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Background

• Multidimensional data of exceedingly huge volume, variety and structural 

richness become ubiquitous across disciplines in engineering and data science

✓ multimedia data like speech and video 

✓ remote sensing data

✓ medical and biological data

• Standard machine learning methods and algorithms prohibitive to analysis of 

large-scale, multi-modal, multi-relational big data due to curse of dimensionality

• Machine learning and data analytic require a paradigm shift to efficiently process 

massive datasets within tolerable time

• Tensor networks emerges as very useful tools for dimensionality reduction and 

large-scale optimization problems 
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Curse of Dimensionality
• Curse of dimensionality (COD) an exponentially increasing of number of 

parameters required to describe a system or an extremely large number of 

degrees of freedom 

• For tensor, COD means the number of elements      of an Nth-order tensor of 

size                      grows exponentially with tensor order 

• Tensor volumes become prohibitively huge if order is high, thus requiring 

enormous computational and storage resources
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phenomenon whereby the number of elements, IN , of an Nth-order ten-
sor of size I I I grows exponentially with the tensor order, N .
Tensor volume can therefore easily become prohibitively big for multi-
way arrays for which the number of dimensions (“ways” or “modes”)
is very high, thus requiring enormous computational and memory re-
sources to process such data. The understanding and handling of the
inherent dependencies among the excessive degrees of freedom create
both di�cult to solve problems and fascinating new opportunities, but
comes at a price of reduced accuracy, owing to the necessity to involve
various approximations.

We show that the curse of dimensionality can be alleviated or even
fully dealt with through tensor network representations; these natu-
rally cater for the excessive volume, veracity and variety of data (see
Figure 1.1) and are supported by e�cient tensor decomposition algo-
rithms which involve relatively simple mathematical operations. An-
other desirable aspect of tensor networks is their relatively small-scale
and low-order core tensors, which act as “building blocks” of tensor
networks. These core tensors are relatively easy to handle and visual-
ize, and enable super-compression of the raw, incomplete, and noisy
huge-scale datasets. This also suggests a solution to a more general
quest for new technologies for processing of exceedingly large datasets
within a�ordable computation times.

To address the curse of dimensionality, this work mostly focuses on
approximative low-rank representations of tensors, the so-called low-
rank tensor approximations (LRTA) or low-rank tensor network de-
compositions.

1.3.2 Separation of Variables and Tensor Formats

A tensor is said to be in a full format when it is represented as an orig-
inal (raw) multidimensional array (Klus and Schütte, 2015), however,
distributed storage and processing of high-order tensors in their full
format is infeasible due to the curse of dimensionality. The sparse for-
mat is a variant of the full tensor format which stores only the nonzero
entries of a tensor, and is used extensively in software tools such as the
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Challenges addressed by Tensor Networks

Tensor networks address two main challenges in big data analysis:

(i) Find a low-rank approximate representation for huge data tensor 

or a specific cost function while maintaining the desired accuracy 

of approximation, thus alleviating the curse of dimensionality 

(ii) Extract physically meaningful latent variables from data in a 

sufficiently accurate and computationally afford way
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What are Tensor Networks (TN)?

• Tensor decompositions (TD) decompose higher-order tensors into factor 

tensors and matrices

• Tensor networks (TN) decompose higher-order tensors into sparsely 

interconnected small-scale factor matrices or low-order core tensors

• TD and TN are treated in a united way by considering TD as a simple TN

• TN can be thought of as special graph structures representing high-order 

tensors via a set of sparsely interconnected, distributed low-order core tensors 

• TN enjoys both enhanced interpretation and computational advantages, and 

allows for super-compression of big datasets 

✓ e.g. compute eigenvalues, eigenvectors of high-dimensional linear/nonlinear 

operators
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TN Examples

292 Tensor Operations and Tensor Network Architectures
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Figure 2.14: Illustration of the decomposition of a 9th-order tensor, X
RI1 I2 I9 , into di�erent forms of tensor networks (TNs). In general, the ob-
jective is to decompose a very high-order tensor into sparsely (weakly) connected
low-order and small size tensors, typically 3rd-order and 4th-order tensors called
cores. Top: The Tensor Chain (TC) model, which is equivalent to the Matrix Prod-
uct State (MPS) with periodic boundary conditions (PBC). Middle: The Projected
Entangled-Pair States (PEPS), also with PBC. Bottom: The Tree Tensor Network
State (TTNS).

RI1 I2 I

N , with entries

A i1, i2, . . . , i
N

R

r 1
A r, i1, i2, . . . , i

N

, r , (2.20)

Conversions of tensors to scalars, vectors, matrices or tensors with re-
shaped modes and/or reduced orders are illustrated in Figures 2.11–
2.13.

2.2 Graphical Representation of Fundamental Tensor Net-
works

Tensor networks (TNs) represent a higher-order tensor as a set of
sparsely interconnected lower-order tensors (see Figure 2.14), and

TN decompose high-order tensors into a set of sparsely interconnected 

and distributed small-scale low-order core tensors
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Advantages of TN

• Ability to perform all math operations in tractable formats 

• Sparse and distributed formats of both the structurally rich data and 

complex optimization tasks

• Efficient compressed formats of large multidimensional data via 

tensorization and low-rank tensor decomposition into low-order factor 

core tensors

• Possibility to analyze linked blocks of large-scale tensors in order to 

separate correlated from uncorrelated components in observed raw data

• Graphical representations express math operations on tensors in an 

intuitive way,  without the explicit use of complex math expressions
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Tensors

Basic building blocks for TN diagrams256 Introduction and Motivation
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Figure 1.5: Graphical representation of tensor manipulations. (a) Basic building
blocks for tensor network diagrams. (b) Tensor network diagrams for matrix-vector
multiplication (top), matrix by matrix multiplication (middle) and contraction of
two tensors (bottom). The order of reading of indices is anti-clockwise, from the left
position.

mode. For example, the tensor X RI1 I2 I

N is of order N and size
I

n

in all modes-n n 1, 2, . . . , N . Lower-case letters e.g, i, j are used
for the subscripts in running indices and capital letters I, J denote the
upper bound of an index, i.e., i 1, 2, . . . , I and j 1, 2, . . . , J . For
a positive integer n, the shorthand notation n denotes the set of
indices 1, 2, . . . , n .
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Block Tensors

TN diagrams for representing high-order block tensors, with each 

entry is an individual sub-tensor
260 Introduction and Motivation

4th-order tensor
. . . =

5th-order tensors
...

...

... ...... = =

6th-order tensor

=

Figure 1.6: Graphical representations and symbols for higher-order block tensors.
Each block represents either a 3rd-order tensor or a 2nd-order tensor. The outer
circle indicates a global structure of the block tensor (e.g. a vector, a matrix, a
3rd-order block tensor), while the inner circle reflects the structure of each element
within the block tensor. For example, in the top diagram a vector of 3rd order
tensors is represented by an outer circle with one edge (a vector) which surrounds
an inner circle with three edges (a 3rd order tensor), so that the whole structure
designates a 4th-order tensor.

be visualized through changes in the architecture of a tensor network
diagram.

1.3 Curse of Dimensionality and Generalized Separation of
Variables for Multivariate Functions

1.3.1 Curse of Dimensionality

The term curse of dimensionality was coined by Bellman (1961) to
indicate that the number of samples needed to estimate an arbitrary
function with a given level of accuracy grows exponentially with the
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Basic Operations

TN diagram for representing multi-linear operations

256 Introduction and Motivation
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• Matrix-vector multiplication

• Matrix-matrix multiplication
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• Tensor contraction
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Tensor Reshaping Operations
274 Tensor Operations and Tensor Network Architectures

Matricization

Vectorization

Tensorization

Tensor
Data

Tensorization

Vectorization

...

...

=

=

=

=

Figure 2.1: Tensor reshaping operations: Matricization, vectorization and ten-
sorization. Matricization refers to converting a tensor into a matrix, vectorization to
converting a tensor or a matrix into a vector, while tensorization refers to converting
a vector, a matrix or a low-order tensor into a higher-order tensor.

We refer to (Kolda and Bader, 2009; Cichocki et al., 2009; Lee and
Cichocki, 2016c) for more detail regarding the basic notations and
tensor operations. For convenience, general operations, such as vec
or diag , are defined similarly to the MATLAB syntax.

Multi–indices: By a multi-index i i1i2 i
N

we refer to an index
which takes all possible combinations of values of indices, i1, i2, . . . , i

N

,
for i

n

1, 2, . . . , I
n

, n 1, 2, . . . , N and in a specific order. Multi–
indices can be defined using two di�erent conventions (Dolgov and
Savostyanov, 2014):

1. Little-endian convention (reverse lexicographic ordering)

i1i2 i
N

i1 i2 1 I1 i3 1 I1I2 i
N

1 I1 I
N 1.

2. Big-endian (colexicographic ordering)

i1i2 i
N

i
N

i
N 1 1 I

N

i
N 2 1 I

N

I
N 1

i1 1 I2 I
N

.

Relationship between matricization, vectorization and tensorization
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Matricization (Unfolding)

Illustration of mode-1, mode-2, mode-3 matricization of a 3rd-order tensor
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Figure 2.2: Matricization (flattening, unfolding) used in tensor reshaping. (a)
Mode-1, mode-2, and mode-3 matricizations of a 3rd-order tensor, from the top
to the bottom panel. (b) Tensor network diagram for the mode-n matricization
of an Nth-order tensor, A RI1 I2 I

N , into a short and wide matrix, A
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Matricization (Unfolding)

• TN Diagram of mode-n matricization of Nth-order tensor                  

into a matrix

• TN Diagram of mode-{1,2,…,n} canonical matricization of a Nth-order 

tensor into a matrix
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Tensorization

Tensorization of a vector or a matrix can be considered as a reverse 

process to the vectorization or matricization 

�17
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Vector

x∊ 8K

Matrix

X∊ 4K×2

3rd-order tensor

X ∊
2K×2×2

3

4th-order tensor

X ∊RK×2×2×2
4 IRIRIRI

Figure 2.3: Tensorization of a vector into a matrix, 3rd-order tensor and 4th-order
tensor.

The matricization operator in the MATLAB notation (reverse lexico-
graphic) is given by

X
n

reshape X, I1I2 I
n

, I
n 1 I

N

. (2.3)

As special cases we immediately have (see Figure 2.2)

X 1 X 1 , X
N 1 XT

N

, X
N

vec X . (2.4)

The tensorization of a vector or a matrix can be considered as a
reverse process to the vectorization or matricization (see Figures 2.1
and 2.3).

Kronecker, strong Kronecker, and Khatri–Rao products of
matrices and tensors. For an I J matrix A and a K L matrix B,
the standard (Right) Kronecker product, A B, and the Left Kronecker
product, A

L

B, are the following IK JL matrices

A B
a1,1B a1,J

B
... . . . ...

a
I,1B a

I,J

B
, A

L

B
Ab1,1 Ab1,L

... . . . ...
Ab

K,1 Ab
K,L

.

Observe that A
L

B B A, so that the Left Kronecker product
will be used in most cases in this monograph as it is consistent with
the little-endian notation.



Tensor Kronecker Product

The kronecker product of two Nth-order tensors

and                            yields tensor                                                  with 

entries
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 =

C = A B

A11 A12 A13

A21 A22 A23

B11 B12

B21 B22

B31 B32

A11 B
+A12
+A13

L 11
BL 21
BL 31

A21 B
+A22
+A23

L 11
BL 21
BL 31

A11 B
+A12
+A13

L 12
BL 22
BL 32

A21 B
+A22
+A23

L 12
BL 22
BL 32

Figure 2.4: Illustration of the strong Kronecker product of two block matrices, A
A

r1,r2 RR1I1 R2J1 and B B
r2,r3 RR2I2 R3J2 , which is defined as a block

matrix C A B RR1I1I2 R3J1J2 , with the blocks C
r1,r3

R2
r2 1 A

r1,r2 L

B
r2,r3 RI1I2 J1J2 , for r1 1, . . . , R1, r2 1, . . . , R2 and r3 1, . . . , R3.

Using Left Kronecker product, the strong Kronecker product of two
block matrices, A RR1I R2J and B RR2K R3L, given by

A
A1,1 A1,R2

... . . . ...
A

R1,1 A
R1,R2

, B
B1,1 B1,R3

... . . . ...
B

R2,1 B
R2,R3

,

can be defined as a block matrix (see Figure 2.4 for a graphical illus-
tration)

C A B RR1IK R3JL, (2.5)

with blocks C
r1,r3

R2
r2 1 A

r1,r2 L

B
r2,r3 RIK JL, where

A
r1,r2 RI J and B

r2,r3 RK L are the blocks of matrices within
A and B, respectively (de Launey and Seberry, 1994; Kazeev et al.,
2013a,b). Note that the strong Kronecker product is similar to the
standard block matrix multiplication, but performed using Kronecker
products of the blocks instead of the standard matrix-matrix prod-
ucts. The above definitions of Kronecker products can be naturally
extended to tensors (Phan et al., 2012) (see Table 2.1), as shown below.

