V
k

, k = 1, . . . , d

are of size r ⇥ n

k

⇥ r and each lateral slice matrix V
k

(i

k

) is
a diagonal matrix of size r ⇥ r.

5.2 Tucker decomposition
The Tucker decomposition aims to represent a dth-order
tensor T by a multilinear product between a core tensor
G 2 Rr1⇥···⇥rd and factor matrices U(k) 2 Rnk⇥rk

, k =

1, . . . , d, which is expressed by

T = G ⇥1 U
(1) ⇥2 · · ·⇥d

U(d)
= [[G,U(1)

, . . . ,U(d)
]]. (39)

By assuming the core tensor G can be represented by a
TR decomposition G = <(V1, . . . ,Vd

), the Tucker decom-
position (39) in the element-wise form can be rewritten as

T (i1, . . . , id)

= <(V1, . . . ,Vd

)⇥1 u
(1)T

(i1)⇥2 · · ·⇥d

u(d)T
(i

d

)

= Tr

(

d

Y

k=1

 

rk
X

↵k=1

V
k

(↵

k

)u

(k)
(i

k

,↵

k

)

!)

= Tr

(

d

Y

k=1

⇣

V
k

⇥2 u
(k)T

(i

k

)

⌘

)

,

(40)

where the second step is derived by applying Theorem 4.2.
Hence, Tucker model can be represented as a TR decompo-
sition T = <(Z1, . . . ,Zd

) where the cores are computed
by the multilinear products between TR cores representing
G and the factor matrices, respectively, which is

Z
k

= V
k

⇥2 U
(k)

, k = 1, . . . , d. (41)

5.3 TT decomposition
The tensor train decomposition aims to represent a dth-
order tensor T by a sequence of cores G

k

, k = 1, . . . , d,
where the first core G1 2 Rn1⇥r2 and the last core
G

d

2 Rrd⇥nd are matrices while the other cores G
k

2
Rrk⇥nk⇥rk+1

, k = 2, . . . , d� 1 are 3rd-order tensors. Specif-
ically, TT decomposition in the element-wise form is ex-
pressed as

T (i1, . . . , id) = g1(i1)
TG2(i2) · · ·Gd�1(id�1)gd

(i

d

), (42)

where g1(i1) is the i1th row vector of G1, g
d

(i

d

) is the i

d

th
column vector of G

d

, and G
k

(i

k

), k = 2, . . . , d � 1 are the
i

k

th lateral slice matrices of G
k

.
According to the definition of TR decomposition in (1),

it is obvious that TT decomposition is a special case of
TR decomposition where the first and the last cores are
matrices, i.e., r1 = r

d+1 = 1. On the other hand, TR
decomposition can be also rewritten as

T (i1, . . . , id) = Tr {Z1(i1)Z2(i2) · · ·Zd

(i

d

)}

=

r1
X

↵1=1

z1(↵1, i1, :)
TZ2(i2) · · ·Zd�1(id�1)zd(:, id,↵1)

(43)

where z1(↵1, i1, :) 2 Rr2 is the ↵1th row vector of the
matrix Z1(i1) and z

d

(:, i

d

,↵1) is the ↵1th column vector
of the matrix Z

d

(i

d

). Therefore, TR decomposition can be

9n, rn = 1
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Figure 5: The comparisons of compression rate and approximation error (RSE) on CIFAR-10 dataset
by using TR and TT models.

noted that TR representation provides significantly high compression ability as compared to TT. In
addition, Fig. 4 shows TR-SGD results on ‘Lena’ image by sampling different fraction of data points.

Table 4: Image representation by using tensorization and TR decomposition. The number of
parameters is compared for SVD, TT and TR given the same approximation errors.

Data ✏ = 0.1 ✏ = 0.01 ✏ = 9e� 4 ✏ = 2e� 15

n = 256, d = 2

SVD TT/TR SVD TT/TR SVD TT/TR SVD TT/TR
9.7e3 9.7e3 7.2e4 7.2e4 1.2e5 1.2e5 1.3e5 1.3e5

Tensorization ✏ = 0.1 ✏ = 0.01 ✏ = 2e� 3 ✏ = 1e� 14

TT TR TT TR TT TR TT TR
n = 16, d = 4 5.1e3 3.8e3 6.8e4 6.4e4 1.0e5 7.3e4 1.3e5 7.4e4
n = 4, d = 8 4.8e3 4.3e3 7.8e4 7.8e4 1.1e5 9.8e4 1.3e5 1.0e5
n = 2, d = 16 7.4e3 7.4e3 1.0e5 1.0e5 1.5e5 1.5e5 1.7e5 1.7e5

