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ﬁ Background AlP

« Multidimensional data of exceedingly huge volume, variety and structural

richness become ubiquitous across disciplines in engineering and data science
v multimedia data like speech and video
v remote sensing data
v medical and biological data
e Standard machine learning methods and algorithms prohibitive to analysis of
large-scale, multi-modal, multi-relational big data due to curse of dimensionality
 Machine learning and data analytic require a paradigm shift to efficiently process
massive datasets within tolerable time
* Tensor networks emerges as very useful tools for dimensionality reduction and

large-scale optimization problems




ﬁ Curse of Dimensionality

AlP

e Curse of dimensionality (COD) an exponentially increasing of number of

parameters required to describe a system or an extremely large number of

degrees of freedom

 For tensor, COD means the number of elements IV of an Nth-order tensor of

size [ x I x---x I grows exponentially with tensor order NV

e Tensor volumes become prohibitively huge if order is high, thus requiring

enormous computational and storage resources
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ﬁ Challenges addressed by Tensor Networks ~ AIP

Tensor networks address two main challenges in big data analysis:

() Find a low-rank approximate representation for huge data tensor
or a specific cost function while maintaining the desired accuracy

of approximation, thus alleviating the curse of dimensionality

() Extract physically meaningful latent variables from data in a

sufficiently accurate and computationally afford way




ﬁ What are Tensor Networks (TN)? AIP

 Tensor decompositions (TD) decompose higher-order tensors into factor
tensors and matrices

e Tensor networks (TN) decompose higher-order tensors into sparsely
iInterconnected small-scale factor matrices or low-order core tensors

« TD and TN are treated in a united way by considering TD as a simple TN

TN can be thought of as special graph structures representing high-order
tensors via a set of sparsely interconnected, distributed low-order core tensors

TN enjoys both enhanced interpretation and computational advantages, and

allows for super-compression of big datasets
v e.g. compute eigenvalues, eigenvectors of high-dimensional linear/nonlinear

operators



ﬁ TN Examples AlP

TN decompose high-order tensors into a set of sparsely interconnected

and distributed small-scale low-order core tensors

MPS




ﬁ Advantages of TN AlP

 Ability to perform all math operations in tractable formats

« Sparse and distributed formats of both the structurally rich data and
complex optimization tasks

 Efficient compressed formats of large multidimensional data via
tensorization and low-rank tensor decomposition into low-order factor
core tensors

» Possibility to analyze linked blocks of large-scale tensors in order to
separate correlated from uncorrelated components in observed raw data

o Graphical representations express math operations on tensors in an

Intuitive way, without the explicit use of complex math expressions
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RIK=N

Tensors

Basic building blocks for TN diagrams

Scalar Vector Matrix

J
a a ] ] A J
-8 Jedl Y-8

3rd-order tensor
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X Block Tensors AlI'P

~J

TN diagrams for representing high-order block tensors, with each

entry Is an individual sub-tensor

4th-order tensor

hth-order tensors
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ﬁ Basic Operations AlP

TN diagram for representing multi-linear operations

e Matrix-vector multiplication

O
O
1

e Matrix-matrix multiplication

A B C=AB
| J K | K

e Tensor contraction

NA BP NP .

K \\/M B M Z:lai,j,k bk,l,m,p — 1,],I,m,p
J L J L
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o Tensor Reshaping Operations AlP

4=

Relationship between matricization, vectorization and tensorization

Tensorization

F

Matricization —Q— V ectorization

o
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B waicization (Unfolding AP

lllustration of mode-1, mode-2, mode-3 matricization of a 3rd-order tensor
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2 Matricization (Unfolding) AlP

RIK=N

TN Diagram of mode-n matricization of Nth-order tensor A e R+ >/~

into a matrix A, € R * - Tn-tlni1In

TN Diagram of mode-{1,2,...,n} canonical matricization of a Nth-order

c R—71]2"'1n X Ipa1-IN

tensor into a matrix A<, = A(-

i1 5 b1 TN )