The Kronecker product of tensors. The (Left) Kronecker product
of two Nth-order tensors, A RI1 I2 I

N and B RJ1 J2 J

N ,
yields a tensor C A

L

B RI1J1 I

N

J

N of the same order
but enlarged in size, with entries c

i1j1,...,i

N

j

N

a
i1,...,i

N

b
j1,...,j

N

as
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I1

I2

I3

I4 J1

J3

J4

J2

A B

K I  J1 1 1 K I  J4 4 4

K I  J2 2 2 K I  J3 3 3

Figure 2.5: The left Kronecker product of two 4th-order tensors, A and B,
yields a 4th-order tensor, C A

L

B RI1J1 I4J4 , with entries c

k1,k2,k3,k4
a

i1,...,i4 b

j1,...,j4 , where k

n

i

n

j

n

(n 1, 2, 3, 4). Note that the order of tensor C is
the same as the order of A and B, but the size in every mode within C is a product
of the respective sizes of A and B.

illustrated in Figure 2.5.

The mode-n Khatri–Rao product of tensors. The Mode-n
Khatri–Rao product of two Nth-order tensors, A RI1 I2 I

n

I

N

and B RJ1 J2 J

n

J

N , for which I
n

J
n

, yields a tensor
C A

n

B RI1J1 I

n 1J

n 1 I

n

I

n 1J

n 1 I

N

J

N , with subten-
sors C :, . . . :, i

n

, :, . . . , : A :, . . . :, i
n

, :, . . . , : B :, . . . :, i
n

, :, . . . , : .

The mode-2 and mode-1 Khatri–Rao product of matrices.
The above definition simplifies to the standard Khatri–Rao (mode-
2) product of two matrices, A a1, a2, . . . , a

R

RI R and B
b1, b2, . . . , b

R

RJ R, or in other words a “column-wise Kronecker
product”. Therefore, the standard Right and Left Khatri–Rao products
for matrices are respectively given by2

A B a1 b1, a2 b2, . . . , a
R

b
R

RIJ R, (2.6)
A

L

B a1
L

b1, a2
L

b2, . . . , a
R L

b
R

RIJ R. (2.7)

2For simplicity, the mode 2 subindex is usually neglected, i.e., A 2 B A B.



Multilinear Product—TTM

The mode-n product also called tensor-times-matrix (TTM) product of a 

tensor                        and matrix                  is defined as
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X
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I1

I2

I3

I4

(1)
rb

(2)
rb

(3)
rb

(4)
rb

=1

R

r

Figure 2.9: The CP decomposition for a 4th-order tensor X of rank R. Observe
that the rank-1 subtensors are formed through the outer products of the vectors
b 1

r

, . . . , b 4
r

, r 1, . . . , R.

linear combination of such symmetric rank-1 tensors through the so-
called symmetric CP decomposition, given by

X
R

r 1
⁄

r

b
r

b
r

b
r

, b
r

RI , (2.10)

where ⁄
r

R are the scaling parameters for the unit length vectors b
r

,
while the symmetric tensor rank is the minimal number R of rank-1
tensors that is necessary for its exact representation.

Multilinear products. The mode-n (multilinear) product, also called
the tensor-times-matrix product (TTM), of a tensor, A RI1 I

N ,
and a matrix, B RJ I

n , gives the tensor

C A
n

B RI1 I

n 1 J I

n 1 I

N , (2.11)

with entries

c
i1,i2,...,i

n 1,j,i

n 1,...,i

N

I

n

i

n

1
a

i1,i2,...,i

N

b
j,i

n

. (2.12)

From (2.12) and Figure 2.10, the equivalent matrix form is
C

n

BA
n

, which allows us to employ established fast matrix-by-
vector and matrix-by-matrix multiplications when dealing with very
large-scale tensors. E�cient and optimized algorithms for TTM are,
however, still emerging (Li et al., 2015; Ballard et al., 2015a,b).

Full multilinear (Tucker) product. A full multilinear product, also
called the Tucker product, of an Nth-order tensor, G RR1 R2 R

N ,
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called the Tucker product, of an Nth-order tensor, G RR1 R2 R

N ,
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Figure 2.10: Illustration of the multilinear mode-n product, also known as the
TTM (Tensor-Times-Matrix) product, performed in the tensor format (left) and
the matrix format (right). (a) Mode-1 product of a 3rd-order tensor, A RI1 I2 I3 ,
and a factor (component) matrix, B RJ I1 , yields a tensor C A 1 B
RJ I2 I3 . This is equivalent to a simple matrix multiplication formula, C 1
BA 1 . (b) Graphical representation of a mode-n product of an Nth-order tensor,
A RI1 I2 I

N , and a factor matrix, B RJ I

n .

and a set of N factor matrices, B n RI

n

R

n for n 1, 2, . . . , N ,
performs the multiplications in all the modes and can be compactly
written as (see Figure 2.11(b))

C G 1 B 1
2 B 2

N

B N (2.13)
JG; B 1 , B 2 , . . . , B N K RI1 I2 I

N .

Observe that this format corresponds to the Tucker decomposition
(Tucker, 1964, 1966; Kolda and Bader, 2009) (see Section 3.3).

Multilinear product of a tensor and a vector (TTV). In a sim-
ilar way, the mode-n multiplication of a tensor, A RI1 I

N , and a
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Multilinear product of a tensor and a vector (TTV). In a sim-
ilar way, the mode-n multiplication of a tensor, A RI1 I
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Multilinear Product—TTV

The tensor-times-vector (TTV) product of a tensor                         and a 

vector              yields tensor                                                       with entries
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vector, b RI

n (tensor-times-vector, TTV) yields a tensor

C A¯
n

b RI1 I

n 1 I

n 1 I

N , (2.14)

with entries

c
i1,...,i

n 1,i

n 1,...,i

N

I

n

i

n

1
a

i1,...,i

n 1,i

n

,i

n 1,...,i

N

b
i

n

. (2.15)

Note that the mode-n multiplication of a tensor by a matrix does not
change the tensor order, while the multiplication of a tensor by vectors
reduces its order, with the mode n removed (see Figure 2.11).

Multilinear products of tensors by matrices or vectors play a
key role in deterministic methods for the reshaping of tensors and
dimensionality reduction, as well as in probabilistic methods for
randomization/sketching procedures and in random projections of
tensors into matrices or vectors. In other words, we can also perform
reshaping of a tensor through random projections that change its
entries, dimensionality or size of modes, and/or the tensor order. This
is achieved by multiplying a tensor by random matrices or vectors,
transformations which preserve its basic properties. (Sun et al., 2006;
Drineas and Mahoney, 2007; Lu et al., 2011; Li and Monga, 2012;
Pham and Pagh, 2013; Wang et al., 2015; Kuleshov et al., 2015; Sorber
et al., 2016) (see Section 3.5 for more detail).

Tensor contractions. Tensor contraction is a fundamental and the
most important operation in tensor networks, and can be considered
a higher-dimensional analogue of matrix multiplication, inner product,
and outer product.

In a way similar to the mode-n multilinear product3, the mode- m

n

product (tensor contraction) of two tensors, A RI1 I2 I

N and B
RJ1 J2 J

M , with common modes, I
n

J
m

, yields an N M 2 -
order tensor, C RI1 I

n 1 I

n 1 I

N

J1 J

m 1 J

m 1 J

M , in
the form (see Figure 2.12(a))

C A m

n

B, (2.16)
3In the literature, sometimes the symbol

n

is replaced by
n

.
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Figure 2.11: Multilinear tensor products in a compact tensor network notation.
(a) Transforming and/or compressing a 4th-order tensor, G RR1 R2 R3 R4 , into a
scalar, vector, matrix and 3rd-order tensor, by multilinear products of the tensor and
vectors. Note that a mode-n multiplication of a tensor by a matrix does not change
the order of a tensor, while a multiplication of a tensor by a vector reduces its order
by one. For example, a multilinear product of a 4th-order tensor and four vectors (top
diagram) yields a scalar. (b) Multilinear product of a tensor, G RR1 R2 R5 , and
five factor (component) matrices, B n RI

n

R

n (n 1, 2, . . . , 5), yields the tensor
C G 1B 1

2B 2
3B 3

4B 4
5B 5 RI1 I2 I5 . This corresponds to the

Tucker format. (c) Multilinear product of a 4th-order tensor, G RR1 R2 R3 R4 ,
and three vectors, b

n

RR

n

n 1, 2, 3 , yields the vector c G ¯ 1b1 ¯ 2b2 ¯ 3b3
RR4 .

✓ an Illustration of compressing a 4th-order tensor into a scaler, vector, matrix 

or 3rd-order tensor by TTV
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Full Multilinear Product—Tucker

The full multilinear (Tucker) product of a tensor                             and a 

set of factor matrices                       perform multiplication in all the modes

✓ an Illustration of Tucker product a 5th-order tensor and five factor matrices
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Figure 2.9: The CP decomposition for a 4th-order tensor X of rank R. Observe
that the rank-1 subtensors are formed through the outer products of the vectors
b 1

r

, . . . , b 4
r

, r 1, . . . , R.

linear combination of such symmetric rank-1 tensors through the so-
called symmetric CP decomposition, given by

X
R

r 1
⁄

r

b
r

b
r

b
r

, b
r

RI , (2.10)

where ⁄
r

R are the scaling parameters for the unit length vectors b
r

,
while the symmetric tensor rank is the minimal number R of rank-1
tensors that is necessary for its exact representation.

Multilinear products. The mode-n (multilinear) product, also called
the tensor-times-matrix product (TTM), of a tensor, A RI1 I

N ,
and a matrix, B RJ I

n , gives the tensor

C A
n

B RI1 I

n 1 J I

n 1 I

N , (2.11)

with entries

c
i1,i2,...,i

n 1,j,i

n 1,...,i

N

I

n

i

n

1
a

i1,i2,...,i

N

b
j,i

n

. (2.12)

From (2.12) and Figure 2.10, the equivalent matrix form is
C

n

BA
n

, which allows us to employ established fast matrix-by-
vector and matrix-by-matrix multiplications when dealing with very
large-scale tensors. E�cient and optimized algorithms for TTM are,
however, still emerging (Li et al., 2015; Ballard et al., 2015a,b).

Full multilinear (Tucker) product. A full multilinear product, also
called the Tucker product, of an Nth-order tensor, G RR1 R2 R

N ,
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Figure 2.10: Illustration of the multilinear mode-n product, also known as the
TTM (Tensor-Times-Matrix) product, performed in the tensor format (left) and
the matrix format (right). (a) Mode-1 product of a 3rd-order tensor, A RI1 I2 I3 ,
and a factor (component) matrix, B RJ I1 , yields a tensor C A 1 B
RJ I2 I3 . This is equivalent to a simple matrix multiplication formula, C 1
BA 1 . (b) Graphical representation of a mode-n product of an Nth-order tensor,
A RI1 I2 I

N , and a factor matrix, B RJ I

n .

and a set of N factor matrices, B n RI

n

R

n for n 1, 2, . . . , N ,
performs the multiplications in all the modes and can be compactly
written as (see Figure 2.11(b))

C G 1 B 1
2 B 2

N

B N (2.13)
JG; B 1 , B 2 , . . . , B N K RI1 I2 I

N .

Observe that this format corresponds to the Tucker decomposition
(Tucker, 1964, 1966; Kolda and Bader, 2009) (see Section 3.3).

Multilinear product of a tensor and a vector (TTV). In a sim-
ilar way, the mode-n multiplication of a tensor, A RI1 I

N , and a
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performs the multiplications in all the modes and can be compactly
written as (see Figure 2.11(b))
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JG; B 1 , B 2 , . . . , B N K RI1 I2 I
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Observe that this format corresponds to the Tucker decomposition
(Tucker, 1964, 1966; Kolda and Bader, 2009) (see Section 3.3).

Multilinear product of a tensor and a vector (TTV). In a sim-
ilar way, the mode-n multiplication of a tensor, A RI1 I

N , and a
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Figure 2.11: Multilinear tensor products in a compact tensor network notation.
(a) Transforming and/or compressing a 4th-order tensor, G RR1 R2 R3 R4 , into a
scalar, vector, matrix and 3rd-order tensor, by multilinear products of the tensor and
vectors. Note that a mode-n multiplication of a tensor by a matrix does not change
the order of a tensor, while a multiplication of a tensor by a vector reduces its order
by one. For example, a multilinear product of a 4th-order tensor and four vectors (top
diagram) yields a scalar. (b) Multilinear product of a tensor, G RR1 R2 R5 , and
five factor (component) matrices, B n RI

n

R

n (n 1, 2, . . . , 5), yields the tensor
C G 1B 1

2B 2
3B 3

4B 4
5B 5 RI1 I2 I5 . This corresponds to the

Tucker format. (c) Multilinear product of a 4th-order tensor, G RR1 R2 R3 R4 ,
and three vectors, b

n

RR

n

n 1, 2, 3 , yields the vector c G ¯ 1b1 ¯ 2b2 ¯ 3b3
RR4 .



