Special Topics in Mechano-Informatics 11

Interpretable and Adversarial Machine
Learning

Qibin Zhao

Tensor Learning Team
RIKEN AIP
https://qibinzhao.github.io

p & IE
@ O

RIM=H




Machine Learning: The Success Story
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ML Achieves Superhuman Performance

Deep Net outperforms humans
AlphaGo beats Go in image classification DeepStack beats

human champ I M B G E professional poker players
) ,

Autonomous search-and-rescue

Deep Net beats human at
recognizing traffic signs
!

Computer out-plays
humans in "doom"

”~

IBM's Watson destroys
humans in jeopardy 7




Evolution of ML

Computational Machine
Resources Learning
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ML in Physical World

¥ &

SMART SMART

Malware Classification Fraud Detection Biometrics Recognition



Consequences in Real-world Applications

The FBI Has Access to Over 640
Million Photos of Us Through Its
Facial Recognition Database

‘1 By Neema Singh Guliani, ACLU Senior Legislative Counsel
JUNE 7,2019 | 3:15 PM

TAGS: Face Recognition Technology, Surveillance Technologies, Privacy &
Technology
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#% Andrew J. Hawkins @ =255/ . @
" Follow v
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In 2016, a Tesla driver using Autopilot
crashed into the side of a truck and was
killed. It happened again three months ago,
but this time with a completely new version
of Autopilot. What'’s the heck is going on??
theverge.com/2019/5/17/1862 ...

1:14 PM - 17 May 2019

NEWS

Home Video Workd US & Canada UK Business Tech Science Magazine

Technology

Google apologises for Photos app's racist
blunder

@® 1July 2015 Technology

Robust Physical-World Attacks on Machine Learning Models

Ivan Evtimov, Kevin Eykholt, Earlence Fernandes, Tadayoshi Kohno, Bo Li, Atul Prakash, Amir Rahmati, Dawn Song
(Submitted on 27 Jul 2017 (v1), last revised 30 Jul 2017 (this version, v2))




Privacy: Deep Leakage from Gradients

> Federated learning: model is moving  ( vou
while private training data never

soul data is mi
ARLE. meE

) ) E
Vl/

leaves local device
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Parameter Server
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» However, training data can be
leaked by publicly shared gradients
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Building Trust between Human and Al

Explanations on how and

Training models off of why Al systems make the
sensitive data needs Trusted/AllFramework decisions for different
privacy preserving Transparent / — stakeholders
safeguards Q Explainable
Privacy Fair / -
Protect Al systems mearte — Enable equitable and
from potential risks unbiased decision
that may cause making
physical and digital >
harm Safe / Responsible /

Secure Accountable

\

L Robust /
Ability to produce —  Reliable

consistent and reliable
outputs

Clearly determine who is
responsible for the output
of Al system decisions




Interpretable/Explainable
Machine Learning



Black-box Al Creates Confusions

e Can | trust our Al

‘ xt '; decisions?

. . ( > A .
Z\Iell)i(sliz:;gettlng this ] xz/ ..., How do I answer this
: B . customer complaint?

Customer Support

xtd > .~ How do I monitor and

.....

. debug this model?

>»C < o
AA ack-box
Poor Decision N

IT & Operations

~ Is this the best model
. that can be built? :

How canl geta
better decision?

. Are these Al system
“ decisions fair?
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Black-box Model

Why does the NN predict a cat?

Which features matter? Are there general explanations??

» |nternals are unknown to observer

> |nternals are known but uninterpretable

11



Explanations in ML world

a Medical Diagnosis
TN T~
/ e sneeze |V | Explainer sheeze
( | i LIME
@ @ = weigt EME), headache
o o : headache
\' , no fatigue no fatigue 4
K Model Data and Prediction Explanation Human makes decisionJ

f Credit Evaluation W

[ ) | .
' Credit Line Increase Bank Query Al System Credit Lending Model

? Request Denied .m. Credit Lending Score = 0.3 E
2

Why? Why not?
k How?  Fair lending laws [ECOA, FCRA] require credit decisions to be explainable J




What is Explainable Al

Confusion with Today’s Al Black
Box

Decision,
- Recommendation
Data BIachBox Al product x‘ e Why did you do that?
e \Why did you not do that?
o
®

Black Box Al

When do you succeed or fail?
How do | correct an error?