ﬁ Tensorization ANAIP

Tensorization of a vector or a matrix can be considered as a reverse

process to the vectorization or matricization

',HH' — M — pm

Vector Matrix 3rd-order tensor 4th-order tensor

2K%X2 %2 KX2X2X2
xeR™ XeR™ " X €R X ,€R
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ﬁ Tensor Kronecker Product AIP

The kronecker product of two Nth-order tensors A ¢ Ri1x{zx-xIn

and B € R71x/2xxJn yjelds tensor C = A ®; B € RiJixxiInIn yith

entries c; = Qiy,..iN bjh---,jN

171, NJN
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ﬁ Multilinear Product—TTM AlI'P

The mode-n product also called tensor-times-matrix (TTM) product of a

tensor A € RI1xxIn gnd matrix B € R?*!" s defined as

C — A X’n, B c RllX---an_1XJXIn+1X---><IN

I,
Cit ig o sim 1 frima Lo i N = E: Qi ig,....in Djiin

|2
'3gj| L1, A
1
A L A | Ax| - | ALl
J &
j B | C | 1| B || BAL| BA, BA, |J
| C(1)
Cy=B Ay
B A (n)

n Q)
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ﬁ Multilinear Product—TTV AlI'P

The tensor-times-vector (TTV) product of a tensor A € R/1**I~N gnd a

vector b € RI»yields tensor C = A x,,b € Rit*xIn—1xIns1xxIn with entries

Iy
Cit s ime 1 vima o = E: Qiy ..o im 1 vimsinatyrin Oin

v an lllustration of compressing a 4th-order tensor into a scaler, vector, matrix

or 3rd-order tensor by TTV G
Scalar _ o - R R,
R, R,
G
G Vector | R ~ _ R R,
RN~ R, R, R,
R R, OR
2 - R, R R, G|
Matrix lo—2 = ! O =
R} 3
Lower-order R R

O
1 4 G
Tensor \?/ _ Rl>:<]i4
R, R, R,
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ﬁ Full Multilinear Product—Tucker AIP

The full multilinear (Tucker) product of a tensor G e Rfi1xf2xxEx gnd a

set of factor matrices B(™ e RI»*f» perform multiplication in all the modes

C=0G x;BY x, B& ... x, BY)

v an lllustration of Tucker product a 5th-order tensor and five factor matrices




ﬁ Multilinear Product—Tensor Contraction AIP

The tensor contraction of tensors A € Rt *2x*Ingnd B € R/1x/2xxJu

with common modes I,, = J,,,, yields an (N+M-2)-order tensor as

C = A XZI B ¢ Rllx---xln_l><In+1><---><IN><J1><---><Jm_1><Jm+1><---><JM

with entires

Cil,

ceey Zn_l, Zn_l_]_, ...77:N7j1) '°'7jm_17jm+17 "'7jM
I

: : ailr")in—lainain-l—l)"'77:N bjl,---,jm—l,in,jm—l—ly---ng
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ﬁ Tensor Contraction Examples AlP

 Tensor contraction of two 4th-order tensors along mode-3 in A and mode-2
In B yield a 6th-order tensor

C = A X% B ¢ R11XIQ><I4><J1><J3><J4

Ji 3,

J3
13=J;
e Tensor contraction of two 5th-order tensors along modes 3,4,5 in A and
1,2,3 In B yield a 4th-order tensor

. 1,2,3 11 X1IoxJygxJ5
C=A xg33 BER

| z=J
5 v1
“]5




ﬁ Tensor Contraction Examples Cont AlP

e Tensor contraction along all the modes (or Inner product) of two 3rd-order

tensors yield a scaler

c={A,B)=A x,

2,3 __ ~ — S L
03 B = A x B = Zil,iQ,iS Qiyin,iz Diy,iz,iz

.
A B
R . R
N ’
|3
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ﬁ Multilinear Product—Tensor Trace AIP

The tensor trace consider a tensor with partial self-contraction modes, where

the outer indices represent physical modes, inner indices represent contraction

modes. The tensor trace performs the summation of all inner indices of tensor

v e.g., atensor A ofsize R x I x R has two inner indices: mode 1 and 3 of

size R, and one outer index: mode 2 of size [, tensor trace yields a vector

25



ﬁ Tensor Trace Examples

TN diagrams of tensor trace of matrices

it OA c=1r(A)=23;
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RIK=N

B mansformation of TN structures AP

TN graphical representation has benefits to

» perform complex math operations on core tensors in an intuitive way,
without resorting to math expressions