Multilinear Product—Tensor Contraction

The tensor contraction of tensors                          and                            

with common modes             , yields an (N+M-2)-order tensor as

with entires 
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vector, b RI

n (tensor-times-vector, TTV) yields a tensor

C A¯
n

b RI1 I

n 1 I

n 1 I

N , (2.14)

with entries

c
i1,...,i

n 1,i

n 1,...,i

N

I

n

i

n

1
a

i1,...,i

n 1,i

n

,i

n 1,...,i

N

b
i

n

. (2.15)

Note that the mode-n multiplication of a tensor by a matrix does not
change the tensor order, while the multiplication of a tensor by vectors
reduces its order, with the mode n removed (see Figure 2.11).

Multilinear products of tensors by matrices or vectors play a
key role in deterministic methods for the reshaping of tensors and
dimensionality reduction, as well as in probabilistic methods for
randomization/sketching procedures and in random projections of
tensors into matrices or vectors. In other words, we can also perform
reshaping of a tensor through random projections that change its
entries, dimensionality or size of modes, and/or the tensor order. This
is achieved by multiplying a tensor by random matrices or vectors,
transformations which preserve its basic properties. (Sun et al., 2006;
Drineas and Mahoney, 2007; Lu et al., 2011; Li and Monga, 2012;
Pham and Pagh, 2013; Wang et al., 2015; Kuleshov et al., 2015; Sorber
et al., 2016) (see Section 3.5 for more detail).

Tensor contractions. Tensor contraction is a fundamental and the
most important operation in tensor networks, and can be considered
a higher-dimensional analogue of matrix multiplication, inner product,
and outer product.

In a way similar to the mode-n multilinear product3, the mode- m

n

product (tensor contraction) of two tensors, A RI1 I2 I

N and B
RJ1 J2 J

M , with common modes, I
n

J
m

, yields an N M 2 -
order tensor, C RI1 I

n 1 I

n 1 I

N

J1 J

m 1 J

m 1 J

M , in
the form (see Figure 2.12(a))

C A m

n

B, (2.16)
3In the literature, sometimes the symbol

n

is replaced by
n

.
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This operation is referred to as a contraction of two tensors in single
common mode.

Tensors can be contracted in several modes or even in all modes, as
illustrated in Figure 2.12. For convenience of presentation, the super-
or sub-index, e.g., m, n, will be omitted in a few special cases. For
example, the multilinear product of the tensors, A RI1 I2 I

N and
B RJ1 J2 J

M , with common modes, I
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J1, can be written as

C A 1
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B A 1 B A B RI1 I2 I

N 1 J2 J

M , (2.18)
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This operation is referred to as a contraction of two tensors in single
common mode.

Tensors can be contracted in several modes or even in all modes, as
illustrated in Figure 2.12. For convenience of presentation, the super-
or sub-index, e.g., m, n, will be omitted in a few special cases. For
example, the multilinear product of the tensors, A RI1 I2 I

N and
B RJ1 J2 J

M , with common modes, I
N

J1, can be written as

C A 1
N

B A 1 B A B RI1 I2 I

N 1 J2 J

M , (2.18)
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Tensor Contraction Examples Cont

• Tensor contraction along all the modes (or Inner product) of two 3rd-order 

tensors yield a scaler
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Multilinear Product—Tensor Trace

The tensor trace consider a tensor with partial self-contraction modes, where 

the outer indices represent physical modes, inner indices represent contraction 

modes. The tensor trace performs the summation of all inner indices of tensor
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✓ e.g., a tensor      of size                     has two inner indices: mode 1 and 3 of 

size    , and one outer index: mode 2 of size    , tensor trace yields a vector 
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for which the entries

c
i1,i2,...,i

N 1,j2,j3,...,j

M

I

N

i

N

1
a

i1,i2,...,i

N

b
i

N

,j2,...,j

M

.

In this notation, the multiplications of matrices and vectors can be
written as, A 1

2 B A 1 B AB, A 2
2 B ABT, A 1,2

1,2 B
A¯B A, B , and A 1

2 x A 1 x Ax.
Note that tensor contractions are, in general not associative or com-

mutative, since when contracting more than two tensors, the order has
to be precisely specified (defined), for example, A b

a

B d

c

C for b c.
It is also important to note that a matrix-by-vector product,

y Ax RI1 I

N , with A RI1 I

N

J1 J

N and x RJ1 J

N , can be ex-
pressed in a tensorized form via the contraction operator as Y A¯X,
where the symbol ¯ denotes the contraction of all modes of the tensor
X (see Section 4.5).

Unlike the matrix-by-matrix multiplications for which several
e�cient parallel schemes have been developed, the number of e�cient
algorithms for tensor contractions is rather limited. In practice, due to
the high computational complexity of tensor contractions, especially
for tensor networks with loops, this operation is often performed
approximately (Lubasch et al., 2014; Di Napoli et al., 2014; Pfeifer
et al., 2014; Kao et al., 2015).

Tensor trace. Consider a tensor with partial self-contraction modes,
where the outer (or open) indices represent physical modes of the ten-
sor, while the inner indices indicate its contraction modes. The Tensor
Trace operator performs the summation of all inner indices of the ten-
sor (Gu et al., 2009). For example, a tensor A of size R I R has
two inner indices, modes 1 and 3 of size R, and one open mode of size
I. Its tensor trace yields a vector of length I, given by

a Tr A
r

A r, :, r ,

the elements of which are the traces of its lateral slices A
i

RR R

i 1, 2, . . . , I , that is, (see bottom of Figure 2.13)

a tr A1 , . . . , tr A
i

, . . . , tr A
I

T. (2.19)
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Figure 2.13: Tensor network notation for the traces of matrices (panels 1-
4 from the top), and a (partial) tensor trace (tensor self-contraction) of a 3rd-
order tensor (bottom panel). Note that graphical representations of the trace
of matrices intuitively explain the permutation property of trace operator, e.g.,
tr A1A2A3A4 tr A3A4A1A2 .

A tensor can have more than one pair of inner indices, e.g., the tensor
A of size R I S S I R has two pairs of inner indices, modes 1
and 6, modes 3 and 4, and two open modes (2 and 5). The tensor trace
of A therefore returns a matrix of size I I defined as

Tr A
r s

A r, :, s, s, :, r .

A variant of Tensor Trace (Lee and Cichocki, 2016c) for the
case of the partial tensor self-contraction considers a tensor A
RR I1 I2 I

N

R and yields a reduced-order tensor A Tr A



Tensor Trace Examples

• TN diagrams of tensor trace of matrices
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and 6, modes 3 and 4, and two open modes (2 and 5). The tensor trace
of A therefore returns a matrix of size I I defined as
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Transformation of TN structures

• perform complex math operations on core tensors in an intuitive way, 

without resorting to math expressions

• modify, simplify and optimize the topology of TN, while keeping the 

original physical model intact 

�27

✓ modify topology to tree structured TN like HT/TT can reduce computational 

complexity (through sequential contraction of cores) and enhance stability 

of algorithms

✓ often advantageous to modify TN with circles to TN with tree structure by 

eliminating circles

TN graphical representation has benefits to



Transformation of TN structures Cont

i) perform sequential core tensors

ii) unfold these contracted tensors into matrices 

iii) factorize the unfolded matrices typically via truncated SVD

iv) reshape matrices back into new core tensors

�28

A general procedure of the basic transformation on TN structure:
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Figure 2.24: Illustration of basic transformations on a tensor network. (a) Con-
traction, matricization, matrix factorization (SVD) and reshaping of matrices back
into tensors. (b) Transformation of a Honey-Comb lattice into a Tensor Chain (TC)
via tensor contractions and the SVD.

performed to give the tensor

G 1,2 G 1 1 G 2 RI1 I2 I3 I4 , (2.23)

with entries g
1,2

i1,i2,i3,i4
R

r 1 g
1

i1,i2,r

g
2

r,i3,i4 . In the next step, the tensor
G 1,2 is transformed into a matrix via matricization, followed by a low-
rank matrix factorization using the SVD, to give

G 1,2
i1i4, i2i3

USVT RI1I4 I2I3 . (2.24)

In the final step, the factor matrices, US1 2 RI1I4 R and VS1 2

RR I2I3 , are reshaped into new core tensors, G 1 RI1 R I4 and
G 2 RR I2 I3 .
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traction, matricization, matrix factorization (SVD) and reshaping of matrices back
into tensors. (b) Transformation of a Honey-Comb lattice into a Tensor Chain (TC)
via tensor contractions and the SVD.
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be extended to multilinear models using tensor decompositions, such
as the Canonical Polyadic (CP) and the Tucker decompositions, as il-
lustrated in Figures 3.1, 3.2 and 3.3.

3.2 The CP Format

The CP decomposition (also called the CANDECOMP, PARAFAC, or
Canonical Polyadic decomposition) decomposes an Nth-order tensor,
X RI1 I2 I

N , into a linear combination of terms, b 1
r

b 2
r

b N

r

, which are rank-1 tensors, and is given by (Hitchcock, 1927;
Harshman, 1970; Carroll and Chang, 1970)

X
R

r 1
⁄

r

b 1
r

b 2
r

b N

r

� 1 B 1
2 B 2

N

B N

J�; B 1 , B 2 , . . . , B N K,

(3.4)

where ⁄
r

are non-zero entries of the diagonal core tensor �
RR R R and B n b n

1 , b n

2 , . . . , b n

R

RI

n

R are factor ma-
trices (see Figure 3.1 and Figure 3.2).

Via the Khatri–Rao products (see Table 2.1), the CP decomposition
can be equivalently expressed in a matrix/vector form as

X
n

B n � B N B n 1 B n 1 B 1 T (3.5)
B n � B 1

L L

B n 1
L

B n 1
L L

B N T

and

vec X B N B N 1 B 1 ⁄ (3.6)
B 1

L

B 2
L L

B N ⁄,

where ⁄ ⁄1, ⁄2, . . . , ⁄
R

T and � diag ⁄1, . . . , ⁄
R

is a diagonal
matrix.

The rank of a tensor X is defined as the smallest R for which the
CP decomposition in (3.4) holds exactly.

Algorithms to compute CP decomposition. In real world appli-
cations, the signals of interest are corrupted by noise, so that the CP
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Figure 3.1: Representations of the CP decomposition. The objective of the CP
decomposition is to estimate the factor matrices B n RI

n

R and scaling coef-
ficients ⁄1, ⁄1, . . . , ⁄

R

. (a) The CP decomposition of a 3rd-order tensor in the
form, X � 1 A 2 B 3 C R

r 1 ⁄

r

a
r

b
r

c
r

G
c

1 A 2 B, with
G

c

� 3 C. (b) The CP decomposition for a 4th-order tensor in the form
X � 1 B 1

2 B 2
3 B 3

4 B 4 R

r 1 ⁄

r

b 1
r

b 2
r

b 3
r

b 4
r

.
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(a) Standard block diagrams of Tucker (top) and Tucker-CP (bottom) de-
compositions for a 3rd-order tensor
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Figure 3.3: Illustration of the Tucker and Tucker-CP decompositions, where the
objective is to compute the factor matrices, B n , and the core tensor, G. (a)
Tucker decomposition of a 3rd-order tensor, X G 1 B 1

2 B 2
3 B 3 . In

some applications, the core tensor can be further approximately factorized using
the CP decomposition as G R

r 1 a
r

b
r

c
r

(bottom diagram), or alterna-
tively using TT/HT decompositions. (b) Graphical representation of the Tucker-CP
decomposition for a 4th-order tensor, X G 1 B 1
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3.3 The Tucker Tensor Format

Compared to the CP decomposition, the Tucker decomposition pro-
vides a more general factorization of an Nth-order tensor into a rela-
tively small size core tensor and factor matrices, and can be expressed
as follows:

X
R1

r1 1

R

N

r

N

1
g

r1r2 r

N

b 1
r1 b 2

r2 b N

r

N

G 1 B 1
2 B 2

N

B N

JG; B 1 , B 2 , . . . , B N K, (3.10)

where X RI1 I2 I

N is the given data tensor, G RR1 R2 R

N

is the core tensor, and B n b n

1 , b n

2 , . . . , b n

R

n

RI

n

R

n are the
mode-n factor (component) matrices, n 1, 2, . . . , N (see Figure 3.3).
The core tensor (typically, R

n

I
n

) models a potentially complex
pattern of mutual interaction between the vectors in di�erent modes.
The model in (3.10) is often referred to as the Tucker-N model.

The CP and Tucker decompositions have long history. For recent
surveys and more detailed information we refer to (Kolda and Bader,
2009; Grasedyck et al., 2013; Comon, 2014; Cichocki et al., 2015b;
Sidiropoulos et al., 2016).

Using the properties of the Kronecker tensor product, the Tucker-N
decomposition in (3.10) can be expressed in an equivalent matrix and
vector form as

X
n

B n G
n

B 1
L L

B n 1
L

B n 1
L L

B N T

B n G
n

B N B n 1 B n 1 B 1 T,

(3.11)
X

n

B 1
L L

B n G
n

B n 1
L L

B N T

B n B 1 G
n

B N B N 1 B n 1 T,

(3.12)
vec X B 1

L

B 2
L L

B N vec G
B N B N 1 B 1 vec G , (3.13)
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If R1, R2, . . . , R
N

is the multilinear rank of X and
Q1, Q2, . . . , Q

N

the multilinear rank Y, then the core tensor
G

Z

G
X

G
Y

RR1Q1 R

N

Q

N and the factor matrices

Z n X n

1 Y n R I

n

J

n

1 R

n

Q

n , (3.29)

where Z n :, s
n

X n :, r
n

Y n :, q
n

R I

n

J

n

1 for
s

n

r
n

q
n

1, 2, . . . , R
n

Q
n

.