Clear & Transparent Predictions

____________________________________________________

Decision e | understand why
Data Explainable Explainable . x‘ e | understand why not
Al Al Product :
Explanation e | know why you succeed or fail
e | understand, so | trust you
Significance: Manipulability: Complexity:
Strong impacts Controllable effects Gaining insights

Low Interpretability High Interpretability

13



What is Interpretable/Explainable ML

There is no mathematical definition of interpretability. Two
proposed definitions in the literature are:

> Interpretability is the degree to which a human can understand
the cause of a decision. — Tim Miller

> Interpretability is the degree to which a human can consistently
predict the model’s result. — Been Kim

14



Why Explainability?
Generating Explanation for the End-User

0 H: Why? H: (Hmm. Seems like it might H: What happens if the
C. See below. be just recognizing anemone background
” texture!) Which training anemones are f
cxamples arc most influcntial removed? E.g., Q
to the prediction”
| C. These ones:
ML Classifier _ C: I still predict
‘ (.""""’.” regtons drgue FISH, because
Jor FISH, while RED of these green
C: 1 predict FISH pushes towards DOG. .,‘,'”‘,),(,,./) ixels:

There s more green

Weld, D., et al, The challenge of crafting intelligible intelligence, Communications of ACM (2018)
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Why Explainability?
Debug (Mis)-Prediction

Original image Integrated Gradients “Clog”

. _ ‘ (for label “cleg”)

Top label: “clog”

Why did the network label this
image as “clog”?

. Integrated gradients
Original image (for top label)

~
~
-~
——

16
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Why Explainability: Verify the ML Model/System

Wrong decisions can be costly
and dangerous

“Autonomous car crashes, “Al medical diagnosis system
because it wrongly recognizes ...” misclassifies patient’s disease ...

1

Credit: Samek. Binder, Tutorial on Interpretable ML, MICCAI'18
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Why Explainability? Improve ML Model

Standard ML Interpretable ML
model/data
improvement
= BT e
| e
1B
il
Qv
Q
.................... 73]
: : 1=
ML ML . interpre- =
model model | tability g
z =
I | B
Y Y
predictions verified predictions
Generalization error ‘ ‘Generalization error + human experience

Credit: Samek, Binder, Tutorial on Interpretable ML, MICCAI'18
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Why Explainability: Learn New Insights

“It's not a human move. l've -
never seen a human play this ~ ©ld promise: ,
move.” (Fan Hui) “Learn about the human brain.”

. L.

gl LB T T W

Credit: Samek, Binder, Tutorial on Interpretable ML, MICCAI'18

19



Why Explainability: Learn Insights in the Sciences

Learn about the physical / biological / chemical mechanisms.
(e.g. find genes linked to cancer, identify binding sites ...)

o
° e s o .l-u

po - s Y
s Ly P . - -

e - - . PO \ / -

Soiin g Snie 10 o ',_?.r. y
| SV - pa 3> -

COH SCH3

Credit: Samek, Binder, Tutorial on Interpretable ML, MICCAI'18
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Why Interpretability: Find Bias and Fairness

The background bias

& \r—m' m STV Ll T G W R ek ’-‘w

T -

{a) Husky classified as wolf

v - 4
Rl e - [ :
l & e~ -

. ey . el
,;:;Q‘. S e e —
».",'r ¢‘ip' ' 3“‘*.;. :‘: _ - -
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What kind of Interpretation?

» Data: Which dimensions of the data are most
relevant for the task?

» Model: What concept does a particular neural
encode?

> Prediction: Explain why a certain instance
has been classified as a certain class

22



Model-based vs. Post Hoc Interpretabillity

g

—>

- Post hoc
Model-based Model-based
interpretability interpretability

> Simpler model to fit the data

v s Generally
. >
» Lower predictive accuracy but £ O [EEEEERERECEICh
higher d ot T 3 decrease No Effect
Igner aescriptive accuracy 3 & | (data-dependent)

Post hoc

> Analyze or visualize information of

a trained model
Increase Increase

Descriptive
Accuracy

» Unchanged predictive accuracy

Definitions, methods, and applications in interpretable machine learning (Murdoch et al. PNAS 2019)
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Global vs. Local Explanations

Finding a prototype:

GoogleNet

1 .14
— H
1 1 Hilfg i » o
1 1 A iiagatiaile o "motorbike
7 — Bigiig g pisaiaafyy ¥ W
t g ig g 1 5y 5y H
— HH H . §

Question: How does a “motorbike” typically look like?