« modify, simplify and optimize the topology of TN, while keeping the
original physical model intact

v modify topology to tree structured TN like HT/TT can reduce computational

complexity (through sequential contraction of cores) and enhance stability

of algorithms

v often advantageous to modify TN with circles to TN with tree structure by

eliminating circles

27



ﬁ Transformation of TN structures Cont AlI'P

A general procedure of the basic transformation on TN structure:

) perform sequential core tensors
) unfold these contracted tensors into matrices
i) factorize the unfolded matrices typically via truncated SVD

IV) reshape matrices back into new core tensors

Contraction Matricization

28



ﬁ Transformation of TN structures Cont AlI'P

v e.g. an illustration of transformation honey-comb lattice (HCL) into

tensor ring (TR) via tensor contraction and SVD

I

Contraction \i{
_—
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ﬁ CP Decomposition AlP

Recall CP decomposition can be expressed as a finite sum of rank-1

tensors which are formed through outer product of vectors

112

A
- B

R
J (IXR) (RxRxR) (RxJ) X ~ Z A b o b® 6 ... o bV
A x

112

| . » x1 BL x5, B@ ... xny BWY)
b
U bl U R — [[A (1) (2)7 s e ey (N)]]a
aR o

112
-3
H

(IXR) (RxRxK) (RxJ)
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2 CP Decomposition Cont AlP

RIK=N

Recall CP decomposition can be expressed as a finite sum of rank-1

tensors which are formed through outer product of vectors

v e.d., TN diagram of a CP format of 4th-order tensor

X = A x1 B® x; B® 53 B® 5, BY =37 A b 0 b 0 b{” o bV

“ (4)
1 B
4 O
X (1) 3
Iy /> _ 4L B R\AﬁB()
= N O
]\ I RYLR™ I
2
gAY
15
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ﬁ Tucker Decomposition AlP

Recall Tucker decomposition performs the full multi-linear product in all

the modes

R
X= ), - Z Grirary (D) 0B 0 -0 b))

:g XlB(l) XQB(2)"' XNB(N)
— [[Q;B(l),B(Q),...,B(N)]],

B%(K ><R3) b(3)
K Ry — /
R —
| X B(l) e - Z gr 2l @ b(2)

R2 00

|2

) (1xR) (RxRyxRy)  (RyxJ)

33



ﬁ Tucker Decomposition Cont AlP

Recall Tucker decomposition performs the full multi-linear product in all

the modes

v e.g., TN diagram of a Tucker format of 4th-order tensor

X ~ G x; BY x5 B@ x3B® x, B@

OB 4
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[ HOSVD AP

Recall high-order SVD (HOSVD) a special form of constrained Tucker
decomposition with B(® = U™ e RI»*/= are orthogonal factor matrices

and G = S e Rirxl2xxIx ig gll-orthogonal core tensor

X = 8 x1 U 5y UD ... ey UM

(I;xR;)
I, &
R,
> % . L
B |
R, ; e |
I ~ | JR/ |
1 :Rz S i // 2 i
5, R R,
(I,xI, 1) ([, x1,x1,) (I, %R,)
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HOSVD Cont

v e.g., TN diagram of a HOSVD of 4th-order tensor

X =8, x;UYxy, UP x3 U x, UMW

Iy
(4)
OU
R
Ly O (3)
Lo X I S, U
o =~ S QO ~
R, R, I
I 3
2 R
2
2)
Ou
1,

36

AlP




ﬁ Hierarchical Tucker Decomposition AlP

 The hierarchical Tucker decomposition (HT) requires splitting the set

of modes of a tensor in a hierarchical way

« HT results in a binary tree containing a subset of modes at each

branch called a dimension tree T, N > 1which satisfies

v all nodes t € T are non-empty subsets of {1, 2,..., N}
v the set troor = {1,2,..., N}is the root node of Tn

v each non-leaf node has two children u,v € 1y such that ¢ is a

disjoint union t = v U v
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ﬁ HT Math Expression AlP

o An illustration of HT decomposition of X € R1**I7 with a given set of

integers { R }ier,, i.e. HT ranks

(12 «++ 7)

