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260 Introduction and Motivation
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Figure 1.6: Graphical representations and symbols for higher-order block tensors.
Each block represents either a 3rd-order tensor or a 2nd-order tensor. The outer
circle indicates a global structure of the block tensor (e.g. a vector, a matrix, a
3rd-order block tensor), while the inner circle reflects the structure of each element
within the block tensor. For example, in the top diagram a vector of 3rd order
tensors is represented by an outer circle with one edge (a vector) which surrounds
an inner circle with three edges (a 3rd order tensor), so that the whole structure
designates a 4th-order tensor.

be visualized through changes in the architecture of a tensor network
diagram.

1.3 Curse of Dimensionality and Generalized Separation of
Variables for Multivariate Functions

1.3.1 Curse of Dimensionality

The term curse of dimensionality was coined by Bellman (1961) to
indicate that the number of samples needed to estimate an arbitrary
function with a given level of accuracy grows exponentially with the
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Outline

• Vector and linear algebra
• Matrix and its decomposition

• What is tensor?
• Basic operations in tensor algebra

• Classical tensor decomposition
✦CP Decomposition
✦Tucker Decomposition



Vectors
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Linear Algebra Review 
and 

Matlab Tutorial

Linear Algebra Review 
and 

Matlab Tutorial

Assigned Reading: 
•Eero Simoncelli “A Geometric View of Linear Algebra”

http://www.cns.nyu.edu/~eero/NOTES/geomLinAlg.pdf

Background Material
� A computer vision "encyclopedia": CVonline. 

http://homepages.inf.ed.ac.uk/rbf/CVonline/

� Linear Algebra:
� Eero Simoncelli “A Geometric View of Linear Algebra”

http://www.cns.nyu.edu/~eero/NOTES/geomLinAlg.pdf

� Michael Jordan slightly more in depth linear algebra review
http://www.cs.brown.edu/courses/cs143/Materials/linalg_jordan_86.pdf

� Online Introductory Linear Algebra Book by Jim Hefferon.  
http://joshua.smcvt.edu/linearalgebra/

Notation
� Standard  math textbook notation

� Scalars are italic times roman:                                        n, N

� Vectors are bold lowercase: x
� Row vectors are denoted with a transpose: xT

� Matrices are bold uppercase: M

� Tensors are calligraphic letters:                                      T

Overview
� Vectors in R2

� Scalar product
� Outer Product
� Bases and transformations
� Inverse Transformations
� Eigendecomposition
� Singular Value Decomposition

Warm-up: Vectors in Rn

� We can think of vectors in two ways:
� Points in a multidimensional space with respect to some 

coordinate system
� translation of a point in a multidimensional space

ex., translation of the origin (0,0)

Vectors in Rn

� Notation:

� Length of a vector:
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Dot Product or Scalar Product

2

Dot product or scalar product
� Dot product is the product of two vectors
� Example:

� It is the projection of one vector onto another
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Scalar Product
� Notation

� We will use the last two notations to denote the dot 
product
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Scalar Product
� Commutative:

� Distributive:

� Linearity

� Non-negativity:

� Orthogonality:

( ) zyzxzyx ⋅+⋅=⋅+

xyyx ⋅=⋅

( ) ( ) ( )( )yxyx ⋅=⋅ 2121 cccc
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Norms in  Rn

� Euclidean norm (sometimes called 2-norm):

� The length of a vector is defined to be its (Euclidean) norm. 

� A unit vector is of length 1.

� Non-negativity properties also hold for the norm:

∑
=

=+++=⋅==
n

i
in xxxx

1

222
2

2
12

Lxxxx

Bases and Transformations
� We will look at:
� Linear Independence
� Bases
� Orthogonality
� Change of basis (Linear Transformation)
� Matrices and Matrix Operations

Linear Dependence
� Linear combination of vectors x1, x2, … xn

� A set of vectors X={x1, x2, … xn} are linearly dependent if there 
exists a vector 

that is a linear combination of the rest of the  vectors.

nnccc xxx +++ L2211

Xi ∈x
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Singular Value Decomposition

4

Matrix Multiplication – dot product
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� Matrix multiplication can be expressed using dot products
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Matrix Multiplication – outer product
� Matrix multiplication can be expressed using a sum of outer 

products

Rank of a Matrix

(         contains the right singular vectors/eigenvectors )

Singular Value Decomposition: 
D=USVT

� A matrix                          has a column space and a row space  

� SVD orthogonalizes these spaces and decomposes

� Rewrite as a sum of a minimum number of rank-1 matrices

21 IxI
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� Rank Decomposition:
� sum of min. number of rank-1 matrices

� Multilinear Rank Decomposition:

U
V
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Matrix SVD Properties:
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Matrix SVD Properties

4

Matrix Multiplication – dot product

»
»
»
»

¼

º

«
«
«
«

¬

ª

⋅⋅

⋅⋅

»
»
»
»

¼

º

«
«
«
«

¬

ª

»
»
»
»

¼

º

«
«
«
«

¬

ª

=

nmm

n

abab

abab
BA

1

111

OM

L

b1
T

a1 an

bm
T

� Matrix multiplication can be expressed using dot products

∑
=

=

++=

»
»
»
»

¼

º

«
«
«
«

¬

ª

»
»
»
»

¼

º

«
«
«
«

¬

ª

=

n

i
ii

T
nn

TT

T
n

T

n

1

2211

1

1

ab

ababab

a

a

bbBA

o

L

ML

Matrix Multiplication – outer product
� Matrix multiplication can be expressed using a sum of outer 

products

Rank of a Matrix

(         contains the right singular vectors/eigenvectors )

Singular Value Decomposition: 
D=USVT

� A matrix                          has a column space and a row space  

� SVD orthogonalizes these spaces and decomposes

� Rewrite as a sum of a minimum number of rank-1 matrices

21 IxI
R∈D

TUSVD= (         contains the left singular vectors/eigenvectors )U
D

rr
r

r vuD o∑=
=

R

1

    σ

U
V

D S
=

V

� Rank Decomposition:
� sum of min. number of rank-1 matrices

� Multilinear Rank Decomposition:

U
V

D S

Matrix SVD Properties:

…..
=D

u1

v1
T

u2 uR

1σ 2σ+ Rσ+
v2

T vR
T

rr
r

r vuD o∑=
=

R

1
   σ

21

2

12
21

1

11

    rr
r

rr
r

vuD o∑∑=
==

RR

σ

=

D=USVT Matrix Inverse



Matrix in Machine LearningMatrix factorisation models

Data often available in matrix form.

samples

fe
at
ur
es coefficient
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Matrix in Machine LearningMatrix factorisation models

Data often available in matrix form.

users

m
ov
ie
s

movie
rating

4
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Matrix in Machine LearningMatrix factorisation models

Data often available in matrix form.

text documents

w
or

ds

word
count

57
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Matrix Decomposition in Machine LearningMatrix factorisation models

⇡ dictionary learning
low-rank approximation
factor analysis
latent semantic analysis

≈

data X dictionary W activations H

7



Matrix Decomposition in Machine LearningMatrix factorisation models

⇡ dictionary learning
low-rank approximation
factor analysis
latent semantic analysis

≈

data X dictionary W activations H
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Matrix Decomposition in Machine LearningMatrix factorisation models

for dimensionality reduction (coding, low-dimensional embedding)

≈

9



Matrix Decomposition in Machine LearningMatrix factorisation models

for interpolation (collaborative filtering, image inpainting)

≈
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Basic Model of Matrix Decomposition
Nonnegative matrix factorisation

≈V W

H
N samples

F 
fe
at
ur
es

K pa
tte
rns

I data V and factors W, H have nonnegative entries.

I nonnegativity of W ensures interpretability of the dictionary, because
patterns wk and samples vn belong to the same space.

I nonnegativity of H tends to produce part-based representations, because
subtractive combinations are forbidden.