• Super Fast discrete Fourier transform (MATLAB functions
�tn X and �t X n , , 1 ) of a tensor in the Tucker format

F X JG
X

; F X 1 , . . . , F X N K. (3.30)

Note that if the data tensor admits low multilinear rank approxi-
mation, then performing the FFT on factor matrices of relatively
small size X n RI

n

R

n , instead of a large-scale data tensor, de-
creases considerably computational complexity. This approach is
referred to as the super fast Fourier transform in Tucker format.

3.4 Higher Order SVD (HOSVD) for Large-Scale Problems

The MultiLinear Singular Value Decomposition (MLSVD), also called
the higher-order SVD (HOSVD), can be considered as a special form of
the constrained Tucker decomposition (De Lathauwer et al., 2000a,b),
in which all factor matrices, B n U n RI

n

I

n , are orthogonal and
the core tensor, G S RI1 I2 I

N , is all-orthogonal (see Figure
3.4).

The orthogonality properties of the core tensor are defined through
the following conditions:

1. All orthogonality. The slices in each mode are mutually orthogo-
nal, e.g., for a 3rd-order tensor and its lateral slices

S:,k,:S:,l,: 0, for k l, (3.31)

2. Pseudo-diagonality. The Frobenius norms of slices in each mode
are decreasing with the increase in the running index, e.g., for a
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3rd-order tensor and its lateral slices

S:,k,: F

S:,l,: F

, k l. (3.32)

These norms play a role similar to singular values in standard
matrix SVD.

In practice, the orthogonal matrices U n RI

n

R

n , with R
n

I
n

,
can be computed by applying both the randomized and standard trun-
cated SVD to the unfolded mode-n matrices, X

n

U n S
n

V n T

RI

n

I1 I

n 1I

n 1 I

N . After obtaining the orthogonal matrices U n of
left singular vectors of X

n

, for each n, the core tensor G S can be
computed as

S X 1 U 1 T
2 U 2 T

N

U N T, (3.33)

so that

X S 1 U 1
2 U 2

N

U N . (3.34)

Due to the orthogonality of the core tensor S, its slices are also mutually
orthogonal.

Analogous to the standard truncated SVD, a large-scale data ten-
sor, X, can be approximated by discarding the multilinear singular
vectors and slices of the core tensor corresponding to small multilin-
ear singular values. Figure 3.4 and Algorithm 2 outline the truncated
HOSVD, for which any optimized matrix SVD procedure can be ap-
plied.

For large-scale tensors, the unfolding matrices, X
n

RI

n

I

n̄ (I
n̄

I1 I
n

I
n 1 I

N

) may become prohibitively large (with I
n̄

I
n

), eas-
ily exceeding the memory of standard computers. Using a direct and
simple divide-and-conquer approach, the truncated SVD of an unfold-
ing matrix, X

n

U n S
n

V n T, can be partitioned into Q slices, as
X

n

X1,n

, X2,n

, . . . , X
Q,n

U n S
n

VT
1,n

, VT
2,n

, . . . , VT
Q,n

. Next,
the orthogonal matrices U n and the diagonal matrices S

n

can be ob-
tained from the eigenvalue decompositions X

n

XT
n

U n S2
n

U n T

q

X
q,n

XT
q,n

RI

n

I

n , allowing for the terms V
q,n

XT
q,n

U n S 1
n

to
be computed separately. This enables us to optimize the size of the qth

334 Multiway Component Analysis and Tensor Decompositions

(a)

XI

J

=

R

U

ur

Eigenvector of XX
T

R

vr

Eigenvector of X X
T

Rank of XX
T

V
T

R

( )I J ( )I I ( )I J ( )J J

R

0

~

...
...

Singular
value

S
sr

0

0

(b)

U
(1)

1 1( )I R 2 2( )I R

3 3( )I R

X U
(2)I1

I2

I3

I1
R1

R2

R3

I3

I2

I2I1

1 2 3( )I I I

S

R3

St

U(3)

R2R1
1 2 3( )I I I

(c)

I1
I4

I3

I2

X

R1
R2

R3

R4
I1

I2

I3

I4

StU
(1)

U
(2)

U
(3)

U
(4)

Figure 3.4: Graphical illustration of the truncated SVD and HOSVD. (a) The ex-
act and truncated standard matrix SVD, X USVT. (b) The truncated (approxi-
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Hierarchical Tucker Decomposition

• The hierarchical Tucker decomposition (HT) requires splitting the set 

of modes of a tensor in a hierarchical way

• HT results in a binary tree containing a subset of modes at each 

branch called a dimension tree                  which satisfies

�37

✓ all nodes            are non-empty subsets of 

✓ the set                                 is the root node of 

✓ each non-leaf node has two children                   such that     is a 

disjoint union  

294 Tensor Operations and Tensor Network Architectures

I8

I1

I2

I3

I4

I5

I6

I7

!

I8

I7

I5

I6

I4

I3
I2

I1

Figure 2.15: The standard Tucker decomposition of an 8th-order tensor into a core
tensor (red circle) and eight factor matrices (green circles), and its transformation
into an equivalent Hierarchical Tucker (HT) model using interconnected smaller size
3rd-order core tensors and the same factor matrices.

are “separated” from other groups of modes, so that a sequential HT
decomposition can be performed via a (truncated) SVD applied to a
suitably matricized tensor. One of the simplest and most straightfor-
ward choices of a dimension tree is the linear and unbalanced tree,
which gives rise to the tensor-train (TT) decomposition, discussed in
detail in Section 2.2.2 and Section 4 (Oseledets, 2011; Oseledets and
Tyrtyshnikov, 2009).

Using mathematical formalism, a dimension tree is a binary tree
T

N

, N 1, which satisfies that

(i) all nodes t T
N

are non-empty subsets of {1, 2,. . . , N},

(ii) the set t
root

1, 2, . . . , N is the root node of T
N

, and

(iii) each non-leaf node has two children u, v T
N

such that t is a
disjoint union t u v.

The HT model is illustrated through the following Example.

Example. Suppose that the dimension tree T7 is given, which gives
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denote factor matrices (which can be absorbed by core tensors), while red circles
indicate cores. Observe that the representations are not unique.
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be expressed in the tensor and vector/matrix forms as follows. Let in-
termediate tensors X t with t n1, . . . , n

k

1, . . . , 7 have the
size I

n1 I
n2 I

n

k

R
t

. Let X t

r

t

X t :, . . . , :, r
t

denote the
subtensor of X t and X t X t

k

RI

n1 I

n2 I

n

k

R

t denote the corre-
sponding unfolded matrix. Let G t RR

u

R

v

R

t be core tensors where
u and v denote respectively the left and right children of t.

The HT model shown in Figure 2.17 can be then described mathe-
matically in the vector form as

vec X X 123
L

X 4567 vec G 12 7 ,

X 123 B 1
L

X 23 G 123
2 , X 4567 X 45

L

X 67 G 4567
2 ,

X 23 B 2
L

B 3 G 23
2 , X 45 B 4

L

B 5 G 45
2 ,

X 67 B 6
L

B 7 G 67
2 .
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• Let intermediate tensors        with node                                                 

have the size  

• Let                                            denotes unfolded of  

• Let                          be the core tensor linking left and right child of   , 

HT can be expressed recursively 
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Figure 2.15: The standard Tucker decomposition of an 8th-order tensor into a core
tensor (red circle) and eight factor matrices (green circles), and its transformation
into an equivalent Hierarchical Tucker (HT) model using interconnected smaller size
3rd-order core tensors and the same factor matrices.

are “separated” from other groups of modes, so that a sequential HT
decomposition can be performed via a (truncated) SVD applied to a
suitably matricized tensor. One of the simplest and most straightfor-
ward choices of a dimension tree is the linear and unbalanced tree,
which gives rise to the tensor-train (TT) decomposition, discussed in
detail in Section 2.2.2 and Section 4 (Oseledets, 2011; Oseledets and
Tyrtyshnikov, 2009).

Using mathematical formalism, a dimension tree is a binary tree
T

N

, N 1, which satisfies that

(i) all nodes t T
N

are non-empty subsets of {1, 2,. . . , N},

(ii) the set t
root

1, 2, . . . , N is the root node of T
N

, and

(iii) each non-leaf node has two children u, v T
N

such that t is a
disjoint union t u v.

The HT model is illustrated through the following Example.

Example. Suppose that the dimension tree T7 is given, which gives

�39
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Equivalently, with tensor notations HT expression becomes       
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An equivalent, more explicit form, using tensor notations becomes

X
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X 123
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X 45
r45

R4

r4 1

R5

r5 1
g 45

r4,r5,r45 b 4
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r6 1

R7
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g 67

r6,r7,r67 b 6
r6 b 7

r7 .

The TT/HT decompositions lead naturally to a distributed Tucker
decomposition, where a single core tensor is replaced by interconnected
cores of lower-order, resulting in a distributed network in which only
some cores are connected directly with factor matrices, as illustrated
in Figure 2.15. Figure 2.16 illustrates exemplary HT/TT structures
for data tensors of various orders (Tobler, 2012; Kressner and Tobler,
2014). Note that for a 3rd-order tensor, there is only one HT tensor
network representation, while for a 5th-order we have 5, and for a 10th-
order tensor there are 11 possible HT architectures.

A simple approach to reduce the size of a large-scale core tensor
in the standard Tucker decomposition (typically, for N 5) would
be to apply the concept of distributed tensor networks (DTNs). The
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The TT/HT decompositions lead naturally to a distributed Tucker
decomposition, where a single core tensor is replaced by interconnected
cores of lower-order, resulting in a distributed network in which only
some cores are connected directly with factor matrices, as illustrated
in Figure 2.15. Figure 2.16 illustrates exemplary HT/TT structures
for data tensors of various orders (Tobler, 2012; Kressner and Tobler,
2014). Note that for a 3rd-order tensor, there is only one HT tensor
network representation, while for a 5th-order we have 5, and for a 10th-
order tensor there are 11 possible HT architectures.

A simple approach to reduce the size of a large-scale core tensor
in the standard Tucker decomposition (typically, for N 5) would
be to apply the concept of distributed tensor networks (DTNs). The



Links between Tucker and HT

• HT leads naturally to a distributed Tucker decomposition

• A single core in Tucker is replaced by interconnected cores of low-

order in HT

• In such distributed network some cores are connected directly with 

some of factor matrices 
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Figure 2.15: The standard Tucker decomposition of an 8th-order tensor into a core
tensor (red circle) and eight factor matrices (green circles), and its transformation
into an equivalent Hierarchical Tucker (HT) model using interconnected smaller size
3rd-order core tensors and the same factor matrices.

are “separated” from other groups of modes, so that a sequential HT
decomposition can be performed via a (truncated) SVD applied to a
suitably matricized tensor. One of the simplest and most straightfor-
ward choices of a dimension tree is the linear and unbalanced tree,
which gives rise to the tensor-train (TT) decomposition, discussed in
detail in Section 2.2.2 and Section 4 (Oseledets, 2011; Oseledets and
Tyrtyshnikov, 2009).

Using mathematical formalism, a dimension tree is a binary tree
T

N

, N 1, which satisfies that

(i) all nodes t T
N

are non-empty subsets of {1, 2,. . . , N},

(ii) the set t
root

1, 2, . . . , N is the root node of T
N

, and

(iii) each non-leaf node has two children u, v T
N

such that t is a
disjoint union t u v.

The HT model is illustrated through the following Example.

Example. Suppose that the dimension tree T7 is given, which gives
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Tree Tensor Network State

Tree tensor network state (TTNS) can be considered as a generalization 

of HT (TT), and as a distributed model for Tucker-N decomposition
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✓ e.g. TN diagram of TTNS 3rd-order and 4th-order tensor cores for the 
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Figure 2.18: The Tree Tensor Network State (TTNS) with 3rd-order and 4th-
order cores for the representation of 24th-order data tensors. The TTNS can be
considered both as a generalization of HT/TT format and as a distributed model
for the Tucker-N decomposition (see Section 3.3).

DTNs assume two kinds of cores (blocks): (i) the internal cores (nodes)
which are connected only to other cores and have no free edges and
(ii) external cores which do have free edges representing physical modes
(indices) of a given data tensor (see also Section 2.2.4). Such distributed
representations of tensors are not unique.

The tree tensor network state (TTNS) model, whereby all nodes
are of 3rd-order or higher, can be considered as a generalization of the
TT/HT decompositions, as illustrated by two examples in Figure 2.18
(Nakatani and Chan, 2013). A more detailed mathematical description
of the TTNS is given in Section 3.3.