G
R ‘ R 4567
g(123) E_(4567)

r Q) ()

VPR Rys Rer (67)
; ® R 3 us) G

: G™( ) ()G R, S &

R, R, R, R ’

2 3 4
g2 C g0 g@wC g0 B(é) B(7>

1, 8 1, 15 I 1,
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ﬁ HT Math Expression Cont AlP

« Let intermediate tensors X" with node ¢ = {n1,...,m} < {1,...,7}
have the size In, X In, X -+ X I, X Ry

e Let X® =X e RImInIn xRt danotes unfolded of X

e Let G e RE«xoxT pha the core tensor linking left and right child of ¢,

HT can be expressed recursively

R VGC(X) ~ (X(123) Q7 X(4567)) VeC(G(12...7))
O
X129 = (B @, X*9) 13
G G
r O S X (#567) ~ (X(45) @, X(67) G(jgg?)
g 2 Rys G
I, - (23) N (43) =
e s e X2 B2 e, BY) G
g2Q  pO0 pWQ g0 500 g?Q X)) ~ (BW g, BO) G(<425)>
I L I I I I X (67) ~ (B(G) Q7 B(7)) G(<6§)>

39



2 HT Math Expression Cont AlP

RIK=N

Equivalently, with tensor notations HT expression becomes

Ri123 Rus67

~ (12---7) (123) (4567)
X: Z Z 97“123,7“4567 X7“123 OX"“4567
r123=1 ry567=1
12) 0 VO (123 (1) x(23)
(12 «ve 7) 123) ~ 123 1 23
G XT123 — Sj Sj 97“1,7“23,T123b7“1 OX7“23
‘ ri1=17r93=1
= & w567 o N3 NI (a567) (15) < (67)
(123) (4567) 4567) ~o 4567 45 o7
G G X"“4567 — Z Z g?“45,7“67,7“4567X"°45 OXT’67
Rl ‘ ' R ’)"45:1 ’)"67:1
ey Rys 67 (67)
[B ® R 3 us) G
: G ) (G R -
R R R 6 R7 2 3
2 R 4 5 X(23) ~ Z Z 9(23) b(2) Ob(g)
B(2) B(3) B(4) B(5) B(6) B(7) ro3 — v ot 2,773,723 () T3
I, I 1 I Ig 1; R4 Rs
(45) ~ Z Z (45) (4) (5)
X?“45 — 9ra,rs,ras b?“4 © b7“5
ra=1rs=1
Re Ry
(67) ~ S‘ y (67) (6) » (7
X7’67 — J y 97“6,7“7,7’67 b?“6 © b’f’?
re=1r7=1
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RIK=N

2 Links between Tucker and HT AlI'P

 HT leads naturally to a distributed Tucker decomposition

* Asingle core in Tucker Is replaced by interconnected cores of low-

order in HT

 In such distributed network some cores are connected directly with

some of factor matrices
I
[8
C
]1 m
A4
I

I%

7
3
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ﬁ Tree Tensor Network State AlP

Tree tensor network state (TTNS) can be considered as a generalization

of HT (TT), and as a distributed model for Tucker-N decomposition

v e.g. TN diagram of TTNS 3rd-order and 4th-order tensor cores for the

representation of 24th-order tensors

42



ﬁ TN with Circles AlP

TN dramatically reduces computational cost and provide distributed
storage through low-rank TN approximation

 However, the ranks of HT (or TT) increase rapidly with the data order
and desired approximation accuracy

 The ranks can be kept considerably small through special architectures

of TN with circles

v e.g. projected entangled pair states (PEPS)
v honey-comb lattice (HCL)

v multi-scale entanglement renormalization ansatz (MERA)

TN with circles pays the price of higher computational complexity w.r.t.

tensor contraction due to many circles

43
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TN with Circles—HCL

Honey-comb lattice (HCL) consists of only 3rd-order core tensors

v e.g. TN diagram of HCL of a 16th-order tensor

44
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2 TN with Circles—MERA AlI'P