Individual explanation:

GoogleNet

4 4
. .
1 1 |:|l=1l=g::"==‘==""°_” "motorbike"
1
— ll{llll“l::"“l" “ + R 8eel-
‘ HH M o

Question: Why is this example classified as a motorbike?

24



Global vs. Local Interpretation

Global interpretation Local interpretation

» Understanding how a lamp > Understanding why this
typically looks like image contain a lamp

model’s prototypical lamp some image of why it is classified
alamp as alamp

25



Taxonomy of Interpretability Methods

4 Model-specific

Saliency NN Layer
Maps Visualization
Occlusion XGBoost Feature
Feature :
Maps Weights
Importances
Local Global
>
LIME Input _
Gradients Partial
Dependency
Plots
Shapley
Values

> Local: interpretation for
specific instance

> Global: interpretation for
model output

Model-agnostic

» Model-specific: only for specific
model class, access to model
Internals

» Model-agnostic: for any models,
post hoc, analyzing input and
output without access to model
iInternals

20



Accuracy

Accuracy vs. Explainability

R

Explainability

Neural Net
GAN CNN
Ensemble
RNN Method
XGB
Random . .
Decision
Forest -
ree
- Statistical
Model

raphical Model

“E

27
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Non-Linear
functions

Polynomial
functions

Quasi-Linear
functions




Explaining Decision

Layer-wise Relevance Propagation (LRP)
(Bach et al. 2015)

‘ - . .
| : . prediction f(x)
: Explain prediction

(how much each pixel contributes to prediction)

> R = J(z)

“every neuron gets it's share of
relevance depending on activation
and strength of connection.”

<Jedistribute f(x)

heatmap

28



Sensitivity Analysis

Consider a function f, a data point x = (x, ..., Xg), and the
prediction
f(x, ..., Xq).

Sensitivity analysis measures the local variation of the function
along each input dimension
2
X:X)

of

R= (5
8X,'

» Easy to implement (we only need access to the gradient

of the decision function).

Remarks:

» But does it really explain the prediction?

29



Saliency via Backpropagation

Sensitivity analysis of target neuron w.r.t. input pixels

@ forward _ -
. “Black widow”
Co == Cy3 M C4y I C; > fa — fs —— fa —
class neuron
i
!
'
P [ ot l oo [ ot l Bl Er jee P 4: e e s
d®(x)
J= backward
dx

The “salient” pixels
usually light up

Deep inside convolutional networks, Simonyan, Vedaldi, Zisserman, ICLR, 2014
30



Saliency Map

Saliency maps provide a visual representation of the input sensitivity of
an output class

ReLU (Z agA’f>

0S.(x
C( ) o Z Oy©
ox Ok = 0AF,
To
l l Integrated Gradient Edge
Original Guided Guided Integrated Gradients '
Image Gradient SmoothGrad BackProp GradCAM Gradients SmoothGrad  Input Detector
L 1 o
= = :
& “y LR . m. < '5‘? ’i‘-. -8
- V’m, d "-\.:u/'! ;
r 4
v -8 - N s s, :}:
Wheaten

& G B 2 R b -
Lo % > ¢ e Q -
Terrier ' 259 :
Sanity Checks for Saliency Maps (Adebayo et al., NeurlPS 2018)

Deep Inside Convolutional Networks (Simonyan et al., ICLR 2014)
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Sanity Check-1

» When randomizing weight, model gives random prediction

> Does saliency map change?