Early work by Paatero and Tapper (1994), landmark Nature paper by Lee and Seung (1999)

12



Matrix Decomposition with Constraints
Introduction Difficulties in NMF

Constrained NMF methods

Different types of constraints have been considered in previous works:

� Sparsity constraints: either on W or H (e.g., Hoyer, 2004; Eggert and Korner,
2004);

� Shape constraints on wk , e.g.:
I convex NMF: wk are convex combinations of inputs (Ding et al., 2010);
I harmonic NMF: wk are mixtures of harmonic spectra (Vincent et al., 2008).

� Spatial coherence or temporal constraints on hk : activations are smooth
(Virtanen, 2007; Jia and Qian, 2009; Essid and Fevotte, 2013);

� Cross-modal correspondence constraints: factorisations of related
modalities are related, e.g., temporal activations are correlated (Seichepine
et al., 2013; Liu et al., 2013; Yilmaz et al., 2011);

� Geometric constraints: e.g., select particular cones Cw (Klingenberg et al.,
2009; Essid, 2012).

Essid & Ozerov (TPT/Technicolor) A tutorial on NMF ICME 2014 39 / 170



Matrix and Matrix Decomposition
BLIND SOURCE SEPARATION AND LINEAR GENERALIZED COMPONENT ANALYSIS 5

NMF
(non-negativity

constraints)

MCA
(morphological

features)

SCA
(sparsity constraints)

ICA
(independency

)constraints

Fig. 1.2 Four basic component analysis methods: Independent Component Analysis (ICA), Non-
negative Matrix Factorization (NMF), Sparse Component Analysis (SCA) and Morphological
Component Analysis (MCA).

can be written in an equivalent scalar (element-wise) form (see Figure 1.3(b)):

yit =
J∑

j=1
ai j x jt + eit or yi(t) =

J∑

j=1
ai j x j(t) + ei(t). (1.2)

Usually, the latent components represent unknown source signals with specific statistical proper-
ties or temporal structures. The matrices usually have clear statistical properties and meanings.
For example, the rows of the matrix X that represent sources or components should be statis-
tically independent for ICA, sparse for SCA [96], [95], [70], [69], [72], nonnegative for NMF,
or have other specific and additional morphological properties such as sparsity, smoothness,
continuity, or orthogonality in GCA [29], [13], [26].
In some applications the mixing matrix A is ill-conditioned or even singular. In such cases,

some special models and algorithms should be applied. Although some decompositions or ma-
trix factorizations provide an exact reconstruction of the data (i.e., Y = AX), we shall consider
here factorizations which are approximative in nature. In fact, many problems in signal and
image processing can be solved in terms of matrix factorization. However, different cost func-
tions and imposed constraints may lead to different types of matrix factorization. In many signal
processing applications the data matrix Y = [y(1), y(2) . . . , y(T )] ∈ RI×T is represented by vec-
tors y(t) ∈ RI (t = 1, 2, . . . , T ) for a set of discrete time instants t as multiple measurements or
recordings. As mentioned above, the compact aggregated matrix equation (1.1) can be written
in a vector form as a system of linear equations (see Figure 1.4(a)), that is,

y(t) = A x(t) + e(t), (t = 1, 2, . . . , T ), (1.3)

where y(t) = [y1(t), y2(t), . . . , yI(t)]T is a vector of the observed signals at the discrete time instant
t whereas x(t) = [x1(t), x2(t), . . . , xJ(t)]T is a vector of unknown sources at the same time instant.
The problems formulated above are closely related to the concept of linear inverse problems or
more generally, to solving a large ill-conditioned system of linear equations (overdetermined or
underdetermined), where it is required to estimate vectors x(t) (also in some cases to identify a
matrix A) from noisy data [87], [26], [32]. Physical systems are often contaminated by noise,

• ICA (Independent Component 

Analysis)
• SCA (Sparse Component Analysis)

• MCA (Morphological Component 
Analysis) 

• NMF (Non-negative Factorization) 



49 images among 2429 from MIT’s CBCL face dataset49 images among 2429 from MIT’s CBCL face dataset
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Principal Component Analysis
Introduction Motivation

Explaining face images by PCA
Method

H

⇡

V W

Vectorised images Facial
features

Importance of features
in each image

...

...... ...

Essid & Ozerov (TPT/Technicolor) A tutorial on NMF ICME 2014 9 / 170



Principal Components

• PCA is to look for a low dimensional 
projection in which the majority of signal 
energy is kept. 

• Here “Principal” represents “Major” that 
the projected signal has the largest 
energy along the first principal direction 
(red line in the figure).

4.0 4.5 5.0 5.5 6.0
2

3

4

5
1st Principal  
Component, y1

2nd Principal  
Component, y2

Objective Function:

<latexit sha1_base64="E74h6onRQXyZ8feFloPZszoa3Nk=">AAACKnicbVDLTsJAFJ3iC/FVdemmkZjghrTGRJeoG5eY8EookukwhQnTR2ZuRdL0e9z4K25YaIhbP8Qp1IjgSWZy5px7M/ceJ+RMgmlOtdza+sbmVn67sLO7t3+gHx41ZBAJQusk4IFoOVhSznxaBwactkJBsedw2nSGd6nffKJCssCvwTikHQ/3feYygkFJXf3G9vBzN1Y3DBw3HiWJzakLpV/hsfbDW62FxyixBesP4LyrF82yOYOxSqyMFFGGalef2L2ARB71gXAsZdsyQ+jEWAAjnCYFO5I0xGSI+7StqI89KjvxbNXEOFNKz3ADoY4Pxkxd7IixJ+XYc1RlOqhc9lLxP68dgXvdiZkfRkB9Mv/IjbgBgZHmZvSYoAT4WBFMBFOzGmSABSag0i2oEKzllVdJ46JsmWXr4bJYuc3iyKMTdIpKyEJXqILuURXVEUEv6A29ow/tVZtoU+1zXprTsp5j9Afa1zc/Q6mR</latexit>



Principal Component Analysis
Introduction Motivation

Principal Component Analysis (PCA)
Recalling the technique1

Assuming the data is real-valued (vn 2 RF ) and centered (E[v] = 0),
• PCA returns a dictionary WPCA 2 RF⇥K such that the least squares

error is minimized:

WPCA = min
W

1
N

X

n

kvn � v̂nk2

2

=
1
N
kV � WWTVk2

F

• A solution is given by:
WPCA = E

1:K

where E
1:K denotes the K dominant eigenvectors of Cv:

Cv = E[vvT ] ⇡ 1
N

X

n

vnvn.

1slide adapted from (Févotte, 2012).
Essid & Ozerov (TPT/Technicolor) A tutorial on NMF ICME 2014 7 / 170



PCA dictionary with K=25
PCA dictionary with K = 25

red pixels indicate negative values

14



Nonnegative Matrix DecompositionNonnegative matrix factorisation

≈V W

H
N samples

F 
fe
at
ur
es

K pa
tte
rns

I data V and factors W, H have nonnegative entries.

I nonnegativity of W ensures interpretability of the dictionary, because
patterns wk and samples vn belong to the same space.

I nonnegativity of H tends to produce part-based representations, because
subtractive combinations are forbidden.

Early work by Paatero and Tapper (1994), landmark Nature paper by Lee and Seung (1999)
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NMF as a constrained minimization problem
NMF as a constrained minimisation problem

Minimise a measure of fit between V and WH, subject to nonnegativity:

min
W,H�0

D(V|WH) =
X

fn

d([V]fn|[WH]fn),

where d(x |y) is a scalar cost function, e.g.,

I squared Euclidean distance (Paatero and Tapper, 1994; Lee and Seung, 2001)

I Kullback-Leibler divergence (Lee and Seung, 1999; Finesso and Spreij, 2006)

I Itakura-Saito divergence (Févotte, Bertin, and Durrieu, 2009)

I ↵-divergence (Cichocki et al., 2008)

I �-divergence (Cichocki et al., 2006; Févotte and Idier, 2011)

I Bregman divergences (Dhillon and Sra, 2005)

I and more in (Yang and Oja, 2011)

Regularisation terms often added to D(V|WH) for sparsity, smoothness,
dynamics, etc.