RIK=N

Multi-scale entanglement renormalization ansatz (MERA) consists of both

3rd-order and 4th-order core tensors

v MERA core tensors are much smaller, which dramatically reduce number of free
parameters and provide more efficient storage of huge-scale data tensors
v MERA allows to model complex functions and interactions between variables

v e.g. TN diagram of MERA of a 32th-order tensor

ST
XTI
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ﬁ Outline AP

* \Why tensor network

e Tensor network diagrams

e Tensor networks and decompositions

» TT decomposition: graph interpretation and algorithm
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ﬁ Tensor Train Decomposition AlP

o Tensor train decomposition (TT) or matrix product state (MPS) is a special case

of tree structured TN
* All the nodes (TT-cores) of the underlying TN are connected in cascade or train

« Each tensor entry can be computed as a cascade multiplication of appropriate
matrices (slices of TT-cores)

Liy i, in — G(l) G@ G(N) where GE") = g(”)(:,z’n,:) c Rftn—1xkn
) ) ) 11 192 1N n

ng(l) Xl Q(Q) )(1 Xl Q(N) ER11XIQX---XIN

(1)

G (2) G(3) G

[? [27/ [3\( Iy
R K
2
R = W
1 1) nggf) : 8 g
1 I 1 I3

N4 13
I, 2 I

p—

(Ix Iy xRy) (Ry x 1y xRy) (Ry x I3 X R3) (R3x Iy x 1)
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P_, TT Example

RIKEN

« TT format of tensorized vector a € R!
a ? j /-\ - 49

 TT format of tensorized matrix A € R'*”/
CF Ty Jy (i} J2 /J[\J_% i
I= 1112 Iy
« TT format of tensorized large-scale low-order tensor A € R'*/*#

| A= K1K2 Ky /ﬁ\l /Kfz /K% |
/i 52 b NIy

N

48
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ﬁ Advantages of TT AlP

Main benefits of TT format:

* No need to specify the binary dimension tree as HT format

e Simplicity in performing basic math operations on tensors using TT
format, employing only core tensors

v e.g., matrix-by-matrix multiplication, tensor addition, tensor entry-wise product

 Only TT-cores needs to be stored, making the number of parameters

to scale linearly in tensor order
N

v R, 1R, I, ~ C’)(NRQI), R = mgxx{Rn}, I = mgx{]n}

n=1

49



P, Algorithm for TT Decomposition AIP

e TT-SVD algorithm for TT decomposition applies truncated SVD (tSVD)

sequentially to the unfolding matrices

1) High-order tensor X is first reshaped into a long matrix M;
X M1=X(1)
I |1
1 Reshape I} o LI3l1s
I 4 g 7
2 A

i) tSVD is performed to produce low-rank factorization M; =~ U;S;V;{

) U SV
tSVD L, IR, RO
M 1 1 ™ 2737475

) / o/

1 U

X(1) 5
Reshape 2 Ry R1]2/'\ 31415

’ O/

1%

iii) Matrix U, becomes the first core X", whileS; VT is reshaped into M2

50



ﬁ Algorithm for TT Decomposition Cont AIP

iv) Perform tSVD to yield M> =~ US>V, and reshape U, into an core X*

1 U A
tSVD X R Ry 2R Ry 22 L4
- O O
1y

V) Repeat the procedure until all the cores are extracted

(1) (2) (3) U SV
tSVD X R R, X R R. X R, R.I 4 p R4
— )2 23 34y TE Ay

Cﬁ ; ; [ [
2 3
1y U |

(1) (2) (3) (4) (5)
Reshape X X X R X R X
- A~ B S 3 M 4

o1



ﬁ Algorithm for TT Decomposition Cont AIP

- TT-SVD algorithm using truncated SVD (tSVD)

Input: Nth-order tensor X € R!1*/2**IN 3nd approximation accuracy €
Output Approximative representatlon of a tensor in the TT format

— X" X X"™Y, such that |X — X||r <
Unfoldmg of tensor X in mode-1 M; = Xy
Initialization Ry =1
forn=1to N —1do
Perform tSVD [U,,,S,,,V,]| =tSVD(M,,,e/v/N — 1)
Estimate nth TT rank R, = size(U,, 2)