Cascading randomization

=
Original Image & : from top to bottom layers
,; = o “ ® )
3 ° . ) =z @ a3 3
3 B 5I 8I .ﬂ| gI ul
Ne)
* vgl iel < 8. 3| S © S 8. 8. SI < o :I o o
|- I ° ° ° ° ° © % ° 9 T © < g « o o
S+ 2 2 2 2 ° 2 ¢ g ° 1 g £ > >
2. % _ _ = . E &5 2 Z T &8 & & 8
c "’ E E E E E E E ] E E 1]
WYY GSRET WS TR IR T A AN AR O AN it 14 , . 2
. .. ". > o % . . - b . & . ~ X L™ A ' o l-" . b Y v = . o
Gradient L 3 L5 R S e % A 8 NS ,’ SF Al 008 LRy L S
—
. - - -h : " JER 3R B - s Ci' 4 i £ "
Gradient-8G  * ¥ - ’ .« - . ' s °,' b »‘ 73 B AR i : o o s o B
" » ,:rcn L wr = N T S % 2 . e ‘ﬁ ‘ Fey -« e e S
Gradieni: Input : b ¥ AT B b) ‘) ~ ’ - I ¥ >
g " L " ~ - - " - " " - -~ ~ - - ~ "
Guided . . .. - o o - - - - . .. = - - - - -
Back-propagation
GradcAM i.-..- ..‘. .. . - '. Q -
Guided GradCAM
. " e = : , ) L L L 3 ‘ s 4 | - I - ¥ . _ .
Integrated Gradients  *% &% { & 8 R e By G L L o B B
r r . r - 2
Integrated Gradients-SG ¢ 7 *-{" <« < ¢ & e IR *" .?a: ;’.‘t"_ .!; ..j};) ;:_',': :_-,,'. "_._'"' £ ©

Sanity Checks for Saliency Maps (Adebayo et al. NeurlPS 2018)
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Class Activation Maps (CAM)
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Softmax class weights
Class Activation Mapping
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Grad-CAM

What animal is in this picture? Cat

34



Extremal Perturbations

Learn a fixed-sized mask m to perturb input x that
maximally preserves the network’s output

A mask is optimized to maximally ,_
excite the network: ' perturb ® —Om®x)

argmax ®(m @ x)
m

subjectto arca(m) = a

[Fong et al., ICCV 2019]

35



Uncertainty Map

Input

RGB Image

Segmentation

Convolutional Encoder-Decoder Stochastic Dropout

7| samples
Y p

mean

Model Uncertainty
var .-".-:c~ i ﬁ

i A
-

B ccov 4 Barcn Noemalisation + Redl)
I cropout Il PoclingUpzampling Softmax

(a) Input Image

(b) Ground Truth (c) Sernantic Segmentation  (d) Aleatoric Uncenainty (¢) Epistemic Uncertainty

//

Sensing
uncertainty

Modeling
uncertainty

What Uncertainties Do We Need in Bayesian Deep Learning for Computer Vision?

(Kendall et al. NeurlPS 2017)
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Interpreting Model

> Find prototypical example of a category

> Find pattern maximizing activity of a neuron

simple regularizer
(Simonyan et al. 2013)

max pg (we | ) + AQ(z)

37



Activation Maximization

Visualize the exemplar of class (output layer) or representation (hidden layer)
by optimization w.r.t. input

l- max S¢.(x) — AR(x)

max h; ;.

Neuron Channel Layer/DzegCreem Class Logits Class Probability

layer,Ix,y,2] layer,[:,:,2] layer,[:,:, :]2 pre_softmax [k] softmax[k]
Individual Neurons Spatial Aclivations Channel Aclivalions Neuron Groups
> - [l DR F\“-:?:']:] %
- F {“ﬁ Cl % L — —
R N S . N
N0 . T

https://distill.pub/2017/feature-visualization/; https://distill.pub/2018/building-blocks/

38


https://distill.pub/2017/feature-visualization/
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Multifaceted Feature Visualization

Class maximization w.r.t. inputs max S.(z) — AR(x)

T

punching bag monastery espresso maker

- ” .. ' ..

wooden spoon washer stopwatch typewriter keyboard swimming trunks

corn groom barrow wool spaghetti squash

Multifaceted Feature Visualization: (Nguyen et al. ICML 2016 Best Paper Award)
39



Activation Maximization

Cog snouts Srake heads Restaurart dishos

By this layer we find more sophisticated concepls, [ke z particua kind of anknal sncut. Gn
the other hand, we alsa start to see neurons that react to multip'e unrelated concepts, It

Layer 3b

Layer 4a

Layer 4b

Eallz Eraz: nEtruments

Visuallzatlons become harder ta Interaret nere, but the semantic concepts they target are
aften still quite specifie.