2.2.2 Tensor Train (TT) Network

The Tensor Train (TT) format can be interpreted as a special case of
the HT format, where all nodes (TT-cores) of the underlying tensor
network are connected in cascade (or train), i.e., they are aligned while
factor matrices corresponding to the leaf modes are assumed to be iden-
tities and thus need not be stored. The TT format was first proposed
in numerical analysis and scientific computing in (Oseledets, 2011; Os-
eledets and Tyrtyshnikov, 2009). Figure 2.19 presents the concept of



TN with Circles

• TN dramatically reduces computational cost and provide distributed 

storage through low-rank TN approximation

• However, the ranks of HT (or TT) increase rapidly with the data order 

and desired approximation accuracy

• The ranks can be kept considerably small through special architectures  

of TN with circles

�43

✓ e.g. projected entangled pair states (PEPS)

✓ honey-comb lattice (HCL)

✓ multi-scale entanglement renormalization ansatz (MERA)

• TN with circles pays the price of higher computational complexity w.r.t. 

tensor contraction due to many circles



TN with Circles—HCL

Honey-comb lattice (HCL) consists of only 3rd-order core tensors

�44

✓ e.g. TN diagram of HCL of a 16th-order tensor

304 Tensor Operations and Tensor Network Architectures

(a) (b)

Figure 2.22: Examples of TN architectures with loops. (a) Honey-Comb Lattice
(HCL) for a 16th-order tensor. (b) MERA for a 32th-order tensor.

2.2.4 Concatenated (Distributed) Representation of TT Networks

Complexity of algorithms for computation (contraction) on tensor net-
works typically scales polynomially with the rank, R

n

, or size, I
n

, of
the core tensors, so that the computations quickly become intractable
with the increase in R

n

. A step towards reducing storage and compu-
tational requirements would be therefore to reduce the size (volume) of
core tensors by increasing their number through distributed tensor net-
works (DTNs), as illustrated in Figure 2.22. The underpinning idea is
that each core tensor in an original TN is replaced by another TN (see
Figure 2.23 for TT networks), resulting in a distributed TN in which
only some core tensors are associated with physical (natural) modes of
the original data tensor (Hübener et al., 2010). A DTN consists of two
kinds of relatively small-size cores (nodes), internal nodes which have
no free edges and external nodes which have free edges representing
natural (physical) indices of a data tensor.

The obvious advantage of DTNs is that the size of each core tensor
in the internal tensor network structure is usually much smaller than
the size of the initial core tensor; this allows for a better management
of distributed storage, and often in the reduction of the total num-
ber of network parameters through distributed computing. However,



TN with Circles—MERA

Multi-scale entanglement renormalization ansatz (MERA) consists of both 

3rd-order and 4th-order core tensors
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✓ MERA core tensors are much smaller, which dramatically reduce number of free 

parameters and provide more efficient storage of huge-scale data tensors

✓ MERA allows to model complex functions and interactions between variables

✓ e.g. TN diagram of MERA of a 32th-order tensor
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Figure 2.22: Examples of TN architectures with loops. (a) Honey-Comb Lattice
(HCL) for a 16th-order tensor. (b) MERA for a 32th-order tensor.

2.2.4 Concatenated (Distributed) Representation of TT Networks

Complexity of algorithms for computation (contraction) on tensor net-
works typically scales polynomially with the rank, R
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, or size, I
n

, of
the core tensors, so that the computations quickly become intractable
with the increase in R
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. A step towards reducing storage and compu-
tational requirements would be therefore to reduce the size (volume) of
core tensors by increasing their number through distributed tensor net-
works (DTNs), as illustrated in Figure 2.22. The underpinning idea is
that each core tensor in an original TN is replaced by another TN (see
Figure 2.23 for TT networks), resulting in a distributed TN in which
only some core tensors are associated with physical (natural) modes of
the original data tensor (Hübener et al., 2010). A DTN consists of two
kinds of relatively small-size cores (nodes), internal nodes which have
no free edges and external nodes which have free edges representing
natural (physical) indices of a data tensor.

The obvious advantage of DTNs is that the size of each core tensor
in the internal tensor network structure is usually much smaller than
the size of the initial core tensor; this allows for a better management
of distributed storage, and often in the reduction of the total num-
ber of network parameters through distributed computing. However,
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Tensor Train Decomposition 

• Tensor train decomposition (TT) or matrix product state (MPS) is a special case 

of tree structured TN

• All the nodes (TT-cores) of the underlying TN are connected in cascade or train

• Each tensor entry can be computed as a cascade multiplication of appropriate 
matrices (slices of TT-cores)
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Figure 4.1: TT decomposition of a 4th-order tensor, X, for which the TT
rank is R1 3, R2 4, R3 5. (a) (Upper panel) Representation of the
TT via a multilinear product of the cores, X G 1 1 G 2 1 G 3 1

G 4 G 1
, G 2

, G 3
, G 4 , and (lower panel) an equivalent representation

via the outer product of mode-2 fibers (sum of rank-1 tensors) in the form,
X R1

r1 1
R2
r2 1

R3
r3 1

R4
r4 1 g 1

r1 g 2
r1, r2 g 3

r2, r3 g 4
r3 . (b) TT de-

composition in a vectorized form represented via strong Kronecker products of block
matrices, x G 1 G 2 G 3 G 4 RI1I2I3I4 , where the block matrices are
defined as G n RR

n 1I

n

R

n , with block vectors g n

r

n 1, r

n

RI

n

1, n 1, . . . , 4
and R0 R4 1.
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Table 4.1: Equivalent representations of the Tensor Train decomposition (MPS
with open boundary conditions) approximating an Nth-order tensor X
RI1 I2 I

N . It is assumed that the TT rank is r
T T

R1, R2, . . . , R

N 1 , with
R0 R

N

1.

Tensor representation: Multilinear products of TT-cores

X G 1

1 G 2

1 1 G N RI1 I2 I
N

with the 3rd-order cores G n RR
n 1 I

n

R
n , n 1, 2, . . . , N

Tensor representation: Outer products

X
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1,r1 g 2

r1, r2 g N 1
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N 2, r

N 1 g N
r

N 1, 1
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G n rn 1

, :, rn RI
n are fiber vectors.

Vector representation: Strong Kronecker products

x G 1 G 2 G N RI1I2 I
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R
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r
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g
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N
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n
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n
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n

are entries of a 3rd-order core G n RR
n 1 I

n

R
n

Slice (MPS) representation

x i1, i2,...,i
N

G 1

i1
G 2

i2
G N

i
N

, where

G n
i
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R
n

366 Tensor Train Decompositions

Table 4.1: Equivalent representations of the Tensor Train decomposition (MPS
with open boundary conditions) approximating an Nth-order tensor X
RI1 I2 I

N . It is assumed that the TT rank is r
T T

R1, R2, . . . , R

N 1 , with
R0 R

N

1.

Tensor representation: Multilinear products of TT-cores

X G 1

1 G 2

1 1 G N RI1 I2 I
N

with the 3rd-order cores G n RR
n 1 I

n

R
n , n 1, 2, . . . , N

Tensor representation: Outer products

X
R1,R2,...,R

N 1

r1, r2,...,r
N 1 1

g 1

1,r1 g 2

r1, r2 g N 1

r
N 2, r

N 1 g N
r

N 1, 1

where g n
r

n 1, r
n

G n rn 1

, :, rn RI
n are fiber vectors.

Vector representation: Strong Kronecker products

x G 1 G 2 G N RI1I2 I
N , where

G n RR
n 1I

n

R
n are block matrices with blocks g n

r
n 1,r

n

RI
n

Scalar representation

x i1,i2,...,i
N

R1,R2,...,R
N 1

r1,r2,...,r
N 1 1

g
1

1, i1, r1
g

2

r1, i2, r2
g

N 1

r
N 2, i

N 1, r
N 1

g
N
r

N 1, i
N

,1

where g
n
r

n 1, i
n

, r
n

are entries of a 3rd-order core G n RR
n 1 I

n

R
n

Slice (MPS) representation

x i1, i2,...,i
N

G 1

i1
G 2

i2
G N

i
N

, where

G n
i

n

G n :, in, : RR
n 1 R

n are lateral slices of G n RR
n 1 I

n

R
n

�47

4
Tensor Train Decompositions: Graphical

Interpretations and Algorithms

E�cient implementation of the various operations in tensor train (TT)
formats requires compact and easy-to-understand mathematical and
graphical representations (Cichocki, 2013b, 2014). To this end, we
next present mathematical formulations of the TT decompositions and
demonstrate their advantages in both theoretical and practical scenar-
ios.

4.1 Tensor Train Decomposition – Matrix Product State

The tensor train (TT/MPS) representation of an Nth-order data ten-
sor, X RI1 I2 I

N , can be described in several equivalent forms (see
Figures 4.1, 4.2 and Table 4.1) listed below:

1. The entry-wise scalar form, given by

x
i1,i2,...,i

N

R1,R2,...,R

N 1

r1, r2,...,r

N 1 1
g

1
1, i1, r1 g

2
r1, i2, r2 g

N

r

N 1, i

N

,1.

(4.1)

2. The slice representation (see Figure 2.19) in the form

x
i1,i2,...,i

N

G 1
i1 G 2

i2 G N

i

N

, (4.2)
where the slice matrices are defined as

G n

i

n

G n :, i
n

, : RR

n 1 R

n , i
n

1, 2, . . . , I
n
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TT Example

• TT format of tensorized vector
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Figure 2.20: Forms of tensor train decompositions for a vector, a RI , matrix,
A RI J , and 3rd-order tensor, A RI J K (by applying a suitable tensorization).

TT-cores need to be stored and processed, which makes the number of
parameters to scale linearly in the tensor order, N , of a data tensor and
all mathematical operations are then performed only on the low-order
and relatively small size core tensors.

The TT rank is defined as an N 1 -tuple of the form

rankTT X r
T T

R1, . . . , R
N 1 , R

n

rank X
n

, (2.21)

where X
n

RI1 I

n

I

n 1 I

N is an nth canonical matricization of
the tensor X. Since the TT rank determines memory requirements
of a tensor train, it has a strong impact on the complexity, i.e., the
suitability of tensor train representation for a given raw data tensor.

The number of data samples to be stored scales linearly in the tensor
order, N , and the size, I, and quadratically in the maximum TT rank
bound, R, that is

N

n 1
R

n 1R
n

I
n

O NR2I , R : max
n

R
n

, I : max
n

I
n

. (2.22)

This is why it is crucially important to have low-rank TT approxima-
tions7. A drawback of the TT format is that the ranks of a tensor train

7In the worst case scenario the TT ranks can grow up to I

N 2 for an Nth-order
tensor.
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This is why it is crucially important to have low-rank TT approxima-
tions7. A drawback of the TT format is that the ranks of a tensor train

7In the worst case scenario the TT ranks can grow up to I

N 2 for an Nth-order
tensor.

• TT format of tensorized matrix 
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This is why it is crucially important to have low-rank TT approxima-
tions7. A drawback of the TT format is that the ranks of a tensor train

7In the worst case scenario the TT ranks can grow up to I

N 2 for an Nth-order
tensor.

• TT format of tensorized large-scale low-order tensor 
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This is why it is crucially important to have low-rank TT approxima-
tions7. A drawback of the TT format is that the ranks of a tensor train

7In the worst case scenario the TT ranks can grow up to I

N 2 for an Nth-order
tensor.
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Advantages of TT

Main benefits of TT format:

• No need to specify the binary dimension tree as HT format

• Simplicity in performing basic math operations on tensors using TT 

format, employing only core tensors

✓ e.g., matrix-by-matrix multiplication, tensor addition, tensor entry-wise product

• Only TT-cores needs to be stored, making the number of parameters 

to scale linearly in tensor order 

✓
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Figure 2.20: Forms of tensor train decompositions for a vector, a RI , matrix,
A RI J , and 3rd-order tensor, A RI J K (by applying a suitable tensorization).

TT-cores need to be stored and processed, which makes the number of
parameters to scale linearly in the tensor order, N , of a data tensor and
all mathematical operations are then performed only on the low-order
and relatively small size core tensors.

The TT rank is defined as an N 1 -tuple of the form

rankTT X r
T T

R1, . . . , R
N 1 , R

n

rank X
n

, (2.21)

where X
n

RI1 I

n

I

n 1 I

N is an nth canonical matricization of
the tensor X. Since the TT rank determines memory requirements
of a tensor train, it has a strong impact on the complexity, i.e., the
suitability of tensor train representation for a given raw data tensor.