20



Common NMF algorithm designCommon NMF algorithm design

I Block-coordinate update of H given W(i�1) and W given H(i).

I Updates of W and H equivalent by transposition:

V ⇡ WH , VT ⇡ HTWT

I Objective function separable in the columns of H or the rows of W:

D(V|WH) =
X

n

D(vn|Whn)

I Essentially left with nonnegative linear regression:

min
h�0

C (h)
def
= D(v|Wh)

Numerous references in the image restoration literature. e.g., (Richardson, 1972;
Lucy, 1974; Daube-Witherspoon and Muehllehner, 1986; De Pierro, 1993)

21



NMF dictionary with K=25NMF dictionary with K = 25

experiment reproduced from (Lee and Seung, 1999)

15



What is tensor?
Multi-stream and cross-modal NMF schemes NTF models

Multi-way data representations

Some data can have more meaningful representation using multi-way
arrays rather than matrices (two-way arrays).

Electroencephalography (EEG) data (Lee et al., 2007)

time

V

channel

fr
eq

ue
nc

y

time

channel

fr
eq

ue
nc

y

Essid & Ozerov (TPT/Technicolor) A tutorial on NMF ICME 2014 107 / 170



What is tensor?
TENSOR PROPERTIES AND BASIS OF TENSOR ALGEBRA 29

Y

Mode-1

Mode-2

Mode-3

651y

Fig. 1.13 A three-way array (third-order tensor) Y ∈ R7×5×8 with elements yitq.

Generally, tensors are denoted by an underlined capital boldface letters, e.g.,Y ∈ RI1×I2×···×IN .
In contrast, matrices are denoted by boldface capital letters, e.g., Y; vectors are denoted by
boldface lowercase letters, e.g., columns of the matrix A by a j and scalars are denoted by low-
ercase letters, e.g., ai j. The i-th entry of a vector a is denoted by ai, and the (i, j)-th element
of a matrix A by ai j. Analogously, the element (i, t, q) of a third-order tensor Y ∈ RI×T×Q is
denoted by yitq. The values of indices are typically ranging from 1 to their capital version, e.g.,
i = 1, 2, . . . , I; t = 1, 2, . . . , T ; q = 1, 2, . . . ,Q.

1.4.2 Subarrays, Tubes and Slices

Subtensors or subarrays are formed when a subset of the indices is fixed. For matrices, these
are the rows and columns. A colon is used to indicate all elements of a mode in the style of
MATLAB. Thus, the j-th column of a matrix A = [a1, a2, . . . , aJ] is formally denoted by a: j;
likewise, the j-th row of X is denoted by x j = x j:.

Definition 1.2 (Tensor Fiber) A tensor fiber is a one-dimensional fragment of a tensor, ob-
tained by fixing all indices except for one.

A matrix column is a mode-1 fiber and a matrix row is a mode-2 fiber. Third-order tensors have
column, row, and tube fibers, denoted by y: t q, yi : q, and yi t :, respectively (see Figure 1.15). Note
that fibers are always assumed to be oriented as column vectors [85].

Definition 1.3 (Tensor Slice) A tensor slice is a two-dimensional section (fragment) of a tensor,
obtained by fixing all indices except for two indices.

Figure 1.16 shows the horizontal, lateral, and frontal slices of a third-order tensor Y ∈ RI×T×Q,
denoted respectively by Yi : : , Y: t : and Y: : q (see also Figure 1.17). Two special subarrays
have more compact representations: the j-th column of matrix A, a: j, may also be denoted
as a j, whereas the q-th frontal slice of a third-order tensor, Y: : q may also be denoted as Yq,
(q = 1, 2, . . . ,Q).

1.4.3 Unfolding – Matricization

It is often very convenient to represent tensors as matrices or to representmulti-way relationships
and a tensor decomposition in their matrix forms. Unfolding, also known as matricization or
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Figure 1.3: A block matrix and its representation as a 4th-order tensor, created
by reshaping (or a projection) of blocks in the rows into lateral slices of 3rd-order
tensors.
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Figure 1.4: Graphical representation of multiway array (tensor) data of increasing
structural complexity and “Volume” (see (Olivieri, 2008) for more detail).

the vectors denoted by a
r

RI , while the elements of a matrix (scalars)
are denoted by lowercase letters, e.g., a

ir

A i, r (see Table 1.1).
A specific entry of an Nth-order tensor X RI1 I2 I

N is denoted
by x

i1,i2,...,i

N

X i1, i2, . . . , i
N

R. The order of a tensor is the
number of its “modes”, “ways” or “dimensions”, which can include
space, time, frequency, trials, classes, and dictionaries. The term ‘‘size”
stands for the number of values that an index can take in a particular
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Fig. 1.15 Fibers: for a third-order tensor Y = [yitq] ∈ RI×T×Q (all fibers are treated as column
vectors).

Fig. 1.16 Slices for a third-order tensor Y = [yitq] ∈ RI×T×Q.
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Fig. 1.19 Unfolding (matricizing) of a third-order tensor. The tensor can be unfolded in three
ways to obtain matrices comprising its mode-1, mode-2 and mode-3 vectors.

Analogously, we define the vectorization of a tensorY as a vectorization of the associated mode-
1 unfolded matrix Y(1). For example, the vectorization of the third-order tensor Y ∈ RI×T×Q can
be written in the following form

vec(Y) = vec(Y(1)) =
[
vec(Y: : 1)T , vec(Y: : 2)T , . . . , vec(Y: :Q)T

]T
∈ RITQ. (1.69)

Basic properties of the vec-operators include (assuming that matrices are appropriate sizes):

vec(c A) = c vec(A), (1.70)
vec(A + B) = vec(A) + vec(B), (1.71)

vec(A)T vec(B) = trace(ATB), (1.72)
vec(ABC) = (CT ⊗ A)vec(B). (1.73)

1.4.5 Outer, Kronecker, Khatri-Rao and Hadamard Products

Several special matrix products are important for representation of tensor factorizations and
decompositions.
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Fig. 1.20 Example of unfolding the third-order tensor in mode-1, mode-2 and mode-3.

1.4.5.1 Outer Product The outer product of the tensorsY ∈ RI1×I2×···×IN andX ∈ RJ1×J2×···×JM
is given by

Z = Y ◦X ∈ RI1×I2×···×IN×J1×J2×···×JM , (1.74)

where

zi1,i2,...,iN , j1, j2,..., jM = yi1,i2,...,iN x j1, j2,..., jM . (1.75)

Observe that, the tensor Z contains all the possible combinations of pair-wise products between
the elements of Y and X.
As special cases, the outer product of two vectors a ∈ RI and b ∈ RJ yields a rank-one matrix

A = a ◦ b = abT ∈ RI×J (1.76)

and the outer product of three vectors: a ∈ RI , b ∈ RJ and c ∈ RQ yields a third-order rank-one
tensor:

Z = a ◦ b ◦ c ∈ RI×J×Q, (1.77)
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Basic properties of the vec-operators include:

vec(c A) = c vec(A), (1.71)

vec(A+ B) = vec(A)+ vec(B), (1.72)

vec(A)T vec(B) = trace(ATB), (1.73)

vec(ABC) = (CT ⊗ A)vec(B). (1.74)

1.4.5 Outer, Kronecker, Khatri-Rao and Hadamard Products
Several special matrix products are important for representation of tensor factorizations and decompositions.
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zi1,i2,...,iN ,j1,j2,...,jM = yi1,i2,...,iN xj1,j2,...,jM . (1.76)

Observe that, the tensorZ contains all the possible combinations of pair-wise products between the elements
of Y and X.
As special cases, the outer product of two vectors a ∈ RI and b ∈ RJ yields a rank-one matrix

A = a ◦ b = abT ∈ RI×J (1.77)

and the outer product of three vectors: a ∈ RI , b ∈ RJ and c ∈ RQ yields a third-order rank-one tensor:

Z = a ◦ b ◦ c ∈ RI×J×Q, (1.78)

where

zijq = ai bj cq. (1.79)

1.4.5.2 Kronecker Product
The Kronecker product of two matrices A ∈ RI×J and B ∈ RT×R is a matrix denoted as A⊗ B ∈ RIT×JR

and defined as (see the MATLAB function kron):

A⊗ B =

⎡

⎢⎢⎢⎢⎣

a11 B a12 B · · · a1J B

a21 B a22 B · · · a2J B

...
...