. - 84 ! IS . - '3 .
.~ o3 X - ~ - 5 - N

Palm trecs : = L.q_ o —— In this layer visualzations become mostly nonsensical collages. You may still identify
. . N ) N ecific subjects, but will usually need a combination of dversity and dataset examples to
In this layer things get complex enough that it can often halp to lcok at the neurcn objectiva ® Jects, ' Y ’ : , P
. . . €0 $0, Neurons do not seem to comespend 1o particularly meaningful semantic ldeas
rather than the channel objective. You can tind neurons respending to dogs on leashes anly,
anymare.,

many wheel detectors, and a lot af other fun naurans.
This s Nkely the most rewarding layer ro start exploring!

https://distill.pub/2017/feature-visualization/; https://distill.pub/2018/building-blocks/
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LIME (Local Interpretable Model-Agnostic Explanations)

> Surrogate models are trained to approximate the predictions of
the underlying black box model (model-agnostic approach)

> Explain the decision by evidence of interpretable region

/,
- L e
-~ /f Ten
1 .
Qu
‘ 0.85 74 Wi
. Locally weighted

regression

0.52

Interpretable
Components Explanation

“Why Should | Trust You?” Explaining the Predictions of Any Classifier (Ribeiro et al. KDD 2016)
Model-Agnostic Interpretability of Machine Learning (Ribeiro et al. AAAI 2018)
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LIME: More Examples

Predicted: husky Predicted: wolf
True: husky True: wolf

! - \

' b - .

Predicted:. wol Predicted: husky Predicted. wolf
True: husky True: husky True: wolf

42



Influence Functions

> Influence of model’s prediction by training points
> |dentify the training points “responsible” for a given prediction

» How predictions change if removing a training point z?
I(Za Ztest) — _vec(ztesta H)THg_lve'C(za (9)

1 n
an Hy == V3L(%,0
Hessian g n 2 “L(z;,0)

» How predictions change if a training point z is modified?
I<Z7 Ztest) — _v9£(2t68t7 Q)THg_lva:ve*C(za 9)
22 57 v5£(ztest7 (9/) — £(Z7 Ztest)T5

> Poising attack

Understanding Black-box Predictions via Influence Functions (Koh and Liang, ICML 2017)
43



Influence Functions

Label: Fich | i ‘ Lzbal: Figh
Asmazll
perturbation
to one
training
exemple:
Can change
multiple test
predictions
Orig (cenfidencs): Dog (97%) Dog (98%) . Dcg (98%) o Dcg (98%)
New (confidence): Fisn (97%) Fish (93%) Fish (87%) Fish (E3%) Fish (52%)
Test image Helpful training images Test image Harmful training image
.’ ¥ % . .
' Label: 7 Label: 7

Understanding Black-box Predictions via Influence Functions (Koh and Liang, ICML 2017)

44



Counterfactual Explanations

Credit Evaluation

[ ) .
' Credit Line Increase Bank Query Al System Credit Lending Model
, | 111 - ‘\e%:
, Request Denied ~— Credit Lending Score = 0.3
Why? Why not? (a) Original

How?

» What do | need to change for the bank to approve my loan? n .

» Which symptoms would lead to a different medical diagnosis? . .

min max A(fp(z') = y')* + d(0,2')
" 2|2
alq

Counterfactual explanations without opening the black box (Wachter et al. 2017)

d(xo,2") = ||lxo — 2|1

» Adversarial example with sparsity of perturbations

45



-‘ . :r,z‘. ! v:,n‘

Is Google’s DeepDream Art?

Horizon

0

Towers & Pagodas Buildings Birds & Insects
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Deep Generative Representation

Generator Randomly generated image

512 dimensions

| =

Random vectar

Lamp
Pillow

How latent space controls the semantics?