The number of data samples to be stored scales linearly in the tensor
order, N , and the size, I, and quadratically in the maximum TT rank
bound, R, that is

N

n 1
R

n 1R
n

I
n

O NR2I , R : max
n

R
n

, I : max
n

I
n

. (2.22)

This is why it is crucially important to have low-rank TT approxima-
tions7. A drawback of the TT format is that the ranks of a tensor train

7In the worst case scenario the TT ranks can grow up to I

N 2 for an Nth-order
tensor.
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Algorithm for TT Decomposition

• TT-SVD algorithm for TT decomposition applies truncated SVD (tSVD) 

sequentially to the unfolding matrices

i) High-order tensor     is first reshaped into a long matrix 

ii) tSVD is performed to produce low-rank factorization 
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2 , reshape U2 into an
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see also Algorithm 12). For example, in (Oseledets and Tyrtyshnikov,
2010) a new approximate formula for TT decomposition is proposed,
where an Nth-order data tensor X is interpolated using a special form
of cross-approximation. In fact, the TT-Cross-Approximation is analo-
gous to the TT-SVD algorithm, but uses adaptive cross-approximation
instead of the computationally more expensive SVD. The complexity
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see also Algorithm 12). For example, in (Oseledets and Tyrtyshnikov,
2010) a new approximate formula for TT decomposition is proposed,
where an Nth-order data tensor X is interpolated using a special form
of cross-approximation. In fact, the TT-Cross-Approximation is analo-
gous to the TT-SVD algorithm, but uses adaptive cross-approximation
instead of the computationally more expensive SVD. The complexity

iii)  Matrix      becomes the first core       , while           is reshaped into 

394 Tensor Train Decompositions

I1

I2 I3

I4

I5
Reshape I1 I3 I4 I5I2

X

tSVD I1 R1
U1 S1R1 I3 I4 I5I2

V1
T

Reshape MR1 I3 I4 I5I2
2

I RU
2

2
2R1

SR I3 I4 I5
VT

2
2 2

...

I RU
4

4R R3 4
S VT4 4 I5

I1

R1X
(1)

R2

I2

X
(2)

R3

I3

X
(3)

R4

I4

X
(4)

I5

X
(5)

M  =X (1)1

4

tSVD

tSVD

Reshape

=

=

I1

R1X
(1)

I1

R1X
(1)

I1

R1X
(1)

R2R1

I2

X
(2)

R3R2

I3

X
(3)

Figure 4.12: The TT-SVD algorithm for a 5th-order data tensor using truncated
SVD. Instead of the SVD, any alternative LRMF algorithm can be employed, such
as randomized SVD, RPCA, CUR/CA, NMF, SCA, ICA. Top panel: A 6th-order
tensor X of size I1 I2 I5 is first reshaped into a long matrix M1 of size
I1 I2 I5. Second panel: The tSVD is performed to produce low-rank matrix
factorization, with I1 R1 factor matrix U1 and the R1 I2 I5 matrix S1VT

1 ,
so that M1 U1S1VT

1 . Third panel: the matrix U1 becomes the first core core
X 1 R1 I1 R1 , while the matrix S1VT

1 is reshaped into the R1I2 I3I4I5 matrix
M2. Remaining panels: Perform tSVD to yield M2 U2S2VT

2 , reshape U2 into an
R1 I2 R2 core X 2 and repeat the procedure until all the five cores are extracted
(bottom panel). The same procedure applies to higher order tensors of any order.

see also Algorithm 12). For example, in (Oseledets and Tyrtyshnikov,
2010) a new approximate formula for TT decomposition is proposed,
where an Nth-order data tensor X is interpolated using a special form
of cross-approximation. In fact, the TT-Cross-Approximation is analo-
gous to the TT-SVD algorithm, but uses adaptive cross-approximation
instead of the computationally more expensive SVD. The complexity

394 Tensor Train Decompositions

I1

I2 I3

I4

I5
Reshape I1 I3 I4 I5I2

X

tSVD I1 R1
U1 S1R1 I3 I4 I5I2

V1
T

Reshape MR1 I3 I4 I5I2
2

I RU
2

2
2R1

SR I3 I4 I5
VT

2
2 2

...

I RU
4

4R R3 4
S VT4 4 I5

I1

R1X
(1)

R2

I2

X
(2)

R3

I3

X
(3)

R4

I4

X
(4)

I5

X
(5)

M  =X (1)1

4

tSVD

tSVD

Reshape

=

=

I1

R1X
(1)

I1

R1X
(1)

I1

R1X
(1)

R2R1

I2

X
(2)

R3R2

I3

X
(3)

Figure 4.12: The TT-SVD algorithm for a 5th-order data tensor using truncated
SVD. Instead of the SVD, any alternative LRMF algorithm can be employed, such
as randomized SVD, RPCA, CUR/CA, NMF, SCA, ICA. Top panel: A 6th-order
tensor X of size I1 I2 I5 is first reshaped into a long matrix M1 of size
I1 I2 I5. Second panel: The tSVD is performed to produce low-rank matrix
factorization, with I1 R1 factor matrix U1 and the R1 I2 I5 matrix S1VT

1 ,
so that M1 U1S1VT

1 . Third panel: the matrix U1 becomes the first core core
X 1 R1 I1 R1 , while the matrix S1VT

1 is reshaped into the R1I2 I3I4I5 matrix
M2. Remaining panels: Perform tSVD to yield M2 U2S2VT

2 , reshape U2 into an
R1 I2 R2 core X 2 and repeat the procedure until all the five cores are extracted
(bottom panel). The same procedure applies to higher order tensors of any order.

see also Algorithm 12). For example, in (Oseledets and Tyrtyshnikov,
2010) a new approximate formula for TT decomposition is proposed,
where an Nth-order data tensor X is interpolated using a special form
of cross-approximation. In fact, the TT-Cross-Approximation is analo-
gous to the TT-SVD algorithm, but uses adaptive cross-approximation
instead of the computationally more expensive SVD. The complexity

394 Tensor Train Decompositions

I1

I2 I3

I4

I5
Reshape I1 I3 I4 I5I2

X

tSVD I1 R1
U1 S1R1 I3 I4 I5I2

V1
T

Reshape MR1 I3 I4 I5I2
2

I RU
2

2
2R1

SR I3 I4 I5
VT

2
2 2

...

I RU
4

4R R3 4
S VT4 4 I5

I1

R1X
(1)

R2

I2

X
(2)

R3

I3

X
(3)

R4

I4

X
(4)

I5

X
(5)

M  =X (1)1

4

tSVD

tSVD

Reshape

=

=

I1

R1X
(1)

I1

R1X
(1)

I1

R1X
(1)

R2R1

I2

X
(2)

R3R2

I3

X
(3)

Figure 4.12: The TT-SVD algorithm for a 5th-order data tensor using truncated
SVD. Instead of the SVD, any alternative LRMF algorithm can be employed, such
as randomized SVD, RPCA, CUR/CA, NMF, SCA, ICA. Top panel: A 6th-order
tensor X of size I1 I2 I5 is first reshaped into a long matrix M1 of size
I1 I2 I5. Second panel: The tSVD is performed to produce low-rank matrix
factorization, with I1 R1 factor matrix U1 and the R1 I2 I5 matrix S1VT

1 ,
so that M1 U1S1VT

1 . Third panel: the matrix U1 becomes the first core core
X 1 R1 I1 R1 , while the matrix S1VT

1 is reshaped into the R1I2 I3I4I5 matrix
M2. Remaining panels: Perform tSVD to yield M2 U2S2VT

2 , reshape U2 into an
R1 I2 R2 core X 2 and repeat the procedure until all the five cores are extracted
(bottom panel). The same procedure applies to higher order tensors of any order.
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Algorithm for TT Decomposition Cont

iv) Perform tSVD to yield                        , and reshape      into an core 

v) Repeat the procedure until all the cores are extracted
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Algorithm for TT Decomposition Cont

• TT-SVD algorithm using truncated SVD (tSVD)

4.6. Algorithms for TT Decompositions 395

Algorithm 11: TT-SVD Decomposition using truncated
SVD (tSVD) or randomized SVD (rSVD) (Vidal, 2003;
Oseledets, 2011)

Input: Nth-order tensor X RI1 I2 I

N and approximation accuracy Á

Output: Approximative representation of a tensor in the TT format
X X 1

, X 2
, . . . , X N , such that X X

F

Á

1: Unfolding of tensor X in mode-1 M1 X 1
2: Initialization R0 1
3: for n 1 to N 1 do
4: Perform tSVD U

n

, S
n

, V
n

tSVD M
n

, Á N 1
5: Estimate nth TT rank R

n

size U
n

, 2
6: Reshape orthogonal matrix U

n

into a 3rd-order core
X n reshape U

n

, R

n 1, I

n

, R

n

7: Reshape the matrix V
n

into a matrix
M

n 1 reshape S
n

VT
n

, R

n

I

n 1,

N

p n 2 I

p

8: end for
9: Construct the last core as X N reshape M

N

, R

N 1, I

N

, 1
10: return X 1

, X 2
, . . . , X N .

of the cross-approximation algorithms scales linearly with the order N

of a data tensor.

4.6.2 Tucker-2/PVD Algorithms for Large-scale TT Decomposi-
tions

The key idea in this approach is to reshape any Nth-order data tensor,
X RI1 I2 I

N with N 3, into a suitable 3rd-order tensor, e.g.,
X RI1 I

N

I2 I

N 1 , in order to apply the Tucker-2 decomposition
as follows (see Algorithm 8 and Figure 4.13(a))

X G 2,N 1
1 X 1

2 X N X 1 1 G 2,N 1 1 X N , (4.34)

which, by using frontal slices of the involved tensors, can also be ex-
pressed in the matrix form

X
k1 X 1 G

k1X N , k1 1, 2, . . . , I2 I
N 1. (4.35)

Such representations allow us to compute the tensor, G 2,N 1 , the
first TT-core, X 1 , and the last TT-core, X N . The procedure can
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Links between CP and TT 

Any specific TN format, especially CP, can be converted to TT format

4.3. Links Between CP, BTD Formats and TT/TC Formats 375
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Figure 4.5: Links between the TT format and other tensor network formats. (a)
Representation of the CP decomposition for an Nth-order tensor, X I 1 A 1

2
A 2

N

A N , in the TT format. (b) Representation of the BTD model given by
Eqs. (4.15) and (4.16) in the TT/MPO format. Observe that the TT-cores are very
sparse and the TT ranks are R, R, . . . , R . Similar relationships can be established
straightforwardly for the TC format.
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Tensor Ring Decomposition 

• Tensor train decomposition (TR) generalizes TT with a single loop 

connecting the first and last core 

•  All the nodes (TR-cores) are of 3rd-order tensors

2.2. Graphical Representation of Fundamental Tensor Networks 299
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Figure 2.19: Concepts of the tensor train (TT) and tensor chain (TC) de-
compositions (MPS with OBC and PBC, respectively) for an Nth-order data
tensor, X RI1 I2 I

N . (a) Tensor Train (TT) can be mathematically de-
scribed as x
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1. Notice
that TC/MPS is e�ectively a TT with a single loop connecting the first and the last
core, so that all TC-cores are of 3rd-order.
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Matrix Tensor Train Decomposition 
• The matrix tensor train (matrix TT) or matrix product operator (MPO) is a 

variant of TT that can represent huge-scale structured matrices by 

✓ first converting                  into a 2Nth-order tensor

✓ then decomposing tensor into a train of 4th-order cores similar to TT-cores

4.2. Matrix TT Decomposition – Matrix Product Operator 369

R
N

1, and the symbol denotes the strong Kronecker prod-
uct.

Analogous relationships can be established for Tensor Chain (i.e.,
MPS with PBC (see Figure 2.19(b)) and summarized in Table 4.2.

4.2 Matrix TT Decomposition – Matrix Product Operator

The matrix tensor train, also called the Matrix Product Operator
(MPO) with open boundary conditions (TT/MPO), is an impor-
tant TN model which first represents huge-scale structured matrices,
X RI J , as 2Nth-order tensors, X RI1 J1 I2 J2 I

N

J

N , where
I I1I2 I

N

and J J1J2 J
N

(see Figures 4.3, 4.4 and Table
4.3). Then, the matrix TT/MPO converts such a 2Nth-order tensor
into a chain (train) of 4th-order cores2. It should be noted that the
matrix TT decomposition is equivalent to the vector TT, created by
merging all index pairs i

n

, j
n

into a single index ranging from 1 to
I

n

J
n

, in a reverse lexicographic order.
Similarly to the vector TT decomposition, a large scale 2Nth-order

tensor, X RI1 J1 I2 J2 I

N

J

N , can be represented in a TT/MPO
format via the following mathematical representations:

1. The scalar (entry-wise) form

x
i1,j1,...,i

N

,j

N

R1

r1 1

R2

r2 1

R

N 1

r

N 1 1
g

1
1, i1,j1,r1 g

2
r1, i2, j2, r2

g
N 1

r

N 2, i

N 1, j

N 1, r

N 1
g

N

r

N 1, i

N

, j

N

, 1. (4.7)

2. The slice representation
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i1,j1,...,i
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N

G 1
i1,j1 G 2

i2,j2 G N

i

N

,j

N

, (4.8)

where G n

i

n

,j

n

G n :, i
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R
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1, and the symbol denotes the strong Kronecker prod-
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Figure 4.3: TT/MPO decomposition of a matrix, X RI J , reshaped as an
8th-order tensor, X RI1 J1 I4 J4 , where I I1I2I3I4 and J J1J2J3J4. (a)
Basic TT representation via multilinear products (tensor contractions) of cores X
G 1 1 G 2 1 G 3 1 G 4 , with G n RR

n 1 I

n

R

n for R1 3, R2 4, R3
5, R0 R4 1. (b) Representation of a matrix or a matricized tensor via strong Kro-
necker products of block matrices, in the form X G 1 G 2 G 3 G 4

RI1I2I3I4 J1J2J3J4 .
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Table 4.3: Equivalent forms of the matrix Tensor Train decomposition (MPO with
open boundary conditions) for a 2Nth-order tensor X RI1 J1 I2 J2 I
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Quantized Tensor Train Decomposition 

• Recall tensorization creates a high-order tensor from a low-order original data

• Quantization is a special case of tensorization with each mode has a very small 

size, typically 2,3 or 4

• Low-rank TN approximation with high compression ratios can be achieved by 

quantization

• Quantization tensor networks (QTN) adopts small-size 3rd-order tensor cores 

that are sparsely interconnected via tensor contraction  

�56

✓ e.g. an implementation of QTN using quantized tensor train (QTT)
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Figure 4.6: Concept of tensorization/quantization of a large-scale vector into a
higher-order quantized tensor. In order to achieve a good compression ratio, we
need to apply a suitable tensor decomposition such as the quantized TT (QTT)
using 3rd-order cores, X G 1 1 G 2 1 1 G 6 .

more generally, an Nth-order tensor, X RI1 I

N , with I
n

qK

n ,
can be quantized in all modes simultaneously to yield a q q q

quantized tensor of higher-order and with small value of q.