5.3 CIFAR-10

The CIFAR-10 dataset consists of 60000 32⇥ 32 colour images. We randomly pick up 1000 images
for testing of TR decomposition algorithms. As shown in Fig. 5, TR model outperforms TT model in
terms of compression rate given the same approximation error, which is caused by strict limitation
that the mode-1 rank must be 1 for TT model. In addition, TR is a more generalized model, which
contains TT as a special case, thus yielding better low-rank approximation. Moreover, all other
TR algorithms can also achieve similar results. The detailed results for ✏ = 1e � 1 are shown in
Table 5. Note that TR-SGD can achieve the same performance as TR-ALS, which demonstrates its
effectiveness on real-world dataset. Due to high computational efficiency of TR-SGD per epoch, it
can be potentially applied to very large-scale dataset. For visualization, TR-SGD results after 10 and
100 epoch are shown in Fig. 6.

5.4 TENSORIZING NEURAL NETWORKS USING TR REPRESENTATION

TT representations have been successfully applied to deep neural networks (Novikov et al., 2015),
which can significantly reduce the number of model parameters and improve computational efficiency.
To investigate the properties of TR representation, we applied TR framework to approximate the
weight matrix of a fully-connected layer and compared with TT representation. We run the experiment
on the MNIST dataset for the task of handwritten-digit recognition. The same setting of neural
network (two fully-connected layers with ReLU activation function) as in (Novikov et al., 2015) was
applied for comparisons. The input layer is tensorized to a 4th-order tensor of size 4⇥ 8⇥ 8⇥ 4, the
weight matrix of size 1024⇥ 625 is represented by a TR format of size 4⇥ 8⇥ 8⇥ 4⇥ 5⇥ 5⇥ 5⇥ 5.
Through deriving the gradients over each core tensor, all computations can be performed on small
core tensors instead of the dense weight matrix by using properties in Sec. 4, yielding the significant
improvements of computational efficiency. The experimental results are shown in Fig. 7. We observe
that the TR-layer provides much better flexibility than TT-layer, leading to much lower training and

9

6

V. TENSOR AUGMENTATION

In this section, we introduce ket augmentation (KA) to
represent a low-order tensor by a higher-order one, i.e. to
cast an N th-order tensor T 2 RI1⇥I2⇥···⇥IN into a Kth-
order tensor ˜T 2 RJ1⇥J2⇥···⇥JK , where K � N andQN

l=1 Il =

QK
l=1 Jl. A higher-order representation of the

tensor offers some important advantages. For instance, the
TT decomposition is more efficient for the augmented tensor
because the local structure of the data can be exploited
effectively in terms of computational resources. Actually, if
the tensor is slightly correlated, its augmented tensor can be
represented by a low-rank TT [8], [45].

The concept of KA was originally introduced in [45] for
casting a grayscale image into real ket state of a Hilbert space,
which is simply a higher-order tensor, using an appropriate
block structured addressing.

We define KA as a generalization of the original scheme to
third-order tensors T 2 RI1⇥I2⇥I3 that represent color images,
where I1⇥ I2 = 2

n⇥ 2

n (n � 1 2 Z) is the number of pixels
in the image and I3 = 3 is the number of colors (red, green
and blue). Let us start with an initial block, labeled as i1, of
2 ⇥ 2 pixels corresponding to a single color j (assume that
the color is indexed by j where j = 1, 2, 3 corresponding to
red, green and blue colors, respectively). This block can be
represented as

T[21⇥21⇥1] =

4X

i1=1

ci1jei1 , (37)

where ci1j is the pixel value corresponding to color j and ei1
is the orthonormal base which is defined as e1 = (1, 0, 0, 0),
e2 = (0, 1, 0, 0), e3 = (0, 0, 1, 0) and e4 = (0, 0, 0, 1). The
value i1 = 1, 2, 3 and 4 can be considered as labeling the up-
left, up-right, down-left and down-right pixels, respectively.
For all three colors, we have three blocks which are presented
by