. . .
...

aI1 B aI2 B · · · aIJ B

⎤

⎥⎥⎥⎥⎦
(1.80)

=
[

a1 ⊗ b1 a1 ⊗ b2 a1 ⊗ b3 · · · aJ ⊗ bR−1 aJ ⊗ bR

]
. (1.81)
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Matrix Outer Product:

Matrix Kronecker Product:
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For any given three matrices A,B, and C, where B and C have the same size, the following properties hold:

(A⊗ B)T = AT ⊗ BT , (1.82)

(A⊗ B)† = A† ⊗ B†, (1.83)

A⊗ (B+ C) = (A⊗ B)+ (A⊗ C), (1.84)

(B+ C)⊗ A = (B⊗ A)+ (C⊗ A), (1.85)

(A+ B)⊗ (C+ D) = AC⊗ BD, (1.86)

c (A⊗ B) = (c A)⊗ B = A⊗ (c B). (1.87)

It should be mentioned that, in general, the outer product of vectors yields a tensor whereas the Kronecker
product gives a vector. For example, for the three vectors a ∈ RJ , b ∈ RT , c ∈ RQ their three-way outer
product Y = a ◦ b ◦ c ∈ RI×T×Q is a third-order tensor with the entries yitq = ajbtcq, while the three-way
Kronecker product of the same vectors is a vector vec(Y) = c ⊗ b ⊗ a ∈ RITQ.

1.4.5.3 Hadamard Product

The Hadamard product of two equal-size matrices is the element-wise product denoted by ! (or .∗ for
MATLAB notation) and defined as

A! B =

⎡

⎢⎢⎢⎢⎣

a11 b11 a12 b12 · · · a1J b1J

a21 b21 a22 b22 · · · a2J b2J

...
...

. . .
...

aI1 bI1 aI2 bI2 · · · aIJ bIJ

⎤

⎥⎥⎥⎥⎦
. (1.88)

1.4.5.4 Khatri-Rao Product

For two matrices A = [a1, a2, . . . , aJ ] ∈ RI×J and B = [b1, b2, . . . , bJ ] ∈ RT×J with the same number of
columns J , their Khatri-Rao product, denoted by ⊙, performs the following operation:

A⊙ B = [a1 ⊗ b1 a2 ⊗ b2 · · · aJ ⊗ bJ ] (1.89)

=
[
vec(b1aT

1 ) vec(b2a
T
2 ) · · · vec(bJa

T
J )

]
∈ RIT×J . (1.90)

The Khatri-Rao product is:

• associative
A⊙ (B⊙ C) = (A⊙ B)⊙ C, (1.91)

• distributive
(A+ B)⊙ C = A⊙ C+ B⊙ C, (1.92)

• non-commutative
A⊙ B /= B⊙ A, (1.93)

• its cross-product simplifies into

(A⊙ B)T (A⊙ B) = ATA ! BTB, (1.94)
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Matrix Hadamard Product:

Matrix Khatri-Rao Product:
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Fig. 1.21 Illustration of the mode-n multiplications of a third-order tensor by matrices. (a) mode-
1 multiplication Y1 = G ×1 A, (b) mode-2 multiplication Y2 = G ×2 B, (c) mode-3 multiplication
Y3 = G ×3 C.

34 Nonnegative Matrix and Tensor Factorizations

• and the Moore-Penrose pseudo-inverse can be expressed as

(A⊙ B)† = [(A⊙ B)T (A⊙ B)]−1(A⊙ B)T = [(ATA) ! (BTB)]−1(A⊙ B)T , (1.95)

((A⊙ B)T )† = (A⊙ B)[(ATA) ! (BTB)]−1. (1.96)

1.4.6 Mode-n Multiplication of Tensor by Matrix and Tensor by Vector, Contracted
Tensor Product

To multiply a tensor by a matrix, we need to specify which mode of the tensor is multiplied by the columns
(or rows) of a matrix (see Figure 1.21 and Table 1.1).
Definition 1.5 (mode-n tensor matrix product) The mode-n product Y = G×n A of a tensor G ∈
RJ1×J2×···×JN and a matrix A ∈ RIn×Jn is a tensor Y ∈ RJ1×···×Jn−1×In×Jn+1×···×JN , with elements

yj1,j2,...,jn−1,in,jn+1,...,jN =
Jn∑

jn=1

gj1,j2,...,JN
ain,jn . (1.97)

The tensor-matrix product can be applied successively along several modes, and it is commutative, that is

(G×n A)×m B = (G ×m B)×n A = G×n A×m B, (m /= n). (1.98)
The repeated (iterated) mode-n tensor-matrix product for matrices A and B of appropriate dimensions can
be simplified as

(G×n A)×n B = G ×n (BA). (1.99)

For G ∈ RJ1×J2×···×JN and a set of matrices A(n) ∈ RIn×Jn , their multiplication in all possible modes (n =
1, 2, . . . , N) is denoted as

G× {A} = G×1 A(1) ×2 A(2) · · · ×N A(N), (1.100)

and the resulting tensor has dimension I1 × I2 × · · · × IN . Multiplication of a tensor with all but one mode
is denoted as

G×−n {A} = G×1 A(1) · · · ×n−1 A(n−1) ×n+1 A(n+1) · · · ×N A(N) (1.101)

giving a tensor of dimension I1 × · · · × In−1 × Jn × In+1 × · · · × IN . The above notation is adopted from
[85].
It is not difficult to verify that these operations satisfy the following properties

[
G× {A}

]
(n)

= A(n)G(n)
[
A(N) ⊗ A(N−1) · · · ⊗ A(n+1) ⊗ A(n−1) · · · ⊗ A(1)

]T
. (1.102)

Definition 1.6 (mode-n tensor-vector product) The mode-n multiplication of a tensor
Y ∈ RI1×I2×···×IN by a vector a ∈ RIn is denoted by14

Y ×̄n a (1.103)

and has dimension I1 × · · · × In−1 × In+1 × · · · × IN , that is,

Z = Y ×̄n a ∈ RI1×···×In−1×In+1×···×IN , (1.104)

Element-wise, we have

zi1,i2,...,in−1,in+1,...,iN =
In∑

in=1

yi1,i2,...,iN ain . (1.105)

14A bar over the operator × indicates a contracted product.
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Y3 = G ×3 C.



Tensor Vector Contracted Product

38 A. CICHOCKI, R. ZDUNEK, A.H. PHAN, S. AMARI

(7 5 8)! ! (1 5 8)! !(7 1 )! ! 1 (1 1 8)! !(5 1 )! 1! (1 1 )! 1!(8 1 )! 1!