Example. Since large-scale tensors (even of low-order) cannot be
loaded directly into the computer memory, our approach to this prob-
lem is to represent the huge-scale data by tensor networks in a dis-
tributed and compressed TT format, so as to avoid the explicit re-
quirement for unfeasible large computer memory.
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Operations in TT Format 

In TT format, basic math operations can be efficiently performed using slice 

matrices of individual core tensors 

✓ e.g. consider matrix-by-vector multiplication  

➡ matrix                and vectors            ,           are represented in TT format with                        

size                        and   

➡ cores are                                 ,                               and 
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with the TT-cores given by

Z n X n

2 Y n R R

n 1Q

n 1 I

n

J

n

1 R

n

Q

n , (4.24)

or, equivalently, using the standard convolution Z n s
n 1, :, s

n

X n r
n 1, :, r

n

Y n q
n 1, :, q

n

R I

n

J

n

1 for s
n

1, 2, . . . , R
n

Q
n

and n 1, 2, . . . , N , R0 R
N

1.

Inner product. The computation of the inner (scalar, dot) product
of two Nth-order tensors, X X 1 , X 2 , . . . , X N RI1 I2 I

N

and Y Y 1 , Y 2 , . . . , Y N RI1 I2 I

N , is given by

X, Y vec X , vec Y (4.25)
I1

i1 1

I

N

i

N

1
x

i1...i

n

y
i1 i

N

and has the complexity of O IN in the raw tensor format. In TT for-
mats, the inner product can be computed with the reduced complexity
of only O NI R2R̃ RR̃2 when the inner product is calculated by
moving TT-cores from left to right and performing calculations on
relatively small matrices, S

n

X n

1,2
1,2 Y n

1 S
n 1 RR

n

R

n for
n 1, 2, . . . , N . The results are then sequentially multiplied by the
next core Y n 1 (see Algorithm 9).

Computation of the Frobenius norm. In a similar way, we can
e�ciently compute the Frobenius norm of a tensor, X

F

X, X ,
in the TT format. For the so-called n-orthogonal6 TT format, it is easy
to show that

X
F

X n

F

. (4.26)

Matrix-by-vector multiplication. Consider a huge-scale matrix
equation (see Figure 4.9 and Figure 4.10)

Ax y, (4.27)
6An Nth-order tensor X X 1

, X 2
. . . , X N in the TT format is called

n-orthogonal if all the cores to the left of the core X n are left-orthogonalized and
all the cores to the right of the core X n are right-orthogonalized (see Part 2 for
more detail).
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Algorithm 9: Inner product of two large-scale tensors in
the TT Format (Oseledets, 2011; Dolgov, 2014)

Input: Nth-order tensors, X X 1 , X 2 , . . . , X N RI1 I2 I
N

and Y Y 1 , Y 2 , . . . , Y N RI1 I2 I
N in TT formats, with

TT-cores X RR
n 1 I

n

R
n and Y RR

n 1 I
n

R
n and

R
0

R
0

RN RN 1
Output: Inner product X, Y vec X Tvec Y
1: Initialization S
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1
2: for n 1 to N do
3: Z n

1

Sn 1

Y n
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n

R
n

4: Sn X n T

2

Z n
2
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n

R
n

5: end for
6: return Scalar X, Y SN RR

N

R
N R, with RN RN 1

where A RI J , x RJ and y RI are represented approximately in
the TT format, with I I1I2 I

N

and J J1J2 J
N

. As shown in
Figure 4.9(a), the cores are defined as A n RP

n 1 I

n

J

n

P

n , X n

RR
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n

R

n and Y n RQ

n 1 I

n

Q

n .
Upon representing the entries of the matrix A and vectors x and y

in their tensorized forms, given by

A
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N 1
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N 1 1
A 1

1,p1 A 2
p1,p2 A N

p

N 1,1
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N 1 (4.28)

Y
Q1,Q2,...,Q

N 1

q1,q2,...,q

N 1 1
y 1

q1 y 2
q1,q2 y N

q

N 1 ,

we arrive at a simple formula for the tubes of the tensor Y, in the form

y n

q

n 1,q
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y n
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n 1 p
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p
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A n

p

n 1, p
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x n
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n

P
n
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n

for n 1, 2, . . . , N .
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with the TT-cores given by

Z n X n

2 Y n R R

n 1Q

n 1 I

n

J

n

1 R

n

Q

n , (4.24)

or, equivalently, using the standard convolution Z n s
n 1, :, s

n

X n r
n 1, :, r

n

Y n q
n 1, :, q

n

R I

n

J

n

1 for s
n

1, 2, . . . , R
n

Q
n

and n 1, 2, . . . , N , R0 R
N

1.

Inner product. The computation of the inner (scalar, dot) product
of two Nth-order tensors, X X 1 , X 2 , . . . , X N RI1 I2 I

N

and Y Y 1 , Y 2 , . . . , Y N RI1 I2 I

N , is given by

X, Y vec X , vec Y (4.25)
I1

i1 1

I

N

i

N

1
x

i1...i

n

y
i1 i

N

and has the complexity of O IN in the raw tensor format. In TT for-
mats, the inner product can be computed with the reduced complexity
of only O NI R2R̃ RR̃2 when the inner product is calculated by
moving TT-cores from left to right and performing calculations on
relatively small matrices, S

n

X n

1,2
1,2 Y n

1 S
n 1 RR

n

R

n for
n 1, 2, . . . , N . The results are then sequentially multiplied by the
next core Y n 1 (see Algorithm 9).

Computation of the Frobenius norm. In a similar way, we can
e�ciently compute the Frobenius norm of a tensor, X

F

X, X ,
in the TT format. For the so-called n-orthogonal6 TT format, it is easy
to show that

X
F

X n

F

. (4.26)

Matrix-by-vector multiplication. Consider a huge-scale matrix
equation (see Figure 4.9 and Figure 4.10)

Ax y, (4.27)
6An Nth-order tensor X X 1

, X 2
. . . , X N in the TT format is called

n-orthogonal if all the cores to the left of the core X n are left-orthogonalized and
all the cores to the right of the core X n are right-orthogonalized (see Part 2 for
more detail).
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Figure 4.9: Linear systems represented by arbitrary tensor networks (left) and
TT networks (right) for (a) Ax y and (b) AX Y.
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Figure 4.10: Representation of typical cost functions by arbitrary TNs and by
TT networks: (a) J1 x yTAx and (b) J2 x xTATAx. Note that tensors A,
X and Y can be, in general, approximated by any TNs that provide good low-rank
representations.

Furthermore, by representing the matrix A and vectors x, y via the
strong Kronecker products

A Ã 1 Ã 2 Ã N

x X̃ 1 X̃ 2 X̃ N (4.29)
y Ỹ 1 Ỹ 2 Ỹ N ,

with Ã n RP

n 1I

n

J

n

P

n , X̃ n RR

n 1J

n

R

n and Ỹ n

RQ

n 1I

n

Q

n , we can establish a simple relationship

Ỹ n Ã n X̃ n RR

n 1 P

n 1 I

n

R

n

P

n , n 1, . . . , N, (4.30)
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Figure 4.10: Representation of typical cost functions by arbitrary TNs and by
TT networks: (a) J1 x yTAx and (b) J2 x xTATAx. Note that tensors A,
X and Y can be, in general, approximated by any TNs that provide good low-rank
representations.

Furthermore, by representing the matrix A and vectors x, y via the
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• ML applications often require computation of extreme eigenvalues/eigenvectors 

of a large-scale symmetric matrix 

• Standard eigenvalue decomposition (EVD) can be formulated as 
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for all i
n

1, 2, . . . , I
n

and n 1, 2, . . . , N , where v 2
�

i � v2
i

.
The above optimization problem for vec X n

i

n

can be considered as
a standard linear least squares (LS) problem, which can be e�ciently
solved even for huge-scale datasets.

In general, TT ranks are not known beforehand and must be esti-
mated during the optimization procedure. These can be estimated by,
for example, starting with a maximum rank Rmax and reducing grad-
ually ranks by TT rounding. Alternatively, starting from a minimum
rank, Rmin, the ranks could be gradually increased. The rank increasing
procedure can start with r

T T

1, 1, . . . , 1 , and the so obtained result
is used for another run (sweep), but with r

T T

1, 2, . . . , 1 . In other
words, the rank R2 between the second and third core is increased, and
so on until either the prescribed residual tolerance Á or Rmax is reached.
As the rank value is a key factor which determines the complexity of
the ALS, the second approach is often more e�cient and is computa-
tionally comparable with rank-adaptive approaches (Grasedyck et al.,
2015; Steinlechner, 2016a,b).

3.4 Computing a Few Extremal Eigenvalues and Eigenvec-
tors

3.4.1 TT Network for Computing the Single Smallest Eigenvalue
and the Corresponding Eigenvector

Machine learning applications often require the computation of extreme
(minimum or maximum) eigenvalues and the corresponding eigenvec-
tors of large-scale structured symmetric matrices. This problem can
be formulated as the standard symmetric eigenvalue decomposition
(EVD), in the form

A x
k

⁄
k

x
k

, k 1, 2, . . . , K, (3.21)

where x
k

RI are the orthonormal eigenvectors and ⁄
k

the correspond-
ing eigenvalues of a symmetric matrix A RI I .

Iterative algorithms for extreme eigenvalue problems often exploit
the Rayleigh Quotient (RQ) of a symmetric matrix as the following

• Typical iterative solution for extreme EVD problem involves optimizing the 

Rayleigh quotient (RQ) cost function
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J x R x, A xTAx
xTx

Ax, x
x, x , x 0. (3.22)

Based on the Rayleigh Quotient (RQ), the largest, ⁄
max

, and smallest,
⁄

min

, eigenvalue of the matrix A can be computed as

⁄
max

max
x

R x, A , ⁄
min

min
x

R x, A , (3.23)

while the critical points and critical values of R x, A are the corre-
sponding eigenvectors and eigenvalues of A.

The traditional methods for solving eigenvalue problems for a sym-
metric matrix, A RI I , are prohibitive for very large values of I,
say I 1015 or higher. This computational bottleneck can be very ef-
ficiently dealt with through low-rank tensor approximations, and the
last 10 years have witnessed the development of such techniques for sev-
eral classes of optimization problems, including EVD/PCA and SVD
(Dolgov et al., 2014; Kressner et al., 2014a; Lee and Cichocki, 2015).
The principle is to represent the cost function in a tensor format; under
certain conditions, such as that tensors can be often quite well approx-
imated in a low-rank TT format, thus allowing for low-dimensional
parametrization.

In other words, if a structured symmetric matrix A and its eigen-
vector x admit low-rank TT approximations, a large-scale eigenvalue
problem can be converted into a set of smaller optimization problems
by representing the eigenvector, x RI , and the matrix, A RI I ,
in TT (MPS/MPO) formats, i.e., a TT/MPS for an Nth-order ten-
sor X X 1 , . . . , X N RI1 I

N and a matrix TT/MPO for a
2Nth-order tensor A A 1 , . . . , A N RI1 I1 I

N

I

N , where
I I1I2 I

N

.
Figure 3.6 illustrates this conversion into a set of much smaller sub-

problems by employing tensor contractions and the frame equations
(see section 3.1)
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• TN solution is to represent RQ cost function via low-rank TT format

• Thus a large EVD problem can be converted into a set of small EVD sub-problems 

by following steps:
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i) Tensorize the matrix                  and eigenvector               and then represent them 

in matrix TT format and TT format, respectively
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ii) Reparametrize     by separating the mode-n TT core from rest TT cores using 

tensor contraction and frame equations
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Figure 3.6 illustrates this conversion into a set of much smaller sub-
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(see section 3.1)
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Figure 3.6: A conceptual TT network for the computation of a single extreme
eigenvalue, ⁄, and the corresponding eigenvector, x RI , for a symmetric matrix
A RI I . The frame matrix maps the TT core into a large vector. The tensor
network corresponds to the cost function (quadratic form), xTAx, where the matrix
A and vectors x RI are given in the tensor train format with distributed indices
I I1I2 I

N

. The cores in the shaded areas form the matrix A n (the e�ective
Hamiltonian), which can be computed by a sequentially optimized contraction of
the TT cores.