T[21⇥21⇥3] =

4X

i1=1

3X

j=1

ci1jei1 ⌦ uj , (38)

where uj is also an orthonormal base which is defined as
u1 = (1, 0, 0), u2 = (0, 1, 0), u3 = (0, 0, 1). We now consider
a larger block labeled as i2 make up of four inner sub-blocks
for each color j as shown in Fig. 1. In total, the new block is
represented by

T[22⇥22⇥3] =

4X

i2=1

4X

i1=1

3X

j=1

ci2i1jei2 ⌦ ei1 ⌦ uj . (39)

Generally, this block structure can be extended to a size of
2

n ⇥ 2

n ⇥ 3 after several steps until it can present all the
values of pixels in the image. Finally, the image can be cast
into an (n + 1)th-order tensor C 2 R4⇥4⇥···⇥4⇥3 containing
all the pixel values as follows,

T[2n⇥2n⇥3] =

4X

in,...,i1=1

3X

j=1

cin···i1jein ⌦ · · ·⌦ ei1 ⌦ uj . (40)

This presentation is suitable for image processing as it not
only preserves the pixels values, but also rearranges them in

Figure 1: A structured block addressing procedure to cast an
image into a higher-order tensor. (a) Example for an image of
size 2⇥2⇥3 represented by (38). (b) Illustration for an image
of size 2

2 ⇥ 2

2 ⇥ 3 represented by (39).

a higher-order tensor such that the richness of textures in the
image can be studied via the correlation between modes of the
tensor [45]. Therefore, due to the flexibility of the TT-rank,
our proposed algorithms would ideally take advantage of KA.

VI. SIMULATIONS

Extensive experiments are conducted with synthetic data,
color images and videos. The proposed algorithms are bench-
marked against TMac [21], TMac-Square, SiLRTC [15],
SiLRTC-Square [43] and state-of-the-art tensor completion
methods FBCP [46] and STDC [47]1. Additionally, we also
benchmark the TT-rank based optimization algorithm, ALS
[34], [35].

The simulations for the algorithms are tested with respect to
different missing ratios (mr) of the test data, with mr defined
as

mr =

p

QN
k=1 Ik

, (41)

where p is the number of missing entries, which is chosen
randomly from a tensor T based on a uniform distribution.

To measure performance of a LRTC algorithm, the rela-
tive square error (RSE) between the approximately recovered
tensor X and the original one T is used, which is defined as,

RSE = ||X � T ||F /||T ||F . (42)

The convergence criterion of our proposed algorithms is
defined by computing the relative error of the tensor X
between two successive iterations as follows:

✏ =

||X l+1 � X l||F
||T ||F  tol, (43)

where tol = 10

�4 and the maximum number of iterations
maxiter = 1000. These simulations are implemented under a
Matlab environment.

1Applicable only for tensors of order N = 3.
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Table 5: Results on CIFAR-10 images.

✏ Ranks N

p

Epoch
TT-SVD 0.092 (1 7 79 67) 66099 NaN
TR-SVD 0.095 (5,3,49,58) 42710 NaN

TR-BALS 0.094 (61,13,3,6) 63278 23
TR-ALS 0.1076 (5,3,49,58) 42710 10
TR-SGD 0.1041 (5,3,49,58) 42710 100

(a) RSE = 0.18, Epoch = 10 (b) RSE=0.10, Epoch =100

Figure 6: The reconstructed images by using TR-SGD after 10 and 100 epochs.

testing errors under the same compression level (i.e., TT/TR ranks). In addition, TR can achieve
much better compression rate under the same level of test error. When r1 = . . . = r4 = 2, the
compression rate of dense weight matrix is up to 1300 times.

We tested the tensorizing neural networks with the same architecture on SVHN dataset
(http://ufldl.stanford.edu/housenumbers/). By setting all the TT-ranks in the network to 4, we
achieved the test error of 0.13 with compression rate of 444 times, while we can achieve the same test
error by setting all the TR-ranks to 3 with compression rate of 592 times. We can conclude that the
TR representation can obtain significantly higher compression rate under the same level of test error.

6 CONCLUSION

We have proposed a novel tensor decomposition model, which provides an efficient representation
for a very high-order tensor by a sequence of low-dimensional cores. The number of parameters in
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Figure 7: The classification performances of tensorizing neural networks by using TR representation.
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Discussions

• What are the most important advantages of tensor 

methods?

• Which kind of tensor methods is promising in the future?