=

1

G

×̄×̄×̄

a
b

c

2 3

Fig. 1.22 Illustration of mode-n multiplication of a third-order tensor G by vectors, yielding scalar
y = G ×̄1 a ×̄2 b ×̄3 c. Note that the dimension of the result is reduced by one. For example,
multiplying a three-way (a third-order) tensor by a vector in mode-1 results in a 2-way tensor (a
matrix).

giving a tensor of dimension I1 × · · · × In−1 × Jn × In+1 × · · · × IN . The above notation is
adopted from [85].
It is not difficult to verify that these operations satisfy the following properties

[
G × {A}

]
(n)
= A(n)G(n)

[
A(N) ⊗ A(N−1) · · · ⊗ A(n+1) ⊗ A(n−1) · · · ⊗ A(1)

]T
. (1.101)

Definition 1.6 (mode-n tensor-vector product) The mode-n multiplication of a tensor
Y ∈ RI1×I2×···×IN by a vector a ∈ RIn is denoted by14

Y ×̄n a (1.102)

and has dimension I1 × · · · × In−1 × In+1 × · · · × IN, that is,

Z = Y ×̄n a ∈ RI1×···×In−1×In+1×···×IN , (1.103)

Element-wise, we have

zi1,i2,...,in−1,in+1,...,iN =
In∑

in=1
yi1,i2,...,iN ain . (1.104)

It is also possible to multiply a tensor by a vector in more than one mode. Multiplying a three-
way tensor by vectors in the two modes results in a 1-way tensor (a vector); multiplying it in all
modes results in a scalar. We can exchange the order of multiplication by the following rule:

Y ×̄m a ×̄n b = (Y ×̄m a) ×̄n b = (Y ×̄n b) ×̄m a, for m < n. (1.105)

14A bar over the operator × indicates a contracted product.
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Fig. 1.23 Rank-one third-order tensor: Y = a ◦ b ◦ c ∈ RI×T×Q, a ∈ RI , b ∈ RT , c ∈ RQ.
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Fig. 1.24 Special forms of third-order tensors: (a) Super-Identity cube tensor I, (b) sparse tensor
with diagonal frontal slices, which can be mathematically expressed as I ×3 C, and (c) block
diagonal tensor.

DECOMPposition (CANDECOMP) or PARAFAC (PARAllel FACtor decomposition) which
preserves the uniqueness under some mild conditions [90].

1.4.7.2 Symmetric and Super-Symmetric Tensors For the particular case when all the
N vectors a( j) are equal to a vector g, their outer product is called a supersymmetric rank-one
tensor.15 A super-symmetric tensor has the same dimension in every mode.
Tensors can also only be (partially) symmetric in two or more modes. For example, a three-

way tensor Y ∈ RI×I×Q is symmetric in modes one and two if all its frontal slices are symmetric,
i.e., Yq = YTq ,∀q = 1, 2, . . . ,Q.

1.4.7.3 Diagonal Tensors An N-th order cubical tensor Y ∈ RI1×I2×···×IN is diagonal if its
elements yi1,i2,...,iN ! 0 only if i1 = i2 = · · · = iN (see Figure 1.24(a)). We use I to denote the
cubical identity tensor with ones on the superdiagonal and zeros elsewhere. This concept can be
generalized or extended as illustrated in Figures 1.24(b) and 1.24(c).

1.5 TENSOR DECOMPOSITIONS AND FACTORIZATIONS

Many modern applications generate large amounts of data with multiple aspects and high di-
mensionality for which tensors (i.e., multi-way arrays) provide a natural representation. These

15In general, by analogy to symmetric matrices a higher-order tensor is called supersymmetric if its entries are invariant
under any permutation of their indices.
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Examples of tensors with special forms
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decomposition is rarely exact and has to be estimated by minimizing
a suitable cost function. Such cost functions are typically of the Least-
Squares (LS) type, in the form of the Frobenius norm

J2 B 1 , B 2 , . . . , B N X J�; B 1 , B 2 , . . . , B N K 2
F

, (3.7)

or Least Absolute Error (LAE) criteria (Vorobyov et al., 2005)

J1 B 1 , B 2 , . . . , B N X J�; B 1 , B 2 , . . . , B N K 1. (3.8)

The Alternating Least Squares (ALS) based algorithms minimize
the cost function iteratively by individually optimizing each component
(factor matrix, B n )), while keeping the other component matrices
fixed (Harshman, 1970; Kolda and Bader, 2009).

To illustrate the ALS principle, assume that the diagonal matrix �
has been absorbed into one of the component matrices; then, by taking
advantage of the Khatri–Rao structure in Eq. (3.5), the component
matrices, B n , can be updated sequentially as

B n X
n

k n

B k

k n

B k TB k . (3.9)

The main challenge (or bottleneck) in implementing ALS and Gra-
dient Decent (GD) techniques for CP decomposition lies therefore in
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be extended to multilinear models using tensor decompositions, such
as the Canonical Polyadic (CP) and the Tucker decompositions, as il-
lustrated in Figures 3.1, 3.2 and 3.3.

3.2 The CP Format

The CP decomposition (also called the CANDECOMP, PARAFAC, or
Canonical Polyadic decomposition) decomposes an Nth-order tensor,
X RI1 I2 I

N , into a linear combination of terms, b 1
r

b 2
r

b N

r

, which are rank-1 tensors, and is given by (Hitchcock, 1927;
Harshman, 1970; Carroll and Chang, 1970)

X
R

r 1
⁄

r

b 1
r

b 2
r

b N

r

� 1 B 1
2 B 2

N

B N

J�; B 1 , B 2 , . . . , B N K,

(3.4)

where ⁄
r

are non-zero entries of the diagonal core tensor �
RR R R and B n b n

1 , b n

2 , . . . , b n

R

RI

n

R are factor ma-
trices (see Figure 3.1 and Figure 3.2).

Via the Khatri–Rao products (see Table 2.1), the CP decomposition
can be equivalently expressed in a matrix/vector form as

X
n

B n � B N B n 1 B n 1 B 1 T (3.5)
B n � B 1

L L

B n 1
L

B n 1
L L

B N T

and

vec X B N B N 1 B 1 ⁄ (3.6)
B 1

L

B 2
L L

B N ⁄,

where ⁄ ⁄1, ⁄2, . . . , ⁄
R

T and � diag ⁄1, . . . , ⁄
R

is a diagonal
matrix.

The rank of a tensor X is defined as the smallest R for which the
CP decomposition in (3.4) holds exactly.

Algorithms to compute CP decomposition. In real world appli-
cations, the signals of interest are corrupted by noise, so that the CP
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Fig. 1.27 The alternative representations of the third-order PARAFAC model: (a) as a set of
three matrices using a scalar representation (see Eq. (1.123)), (b) as a set of vectors using
summation of rank-one tensors expressed by the outer products of the vectors (see Eq. (1.122)),
(c) decomposition into two matrices using row-wise unfolding and (d) representation by frontal
slices (see Eq. (1.134)) The tensor D ∈ RJ×J×Q has diagonal frontal slices Dq ∈ RJ×J , so we can
write Y ≈ D ×1 A ×2 B.

42 Nonnegative Matrix and Tensor Factorizations

Figure 1.26 A graphical representation of the third-order PARAFAC as a sum of rank-one tensors. All
the vectors {aj, bj, cj} are treated as column vectors of factor matrices and are linked for each index j

via the outer product operator, that is, Y =
∑J

j=1 aj ◦ bj ◦ cj + E or equivalently in a compact form Y =
I×1 A×2 B×3 C+ E. (In this model not all vectors are normalized to unit length).

First, the extracted factors or hidden latent components can be grouped (clustered) together and represented
collectively in a lower dimensional space to extract features and remove redundancy. Second, the components
can be simply pruned if they are correlated with a specific mental task. With the addition of extra dimensions
it is possible to investigate topography and time and frequency patterns in one analysis. The resulting compo-
nents can be described not only by the topography and the time-frequency signature but also by the relative
contribution from different subjects or conditions. Regarding an application to brain signal analysis, various
oscillatory activities within the EEG may overlap, however, the sparse and nonnegative tensor representa-
tion by means of the time-frequency-space transformation makes it possible in many cases to isolate each
oscillatory behaviorwell, evenwhen these activities are notwell-separated in the space-time (2-way) domain.
Recent development in high spatial density arrays of EEG signals involve multi-dimensional signal pro-

cessing techniques (referred to asmulti-way analysis (MWA),multi-way-array (tensor) factorization/decom-
position, dynamic tensor analysis (DTA), or window-based tensor analysis (WTA)). These can be employed
to analyze multi-modal and multichannel experimental EEG/MEG and fMRI data [5,103,141].