Reshape orthogonal matrix U,, into a 3rd-order core

S (1)

X " =reshape(Uy,, [Rn-1, In, Ryn])
7 Reshape the matrix V,, into a matrix

M’I’L—|—1 == I‘eShape (Snvgy [R’I’LITL-I-l) nzjg\f:n+2 Ip])
8: end for
S (N)
9: Construct the last core as X

10: return <<X X(Q) X(N)>>

= reshape(Mny, [Rn—1, In,1])
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ﬁ Links between CP and TT AlI'P

Any specific TN format, especially CP, can be converted to TT format

¢V 6%, ™ G

7 h TINI T

R
:
jA(N-l) R
1 ,
1 1 I Iy
(IxI*xR) (RxI, XR) (RxIy,_ *R) (RX1\<1)
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P, Tensor Ring Decomposition AlP

e Tensor train decomposition (TR) generalizes TT with a single loop
connecting the first and last core

« All the nodes (TR-cores) are of 3rd-order tensors

1 2 N

Ry
2 Z Z g?"N,ZLTl 9(7“1),%2,7“2'°'g(7f\117)—1,’iN,7“N

r1=1ro=1 rny=1




ﬁ Matrix Tensor Train Decomposition AIP

e The matrix tensor train (matrix TT) or matrix product operator (MPO) is a

variant of TT that can represent huge-scale structured matrices by

v first converting X € R*7 into a 2Nth-order tensor X € RItxJixl2xJox-InxJn

v then decomposing tensor into a train of 4th-order cores similar to TT-cores

X = G x1 G@ xl...xt g1 41 g@)

Jé{}g(l) R, HG? R, K6 g, J4<:>G(4)
1

I Ll Ll I,
J o R

1 Jy 4
1 1 1 R
R T ST

J, K I3
. P S R
13
(1 X1 x J1XR1) (RyxIp< JyxR5) (RyxI3x J3xR3) (R3><I4>< Jyx1)
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ﬁ Quantized Tensor Train Decomposition ~ AlP

* Recall tensorization creates a high-order tensor from a low-order original data

e Quantization Is a special case of tensorization with each mode has a very small
size, typically 2,3 or 4

 Low-rank TN approximation with high compression ratios can be achieved by
guantization

* Quantization tensor networks (QTN) adopts small-size 3rd-order tensor cores

that are sparsely interconnected via tensor contraction

v e.g. an implementation of QTN using quantized tensor train (QTT)

TT

G G(2) G(3) G(4) G(5) G(6)

(2X2x2x2x2%2)

(64x1)
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@ Operations in TT Format AlP

RIK=N

In TT format, basic math operations can be efficiently performed using slice

matrices of individual core tensors

V' e.g. consider matrix-by-vector multiplication Ax =y

= matrix A € R’*/ and vectors x € R/, y e R'are represented in TT format with

size I =11ly---Iyand J = J1Jo - In
= cores are A(n) c RPn—1 xlnxJnxPn, X(n) e REn-1xInxRn qnd X(n) e Rn-1XInXQn

P17P27°"7PN—1

_ (1) 2 (N)
A - Z A_ 1,p1 O A_(p1)7p2 O+« 0 A‘pN_l’l
p17p2a'“7pN—1:1
Ri1,R2,....RNn_1
1 2 N
X = Z X(’fl) O X(Tl),’l“g O -«++0 X(?"N)_l
7“1,’)"2,...,?"]\[_1:1
Q17Q27"'7QN—1
— 1 2 N
X - Z y(Q1) @) y(Q1),QQ Qs+ 0 y‘(qj\)_l7
ql?QQru,QN—l:l
Where yg?:;)_l’qn B yg::)_l Pn—1;Tn Pn — A'](J:L)—lapn X7(“Z)_1,Tn € Rln Wlth Qn — Pn Rn

S/



ﬁ Operation in TT Format Cont AIP

« Matrix-by-vector multiplication Ax =y is represented by arbitrary TN and TT

I I
Y { 0, Qz On1 0,
y - -
I L .- L”’ Co Dy L L L Iy
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@