Since the cores X m for m n are constrained to be left- or right-
orthogonal, the RQ can be minimized (or maximized), as follows
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, n 1, 2, . . . , N,
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for n 1, 2, . . . , N , under the condition X

n

TX
n

I.
For relatively small TT ranks, the matrices A n are usually much

smaller than the original matrix A, so that a large-scale EVD problem
can be converted into a set of much smaller EVD sub-problems, which
requires solving the set of equations

A n x n ⁄x n , n 1, 2, . . . , N. (3.28)

In practice, the matrices A n are never computed directly by (3.27).
Instead, we compute matrix-by-vector multiplication6, A n x n , iter-
atively via optimized contraction of TT cores within a tensor network.
The concept of optimized contraction is illustrated in Figure 3.7.

It should be noted that the contraction of the matrix A in TT/MPO
format, with corresponding TT cores of the vectors x and xT in
TT/MPS format, leads to the left- and right contraction tensors L n

and R n, as illustrated in Figure 3.6. In other words, e�cient solution
of the matrix equation (3.28) requires computation of the blocks L n

and R n; these can be built iteratively so as to best reuse available in-
formation, which involves an optimal arrangement of a tensor network
contraction. In a practical implementation, the full network contraction
is never carried out globally, but through iterative sweeps from right
to left or vice-versa, to build up L n and R n from the previous steps.
The left and right orthogonalization of the cores can also be exploited
to simplify the tensor contraction process (Schollwöck, 2011; Dolgov
et al., 2014; Kressner et al., 2014a; Lee and Cichocki, 2015, 2016b).

Remark. Before we construct the tensor network shown in the Fig-
ure 3.6, we need to construct approximate distributed representation
of the matrix A in the TT/MPO format. For ways to construct e�-
cient representations of huge-scale matrix in TT/MPO format while
simultaneously performing compression see (Hubig et al., 2017; August
et al., 2016) and also Part 1 (Cichocki et al., 2016).

6Such local matrix-by-vectors multiplications can be incorporated to standard
iterative methods,such as Arnoldi, Lanczos, Jacobi-Davidson and LOBPCG.
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Figure 3.6: A conceptual TT network for the computation of a single extreme
eigenvalue, ⁄, and the corresponding eigenvector, x RI , for a symmetric matrix
A RI I . The frame matrix maps the TT core into a large vector. The tensor
network corresponds to the cost function (quadratic form), xTAx, where the matrix
A and vectors x RI are given in the tensor train format with distributed indices
I I1I2 I

N

. The cores in the shaded areas form the matrix A n (the e�ective
Hamiltonian), which can be computed by a sequentially optimized contraction of
the TT cores.

Since the cores X m for m n are constrained to be left- or right-
orthogonal, the RQ can be minimized (or maximized), as follows
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where x n vec X n RR

n 1I
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n and the matrix A n (called the
e�ective Hamiltonian) can be expressed as
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for n 1, 2, . . . , N , under the condition X

n

TX
n

I.
For relatively small TT ranks, the matrices A n are usually much

smaller than the original matrix A, so that a large-scale EVD problem
can be converted into a set of much smaller EVD sub-problems, which
requires solving the set of equations

A n x n ⁄x n , n 1, 2, . . . , N. (3.28)

In practice, the matrices A n are never computed directly by (3.27).
Instead, we compute matrix-by-vector multiplication6, A n x n , iter-
atively via optimized contraction of TT cores within a tensor network.
The concept of optimized contraction is illustrated in Figure 3.7.

It should be noted that the contraction of the matrix A in TT/MPO
format, with corresponding TT cores of the vectors x and xT in
TT/MPS format, leads to the left- and right contraction tensors L n

and R n, as illustrated in Figure 3.6. In other words, e�cient solution
of the matrix equation (3.28) requires computation of the blocks L n

and R n; these can be built iteratively so as to best reuse available in-
formation, which involves an optimal arrangement of a tensor network
contraction. In a practical implementation, the full network contraction
is never carried out globally, but through iterative sweeps from right
to left or vice-versa, to build up L n and R n from the previous steps.
The left and right orthogonalization of the cores can also be exploited
to simplify the tensor contraction process (Schollwöck, 2011; Dolgov
et al., 2014; Kressner et al., 2014a; Lee and Cichocki, 2015, 2016b).

Remark. Before we construct the tensor network shown in the Fig-
ure 3.6, we need to construct approximate distributed representation
of the matrix A in the TT/MPO format. For ways to construct e�-
cient representations of huge-scale matrix in TT/MPO format while
simultaneously performing compression see (Hubig et al., 2017; August
et al., 2016) and also Part 1 (Cichocki et al., 2016).

6Such local matrix-by-vectors multiplications can be incorporated to standard
iterative methods,such as Arnoldi, Lanczos, Jacobi-Davidson and LOBPCG.
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et al., 2016) and also Part 1 (Cichocki et al., 2016).

6Such local matrix-by-vectors multiplications can be incorporated to standard
iterative methods,such as Arnoldi, Lanczos, Jacobi-Davidson and LOBPCG.
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TT/MPS format, leads to the left- and right contraction tensors L n

and R n, as illustrated in Figure 3.6. In other words, e�cient solution
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ure 3.6, we need to construct approximate distributed representation
of the matrix A in the TT/MPO format. For ways to construct e�-
cient representations of huge-scale matrix in TT/MPO format while
simultaneously performing compression see (Hubig et al., 2017; August
et al., 2016) and also Part 1 (Cichocki et al., 2016).
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Figure 3.6: A conceptual TT network for the computation of a single extreme
eigenvalue, ⁄, and the corresponding eigenvector, x RI , for a symmetric matrix
A RI I . The frame matrix maps the TT core into a large vector. The tensor
network corresponds to the cost function (quadratic form), xTAx, where the matrix
A and vectors x RI are given in the tensor train format with distributed indices
I I1I2 I

N

. The cores in the shaded areas form the matrix A n (the e�ective
Hamiltonian), which can be computed by a sequentially optimized contraction of
the TT cores.

Since the cores X m for m n are constrained to be left- or right-
orthogonal, the RQ can be minimized (or maximized), as follows

min
x

J x min
x

n

J X
n

x n (3.26)

min
x

n

x n T A n x n

x n , x n

, n 1, 2, . . . , N,
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In general, the core tensor Z n is computed in a way dependent on a
specific optimization problem and an e�cient approximation strategy.

3.5 TT Networks for Tracking a Few Extreme Singular Val-
ues and Singular Vectors in SVD

Similarly to the symmetric EVD problem described in the previous
section, the block TT concept can be employed to compute only K
largest singular values and the corresponding singular vectors of a given
matrix A RI J , by performing the maximization of the following cost
function (Lee and Cichocki, 2015; Cichocki, 2013, 2014):

J U, V tr UTAV , s.t. UTU I
K

, VTV I
K

, (3.40)

where U RI K and V RJ K .
Conversely, the computation of K smallest singular values and the

corresponding left and right singular vectors of a given matrix, A
RI J , can be formulated as the following optimization problem:

max
U,V

tr VTA U , s.t. UTU I
K

, VTV I
K

, (3.41)

where A RJ I is the Moore-Penrose pseudo-inverse of the matrix A.
Now, after tensorizing the involved huge-scale matrices, an asymmetric
tensor network can be constructed for the computation of K extreme
(minimal or maximal) singular values, as illustrated in Figure 3.12 (see
(Lee and Cichocki, 2015) for detail and computer simulation experi-
ments).

The key idea behind the solutions of (3.40) and (3.41) is to perform
TT core contractions to reduce the unfeasible huge-scale optimization
problem to relatively small-scale optimization sub-problems, as follows:

• For the problem (3.40)

max
U

n

,V

n

tr U n T A n V n , (3.42)

• For the problem (3.41)

max
U

n

,V

n

tr V n T A n U n , (3.43)

where
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of extreme singular
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into the standard TT formats (MPS/MPO without OBC) via vectorization, with
the cores A n A n I (bottom).
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• In this way, the contracted matrices        are much smaller than original 

matrix    , thus any efficient SVD algorithms can be applied to 
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where x n vec X n RR

n 1I

n

R

n and the matrix A n (called the
e�ective Hamiltonian) can be expressed as

A n X
n

TAX
n

RR

n 1I

n

R

n

R

n 1I

n

R

n (3.27)
for n 1, 2, . . . , N , under the condition X

n

TX
n

I.
For relatively small TT ranks, the matrices A n are usually much

smaller than the original matrix A, so that a large-scale EVD problem
can be converted into a set of much smaller EVD sub-problems, which
requires solving the set of equations

A n x n ⁄x n , n 1, 2, . . . , N. (3.28)

In practice, the matrices A n are never computed directly by (3.27).
Instead, we compute matrix-by-vector multiplication6, A n x n , iter-
atively via optimized contraction of TT cores within a tensor network.
The concept of optimized contraction is illustrated in Figure 3.7.

It should be noted that the contraction of the matrix A in TT/MPO
format, with corresponding TT cores of the vectors x and xT in
TT/MPS format, leads to the left- and right contraction tensors L n

and R n, as illustrated in Figure 3.6. In other words, e�cient solution
of the matrix equation (3.28) requires computation of the blocks L n

and R n; these can be built iteratively so as to best reuse available in-
formation, which involves an optimal arrangement of a tensor network
contraction. In a practical implementation, the full network contraction
is never carried out globally, but through iterative sweeps from right
to left or vice-versa, to build up L n and R n from the previous steps.
The left and right orthogonalization of the cores can also be exploited
to simplify the tensor contraction process (Schollwöck, 2011; Dolgov
et al., 2014; Kressner et al., 2014a; Lee and Cichocki, 2015, 2016b).

Remark. Before we construct the tensor network shown in the Fig-
ure 3.6, we need to construct approximate distributed representation
of the matrix A in the TT/MPO format. For ways to construct e�-
cient representations of huge-scale matrix in TT/MPO format while
simultaneously performing compression see (Hubig et al., 2017; August
et al., 2016) and also Part 1 (Cichocki et al., 2016).

6Such local matrix-by-vectors multiplications can be incorporated to standard
iterative methods,such as Arnoldi, Lanczos, Jacobi-Davidson and LOBPCG.
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smaller than the original matrix A, so that a large-scale EVD problem
can be converted into a set of much smaller EVD sub-problems, which
requires solving the set of equations

A n x n ⁄x n , n 1, 2, . . . , N. (3.28)

In practice, the matrices A n are never computed directly by (3.27).
Instead, we compute matrix-by-vector multiplication6, A n x n , iter-
atively via optimized contraction of TT cores within a tensor network.
The concept of optimized contraction is illustrated in Figure 3.7.

It should be noted that the contraction of the matrix A in TT/MPO
format, with corresponding TT cores of the vectors x and xT in
TT/MPS format, leads to the left- and right contraction tensors L n

and R n, as illustrated in Figure 3.6. In other words, e�cient solution
of the matrix equation (3.28) requires computation of the blocks L n

and R n; these can be built iteratively so as to best reuse available in-
formation, which involves an optimal arrangement of a tensor network
contraction. In a practical implementation, the full network contraction
is never carried out globally, but through iterative sweeps from right
to left or vice-versa, to build up L n and R n from the previous steps.
The left and right orthogonalization of the cores can also be exploited
to simplify the tensor contraction process (Schollwöck, 2011; Dolgov
et al., 2014; Kressner et al., 2014a; Lee and Cichocki, 2015, 2016b).

Remark. Before we construct the tensor network shown in the Fig-
ure 3.6, we need to construct approximate distributed representation
of the matrix A in the TT/MPO format. For ways to construct e�-
cient representations of huge-scale matrix in TT/MPO format while
simultaneously performing compression see (Hubig et al., 2017; August
et al., 2016) and also Part 1 (Cichocki et al., 2016).

6Such local matrix-by-vectors multiplications can be incorporated to standard
iterative methods,such as Arnoldi, Lanczos, Jacobi-Davidson and LOBPCG.
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Figure 3.12: Tensor network for computing the K left- and right-singular vec-
tors corresponding to the K extremal singular values. (a) This is achieved via the
maximization of the trace, tr UTAV or tr VTA U , subject to the orthogonality
constraints, UTU I

k

and VTV I
K

. Note that the singular values are computed
as S U n T A n V n . (b) In practice, we do not explicitly perform contraction,
which leads to the matrix Ā n RRn 1InRn Rn 1JnRn , but employ smaller matrix
products U n TĀ n RK Rn 1JnRn .
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Conclusion

• We provide an example-rich guide to the basic properties of TNs

• TN is demonstrated as a promising tool for analyzing extremely-large 

multidimensional data

• TN can be naturally employed for dimensionality reduction due to their 

intrinsic compression ability stemming from sparsely distributed 

representation

• TN is advantageous over matrix-based analysis methods with ability to 

model strong and weak coupling among multiple models

• TN can serve as a useful fundamental tool to solve a variety of machine 

learning problems where data has prohibitively large volume, variety and 

veracity
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