1.5.2 PARAFAC and Nonnegative Tensor Factorization
The PARAFAC16 can be formulated as follows (see Figures 1.26 and 1.27 for graphical representations).
Given a data tensorY ∈ RI×T×Q and the positive index J , find three-component matrices, also called loading
matrices or factors, A = [a1, a2, . . . , aJ ] ∈ RI×J ,B = [b1, b2, . . . , bJ ] ∈ RT×J and C = [c1, c2, . . . , cJ ] ∈
RQ×J which perform the following approximate factorization:

Y =
J∑

j=1

aj ◦ bj ◦ cj + E = !A,B,C" + E, (1.123)

or equivalently in the element-wise form (see Table 1.2 for various representations of PARAFAC)

yitq =
J∑

j=1

aijbtjcqj + eitq. (1.124)

16Also called the CANDECOMP (Canonical Decomposition) or simply CP decomposition (factorization).
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three matrices using a scalar representation (see Eq. (1.123)), (b) as a set of vectors using
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write Y ≈ D ×1 A ×2 B.
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Fig. 1.28 Harshman’s PARAFAC model with a superdiagonal core tensor G = Λ =

diag(λ1, λ2, . . . , λJ) ∈ RJ×J×J for the third-order tensor Y ! Λ ×1 A ×2 B ×3 C =
∑J

j=1 λ j a j ◦ b j ◦ c j.
(In this model all vectors are normalized to unit length).

vanish (see Figure 1.28). This also means that PARAFAC can be considered as a special case of
the Tucker3 model in which the core tensor is a cubical superdiagonal or super-identity tensor,
i.e., G = Λ ∈ RJ×J×J with g j j j " 0.
Another form of the PARAFAC model is the vectorized form given by

vec (Y) ! (C ⊙ B ⊙ A)λ. (1.130)

The three-way PARAFAC model can be also described by using frontal, lateral and horizontal
slices as follows17

Y: : q ! A Dq(cq :) BT , (1.131)
Y: t : ! A Dt(bt :) CT , (1.132)
Yi : : ! B Di(ai :) CT , (1.133)

where Di(ai :), Dt(bt :) and Dq(cq :) are diagonal matrices which take the i-th, t-th and q-th row
of the matrices A,B, and C, respectively, and produce diagonal matrices by placing the corre-
sponding row on the main diagonal.

17Such a representation does not exist for higher-order tensors where N > 3.
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Algorithm 1: Basic ALS for the CP decomposition of a
3rd-order tensor

Input: Data tensor X RI J K and rank R
Output: Factor matrices A RI R, B RJ R, C RK R, and scaling

vector ⁄ RR

1: Initialize A, B, C
2: while not converged or iteration limit is not reached do
3: A X

1

C B CTC BTB
4: Normalize column vectors of A to unit length (by computing the

norm of each column vector and dividing each element of a
vector by its norm)

5: B X
2

C A CTC ATA
6: Normalize column vectors of B to unit length
7: C X

3

B A BTB CTC
8: Normalize column vectors of C to unit length,

store the norms in vector ⁄
9: end while

10: return A, B, C and ⁄.

multiplying a matricized tensor and Khatri–Rao product (of factor
matrices) (Phan et al., 2013a; Choi and Vishwanathan, 2014) and in
the computation of the pseudo-inverse of R R matrices (for the
basic ALS see Algorithm 1).

The ALS approach is attractive for its simplicity, and often provides
satisfactory performance for well defined problems with high SNRs
and well separated and non-collinear components. For ill-conditioned
problems, advanced algorithms are required which typically exploit
the rank-1 structure of the terms within CP decomposition to perform
e�cient computation and storage of the Jacobian and Hessian of the
cost function (Phan et al., 2013c; Sorber et al., 2013; Phan et al.,
2015a). Implementation of parallel ALS algorithm over distributed
memory for very large-scale tensors was proposed in (Choi and
Vishwanathan, 2014; Karlsson et al., 2016).

Multiple random projections, tensor sketching and Giga-
Tensor. Most of the existing algorithms for the computation of CP
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Fig. 1.34 Tucker3 model is a weighted sum of the outer product of three vectors (factors) stored
as columns of component matrices A ∈ RI×J ,B = XT ∈ RT×R and C ∈ RQ×P. The core tensor
G ∈ RJ×R×P defines a linking structure between the set of components and J, R, and P denote the
number of components. In order to achieve uniqueness for the Tucker models it is necessary to
impose additional constraints such as sparsity and nonnegativity.

or equivalently in the element-wise form

yitq =
J∑

j=1

R∑

r=1

P∑

p=1
g jrp ai j btr cqp + eitq, (1.158)

where a j ∈ RI , b j ∈ RT , and c j ∈ RQ, (that is, the vectors within the associated component
(factor) matrices A,B and C,), and g jrp are scaling factors which are the entries of a core tensor
G = [g jrp] ∈ RJ×R×P.
The original Tucker model makes the assumption of orthogonality of the factor matrices (in

analogy to SVD), [79], [17], [84], [83], [117], [106]. We will, however, ignore these constraints.
By imposing nonnegativity constraints the problem of estimating the component matrices and a
core tensor is converted into a generalized NMF problem called the Nonnegative Tucker Decom-
position (NTD) (see Chapter 7 for details). The first implementations of Tucker decomposition
with nonnegativity constraints together with a number of other constraints were given by Kiers,
Smilde and Bro in [79], [17]. The NTD imposes nonnegativity constraints for all component
matrices and a core tensor, while a semi-NTD (in analogy to semi-NMF) imposes nonnegativity
constraints to only some components matrices and/or some elements of the core tensor.
There are several equivalent mathematical descriptions for the Tucker model (see Table 1.4).

It can be expressed in a compact matrix form using mode-nmultiplications

Y = G ×1 A ×2 B ×3 C + E = ⟦G;A,B,C⟧ + E, (1.159)

where Ŷ = ⟦G;A,B,C⟧ is the shorthand notation for the Tucker3 tensor decomposition.
Using the unfolding approach we can obtain matrix forms expressed compactly by the Kro-

necker products:

Y(1) # A G(1) (C ⊗ B)T , (1.160)

Y(2) # B G(2) (C ⊗ A)T , (1.161)
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X
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C

≈

Fig. 4.1 Tucker decomposition of a three-way array.

Elementwise, the Tucker decomposition in (4.1) is

xijk ≈
P∑

p=1

Q∑

q=1

R∑

r=1

gpqr aip bjq ckr for i = 1, . . . , I, j = 1, . . . , J, k = 1, . . . , K.

Here P , Q, and R are the number of components (i.e., columns) in the factor matrices
A, B, and C, respectively. If P, Q, R are smaller than I, J, K, the core tensor G can be
thought of as a compressed version of X. In some cases, the storage for the decomposed
version of the tensor can be significantly smaller than for the original tensor; see Bader
and Kolda [17]. The Tucker decomposition is illustrated in Figure 4.1.

Most fitting algorithms (discussed in section 4.2) assume that the factor matrices
are columnwise orthonormal, but this is not required. In fact, CP can be viewed as a
special case of Tucker where the core tensor is superdiagonal and P = Q = R.

The matricized forms (one per mode) of (4.1) are

X(1) ≈ AG(1)(C⊗B)T,

X(2) ≈ BG(2)(C⊗A)T,

X(3) ≈ CG(3)(B⊗A)T.