Operation in TT Format Cont AlP

« Represent typical cost function J1(x) = y " Ax by arbitrary TN and TT

T @@ @@
11 12 [nF[N [1 ]2 I, IN

A{ AD AP b - — A e — AWM
B Pl D P2 Pn—l B Pn B
Jlj[ R & S A J, J) J, Ty

\

4
e
——
=
=
[\
|
|
|
=
=
|
|
|
<
3

Rl Rz
J1 Jz J(
T (1) <2>+ A e A
A { A A P A P A
I, I, I Iy
(1) (2) e LA e A
A { - Py A P, P, A P e




@ Computation of EVD in TT Format AlP

« ML applications often require computation of extreme eigenvalues/eigenvectors

of a large-scale symmetric matrix
o Standard eigenvalue decomposition (EVD) can be formulated as

AXkZAka, k=1,2,...,K

« Typical iterative solution for extreme EVD problem involves optimizing the

Rayleigh guotient (RQ) cost function
xTAx  (Ax,x)

xTx  (x,%x)

J(x) = R(x,A) =
Amag = Max R(x,A), Anin = min R(x,A)

« Traditional methods are prohibitive for very large-scale matrix A € R*!

say I = 1019
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ﬁ Computation of EVD in TT Format Cont ~ AIP

e TN solution is to represent RQ cost function via low-rank TT format

 Thus a large EVD problem can be converted into a set of small EVD sub-problems
by following steps:

) Tensorize the matrix A € R!*/and eigenvector x € R’ and then represent them

In matrix TT format and TT format, respectively
A =~ (AW,
X = (X0, XMy ¢ Rixxly

A(N)>> c RIixIix-xInxIy

)

1) Reparametrize X by separating the mode-n TT core from rest TT cores using

tensor contraction and frame equations
x = X, x(W

with frame matrices X.., = X~"®; I; ® (X°")t e RivfzInxfin-1lnkn
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ﬁ Computation of EVD in TT Format Cont ~ AIP

i) Optimize a set of RQ functions of small matrices A™instead of optimizing the original

RQ function of a large matrix A
min J(x) = min J(X_,x™)

X x(n)

(n) T A (™) (n)
:minx A X , n=12...,N

x(m)  (x(n) x(n))

where x(™ = vec(X()) e REn-1/nfin




ﬁ Computation of EVD in TT Format Cont ~ AIP

* |n this way, matrices K(n)are usually much smaller than the original
matrix A, thus a large-scale EVD problem are converted into a set of much

smaller EVD sub-problems

A () — ™ p=12...,N
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ﬁ Computation of SVD in TT Format AlP

e Similar to EVD, TT formats can be applied to compute K largest singular
values/vectors of a a large matrix A € R'*/
« SVD can be solved by maximizing the following cost function as
J(U,V) =tr(UTAV), st. UlU=1Ix, VIV=1Ig

where U e RI*E and V e R/xXK

o Similarly, the key idea is to perform TT core contractions to reduce the unfeasible

huge-scale optimization problem to small scale sub-problems as

max )tr((U(”))T A vy gt (UM)TUM =1, (VO)TV = 1,
U vin

where U™ ¢ REn-1InRnxK gnd V() ¢ REn-1/nBaxK

A _ UL AV, e RRu—1Tn R X Ru—1 Jn Ry
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ﬁ Computation of SVD in TT Format Cont ~ AIP

n)a

* |In this way, the contracted matrices Al re much smaller than original

matrix A, thus any efficient SVD algorithms can be applied to A
/ | DN R>"




ﬁ Conclusion AlP

* We provide an example-rich guide to the basic properties of TNs

TN Is demonstrated as a promising tool for analyzing extremely-large
multidimensional data

TN can be naturally employed for dimensionality reduction due to their
Intrinsic compression ability stemming from sparsely distributed
representation

* TN Is advantageous over matrix-based analysis methods with ability to
model strong and weak coupling among multiple models

* TN can serve as a useful fundamental tool to solve a variety of machine
learning problems where data has prohibitively large volume, variety and

veracity
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Question?
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