These equations follow from the formulas in sections 2.4 and 2.6; see [134] for further
details.

Though it was introduced in the context of three modes, the Tucker model can
be and has been generalized to N -way tensors [113] as

(4.2) X = G×1 A(1) ×2 A(2) · · ·×N A(N) = !G ;A(1),A(2), . . . ,A(N)"

or, elementwise, as

xi1i2···iN =
R1∑

r1=1

R2∑

r2=1

· · ·
RN∑

rN=1

gr1r2···rN a(1)
i1r1

a(2)
i2r2

· · · a(N)
iN rN

for in = 1, . . . , In, n = 1, . . . , N.

The matricized version of (4.2) is

X(n) = A(n)G(n)(A(N) ⊗ · · ·⊗A(n+1) ⊗A(n−1) ⊗ · · ·⊗A(1))T.
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Fig. 1.35 Summary of the three related Tucker decompositions.

For the Tucker1 model we have only one factor matrix (while two others are absorbed by a core
tensor) which is described as (see also Figure 1.35(c))

Y ! G ×1 A. (1.167)

It is interesting to note that the approximation of a tensor by factor matrices and a core
tensor often helps to simplify mathematical operations and reduce the computation cost of some
operations in multi-linear (tensor) algebra. For example:

Y = X ×̄3 a ≈ (G ×1 A ×2 B ×3 C) ×̄3 a
= (G ×̄3CT a) ×1 A ×2 B
= G Ca ×1 A ×2 B,

whereG Ca = G ×̄3 C
T a. Comparison of tensor decompositionmodels are summarized in Table

1.6.
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Figure 3.4: Graphical illustration of the truncated SVD and HOSVD. (a) The ex-
act and truncated standard matrix SVD, X USVT. (b) The truncated (approxi-
mative) HOSVD for a 3rd-order tensor calculated as X S

t
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(c) Tensor network notation for the HOSVD of a 4th-order tensor X S
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Algorithm 2: Sequentially Truncated HOSVD (Van-
nieuwenhoven et al., 2012)

Input: Nth-order tensor X RI1 I2 I
N and approximation

accuracy Á
Output: HOSVD in the Tucker format X̂ JS; U 1 , . . . , U N K,

such that X X̂ F Á
1: S X
2: for n 1 to N do
3: U n , S, V truncated_svd S n , Á

N
4: S VS
5: end for
6: S reshape S, R

1

, . . . , RN

7: return Core tensor S and orthogonal factor matrices
U n RI

n

R
n .

Algorithm 3: Randomized SVD (rSVD) for large-scale
and low-rank matrices with single sketch (Halko et al.,
2011)

Input: A matrix X RI J , desired or estimated rank R, and
oversampling parameter P or overestimated rank R R P ,
exponent of the power method q (q 0 or q 1)

Output: An approximate rank-R SVD, X USVT, i.e., orthogonal
matrices U RI R, V RJ R and diagonal matrix S RR R with
singular values

1: Draw a random Gaussian matrix � RJ R,
2: Form the sample matrix Y XXT q X� RI R

3: Compute a QR decomposition Y QR
4: Form the matrix A QTX RR J

5: Compute the SVD of the small matrix A as A USVT

6: Form the matrix U QU.

Low multilinear rank approximation is always well-posed, however,
in contrast to the standard truncated SVD for matrices, the truncated
HOSVD does not yield the best multilinear rank approximation, but
satisfies the quasi-best approximation property (De Lathauwer et al.,
2000a)

X JS; U 1 , . . . , U N K N X XBest , (3.35)
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Algorithm 4: Higher Order Orthogonal Iteration (HOOI)
(De Lathauwer et al., 2000b; Austin et al., 2015)

Input: Nth-order tensor X RI1 I2 I
N (usually in Tucker/HOSVD

format)
Output: Improved Tucker approximation using ALS approach, with

orthogonal factor matrices U n

1: Initialization via the standard HOSVD (see Algorithm 2)
2: repeat
3: for n 1 to N do
4: Z X p n U p T

5: C Z n ZT

n RR R

6: U n leading Rn eigenvectors of C
7: end for
8: G Z N U N T

9: until the cost function X 2

F G 2

F ceases to decrease
10: return JG; U 1 , U 2 , . . . , U N K

where XBest is the best multilinear rank approximation of X, for a
specific tensor norm .

When it comes to the problem of finding the best approximation,
the ALS type algorithm called the Higher Order Orthogonal Iteration
(HOOI) exhibits both the advantages and drawbacks of ALS algorithms
for CP decomposition. For the HOOI algorithms, see Algorithm 4 and
Algorithm 5. For more sophisticated algorithms for Tucker decompo-
sitions with orthogonality and nonnegativity constraints, suitable for
large-scale data tensors, see (Phan and Cichocki, 2011; Zhou et al.,
2012; Constantine et al., 2014; Jeon et al., 2016).

When a data tensor X is very large and cannot be stored in com-
puter memory, another challenge is to compute a core tensor G S
directly, using the formula (3.33). Such computation is performed se-
quentially by fast matrix-by-matrix multiplications6, as illustrated in
Figure 3.5(a) and (b).

We have shown that for very large-scale problems, it is useful to
divide a data tensor X into small blocks X

k1,k2,...,k

N

. In a similar way,

6E�cient and parallel (state of the art) algorithms for multiplications of such
very large-scale matrices are proposed in (Li et al., 2015; Ballard et al., 2015a).
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Fig. 1.26 A graphical representation of the third-order PARAFAC as a sum of rank-one tensors.
All the vectors {a j, b j, c j} are treated as column vectors of factor matrices and are linked for each
index j via the outer product operator, that is, Y =

∑J
j=1 a j ◦b j ◦ c j+E or equivalently in a compact

form Y = I ×1 A ×2 B ×3 C + E. (In this model not all vectors are normalized to unit length).

factorization (PMF) method to the three-way PARAFAC model, referring to the result as PMF3
(three-way positive matrix factorization). Although such constrained nonnegativity based model
may not match perfectly the input data (i.e., it may have larger residual errorsE than the standard
PARAFAC without any constraints) such decompositions are often very meaningful and have
physical interpretation [30], [115], [116].
It is often convenient to assume that all vectors have unit length so that we can use the

modified Harshman’s PARAFAC model given by [62], [63]

Y =
J∑

j=1
λ j a j ◦ b j ◦ c j + E ! ⟦λ,A,B,C⟧, (1.124)

or in equivalent element-wise form

yitq =
J∑

j=1
λ j ai j bt j cq j + eitq, (1.125)

where λ j are scaling factors and λ = [λ1, λ2, . . . , λJ]T . Figure 1.28 illustrates the above model
and its alternative equivalent representations. The basic PARAFAC model can be represented in
compact matrix forms upon applying unfolding representations of the tensor Y:

Y(1) ! A Λ (C ⊙ B)T , (1.126)
Y(2) ! B Λ (C ⊙ A)T , (1.127)
Y(3) ! C Λ (B ⊙ A)T , (1.128)

where Λ = diag(λ) and ⊙ means the Khatri-Rao product.
Using the mode-nmultiplication of a tensor by a matrix, we have

Y = Λ ×1 A ×2 B ×3 C + E, (1.129)

where Λ ∈ RJ×J×J is diagonal cubical tensor with nonzero elements λ j on the superdiagonal.
In other words, within Harshman’s model for the core tensor all but the superdiagonal elements

3 The NTF Problem

Matrices are second-order tensors. For some applications, for example in multi-way data
analysis, the input data are tensors of third or higher order. Therefore, it is desirable to
generalize Nonnegative Matrix Factorization to Nonnegative Tensor Factorization.

3.1 Notation

For the formulation of the NTF problem and the algorithms, the following symbols are
used:

� outer product
� Khatri-Rao product
~ Hadamard product
↵ element-wise division
⇥n mode-n product of tensor and matrix
A��n = A(N) � . . .�A(n+1) �A(n�1) � . . .�A(1)

3.2 Problem definition

The Nonnegative Tensor Factorization problem can be formulated as nonnegative canon-
ical decomposition / parallel factor decomposition (CANDECOMP / PARAFAC) as
follows (after [6]):

Definition (NTF). Given an N-th order tensor Y 2 RI1⇥I2⇥...⇥IN and a positive integer
J , factorize Y into a set of N nonnegative component matrices

A(n) = [a(n)
1 , a

(n)
2 , . . . , a

(n)
J ] 2 RIn⇥J , (n = 1, 2, . . . , N) representing the common (loading)

factors, that is,

Y = Ŷ + E =
JX

j=1

a
(1)
j � a(2)

j � . . . � a(N)
j + E =

I⇥1 A
(1) ⇥2 A

(2) · · ·⇥N A(N) + E = JA(1)
,A(2)

, . . . ,A(N)K + E

with ||a(n)
j ||2 = 1 for n = 1, 2, . . . N � 1 and j = 1, 2, . . . , J .

The tensor E is the approximation error. Figure 2 illustrates the decomposition for a
third-order tensor.

4
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Algorithm 2: Nesterov-type algorithm for MNLS

Input: X 2 Rm⇥k, B 2 Rk⇥n, A0 2 Rm⇥n, tol > 0.
1 Compute W = �XB, Z = BTB.
2 Compute L = max(eig(Z)) µ = min(eig(Z)).

3 Set Y0 = A0, � =
p
L�p

µp
L+

p
µ

, k = 0.

4 while (1) do
5 rf(Y

k

) = W +A
k

Z;
6 if (max(|rf(Y

k

)~Y
k

|) < tol) then
7 break;
8 else
9 A

k+1 =
⇥
Y

k

� 1
L

rf(Y
k

)
⇤
+
;

10 Y
k+1 = A

k+1 + � (A
k+1 �A

k

);
11 k = k + 1;

12 return A
k

.

Terminating condition If ⇤ denotes the Lagrange multiplier matrix associated with

the matrix element-wise nonnegativity constraints in (3.8), then the Karush-Kuhn-Tucker

(KKT) conditions for problem (3.8) are

rf(A)�⇤ = 0, A � 0, ⇤ � 0, ⇤~A = 0. (3.10)

From (3.10), we obtain thatrf(A)~A = ⇤~A = 0. This equality can be used in a termi-

nating condition. For example, we may terminate the algorithm if max {|rf(A)~A|} <

tol, for a small real number tol > 0, where the operator max is applied element-wise.

A Nesterov-type algorithm for the solution of the MNLS problem (3.8) is given in Algo-

rithm 2, where [·]+ denotes projection onto the set of matrices with nonnegative elements

(see [18]).
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Thus, fX can be expressed as

fX (A,B,C) =
1

2

��X
A

�A (C�B)T
��2

F

=
1

2

��X
B

�B (C�A)T
��2

F

=
1

2

��X
C

�C (B�A)T
��2

F

.

(4.4)

These expressions form the basis for the AO NTF in the sense that, if we fix two matrix

factors, then we can update the third by solving an MNLS problem. For reasons related

with the conditioning of the MNLS problem, we propose to add a proximal term. More

specifically, if Ak, Bk, and Ck are the estimates of A, B, and C, respectively, after the

k-th AO iteration, then Ak+1 is given by

A
k+1 := argmin

A�0

1

2

���X
A

�A(C
k

�B
k

)T
���
2

F

+
�

2
kA�A

k

k2
F

, (4.5)

where � � 0 determines the weight assigned to the proximal term. If (C
k

�B
k

) is a well-

conditioned matrix, then it is reasonable to put small weight on the proximal term and

compute A
k+1 that leads to a large decrease of the function fX (A,B

k

,C
k

). If, on the other

hand, (C
k

�B
k

) is an ill-conditioned matrix, then it is reasonable to put large weight on

the proximal term, leading to a better conditioned problem and easy computation of A
k+1

that improves the fit in fX (A,B
k

,C
k

) but is not very far from A
k

. This is the strategy

we shall follow for the solution of problem (4.2) (see also [5], [19]).

The computational e�ciency of the AO NTF heavily depends on the algorithm we use

for the solution of problem (4.5). In this work, we adopt the approach of Nesterov for the

solution of smooth and strongly convex problems. The derived algorithm is optimal under

the (worst-case) black-box first-order oracle framework [12, Chapter 2] and is very e�cient

in practice. Furthermore, it leads to an AO NTF algorithm that is suitable for parallel

implementation.

4.2 Nesterov-type algorithm for MNLS with

proximal term

In this section, we present a variation of Algorithm 2 for the MNLS problem with prox-

imal term. We have already pointed out that strong convexity is very important for the

The objective function:

4.3. Nesterov-based AO NTF 26

Algorithm 4: Nesterov-based AO NTF
Input: X , A0 � 0, B0 � 0, C0 � 0, �, tol.

1 Set k = 0
2 while (terminating condition is FALSE) do
3 W

A

= �X
A

(C
k

�B
k

)� �A
k

, Z
A

= (C
k

�B
k

)T (C
k

�B
k

) + �I
4 A

k+1 = Nesterov MNLS(W
A

,Z
A

,A
k

,�, tol)
5 W

B

= �X
B

(C
k

�A
k+1)� �B

k

, Z
B

= (C
k

�A
k+1)T (Ck

�A
k+1) + �I

6 B
k+1 = Nesterov MNLS(W

B

,Z
B

,B
k

,�, tol)
7 W

C

= �X
C

(A
k+1 �B

k+1)� �C
k

, Z
C

= (A
k+1 �B

k+1)T (Ak+1 �B
k+1) + �I

8 C
k+1 = Nesterov MNLS(W

C

,Z
C

,C
k

,�, tol)
9 (A

k+1,Bk+1,Ck+1) = Normalize(A
k+1,Bk+1,Ck+1)

10 (A
k+1,Bk+1,Ck+1) = Accelerate(A

k+1,Ak

,B
k+1,Bk

,C
k+1,Ck

, k)
11 k = k + 1

12 return A
k

, B
k

, C
k

.

4.3 Nesterov-based AO NTF

In Algorithm 4, we present the Nesterov-based AO NTF. We start from point (A0, B0,C0)

and solve, in a circular manner, MNLS problems with proximal terms, based on the previous

iteration.2 In our algorithm, we incorporate two features borrowed from routine parafac of

the N-way toolbox [21], implemented by functions termed “Normalize” and “Accelerate.”

Function “Normalize” normalizes each column of B
k+1 and C

k+1 to unit Euclidean

norm, putting all the power on the respective columns of A
k+1.

Function “Accelerate” implements an acceleration mechanism which can be briefly de-

scribed as follows. At iteration k + 1 > k0, after the computation (and normalization) of

A
k+1, Bk+1, and C

k+1, we compute

Anew = Aold + s
k+1(Ak+1 �Aold), (4.9)

where Aold is the (normalized) output of the k-th AO iteration, and s
k+1 is a small positive

number; a simple choice for s
k+1 is sk+1 = (k+ 1)

1

n , where n is initialized as n = 3 and its

value may change as the algorithm progresses. In an analogous manner, we compute Bnew

and Cnew. If fX (Anew,Bnew,Cnew)  fX (A
k+1,Bk+1,Ck+1), then the acceleration step is

successful, and we set A
k+1 = Anew, Bk+1 = Bnew, and C

k+1 = Cnew. If the acceleration

fails to decrease the cost function, then the acceleration step is ignored and we use A
k+1,

2Of course, we do not need to use separate variables WA, WB, and WC; we did this for the reader’s
convenience (the same applies to the Z’s).