Predicted semantics
Random vector
Scene category: bedroom
Scene attributes: nature lighting,
wood, foliage

512 dimensions

To identify the cause-effect relations

47



Disentangled Representations

» Factorize distribution over the latent variables

» Single change in factor should lead to single change representations

' Identity
| g l Color
' Pose

48



Application: Image Translation

> Image resynthesis by manipulating latent factors

25% 50% 75% 100%

Multi-Attribute Transfer via Disentangled Representation (Zhang et al., AAAl 2019)

49



Adversarial Machine Learning
(Reliability and Robustness)



Extreme Reliability and Safety

Medical diagnosis Surgery robots

51



Problem: DNNs are Brittle

+ .007 X —
T sign(VzJ(0,x,y)) esign(VJ (0, z,y))
“panda” “nematode” “gibbon”
57.7% confidence 8.2% confidence 99.3 % confidence

Inconsistent perception between human and ML

(Goodfellow et al., ICLR 2015)
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Reliability: Medical Diagnosis

Adversarial example

Original image

Adversarial noise

+0.04 X

Dermatoscopic image of a benign Perturbation computed
melanocytic nevus, along with the by a common adversarial
diagnostic probability computed attack technique.

by a deep neural network. See (7) for details.
IR | Benign

| Malignant

Model confidence

(Finlayson et al. Science 2019)

Combined image of nevus and
attack perturoation and the
diagnostic probabilities from
the same deep neural network.

1 | I I 1

Model confidence

Adversarial attacks on medical machine learning

53
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Malignant



Robust Physical-World Attacks

Lab (Stationary) Test Field (Drive-By) Test
Physical road signs with adversarial Video sequences taken under
perturbation under different conditions different driving speeds

_ ,
Sample Per
Crop.p.ing' K Fram&s,
Resizing (I)%l'opp ing,
esizing
SPEED

LIMIT
Stop Sign — Speed Limit Sign 4 5 Stop Sign —+ Speed Limit Sign

(Eykholt et al., Robust physical-world attacks on deep learning visual classification, CVPR 2018)
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More Examples

[Sharif Bhagavatula Bauer Reiter 2016]:
Glasses that fool face recognition

place sticker on table

Input Image

Recognized

"it was the

=> best of times,
it was the
worst of times"

WWWMN x 0.001

"it is a truth

::> universally
acknowledged
that a single"

[Slmen Thys et aI 2019]
Fooling automated survelllance cameras:
adversarial patches to attack person
detection

55

e Adversarial patch

Classmer Input ,_ Classifier Output

banana slug snail orange

Classifier Output

E—
toaster banana piggy bank  spaghetti_

(Brown et al., 2017)

[Carlini Wagner 2018]:
Voice commands that are
unintelligible to humans



Accuracy vs. Adversarial Robustness

Tradeoff between Accuracy and /., CLEVER Score

3.5E-08
b} alexnet
= 3.0E-08
m 8 alexnet
wn % vag_16
r 2.5E-08 e — Number of Parameters
resnet_v2_50
m L resnet_v2_101 ® 1M
C a 2.0E-08 e b e inception_resnet_v2 -
1 mobilenet_v1_100
o mobilenet_v1_050 :
.'_)m . 1.5E-08 [‘,}2:,')'52,?‘;1 oos .mobllenet_v1_025 nasnet_large 50 M
2 inception_v2
(O] inception_v3
3 X 1.0E-08 inception_resnet_v2 .
o inception_v4 mobilenet_v1_050
Q q’_) densenet121_k32
q °-0E-09 densenet169_k32 inception_!
O LebapElin e s mobilenet_v1_100
nasnet_large
e 0.2

(D. Su et al., Is Robustness the Cost of Accuracy? - A Comprehensive Study on the Robustness of 18
Deep Image Classification Models, ECCV 2018)
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Limitation of ML Framework

—

All training and testing data
examples drawn
independently from same
distribution

\ 4

—

Real-world application

57



Implication of Adversarial Examples

» ML has high score of accuracy but not sufficiently
intelligent

> Distinct principles between human perception and ML
> Risky for safety critical applications
» Limitations of current ML methods

» Trust between human and Al

58



Attacks on ML Pipeline

Recovery of sensitive
training data

Training phrase

_ Inference phrase
Learning

Algorithm

Training data *
(X, Y)

% * Test output
y*
Poisoning Test input , | A
Training Set x*

Adversarial Model Theft

Examples
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Poisoning Attack

» By poisoning training data, the model will be compromised

» Planting backdoors in training data, such that the data with
backdoors will be misclassified

@ .
=~ 0
Data ¢ o ®
isoni ' 2
poisoning o2
Poisoned Learning Poisoned
Training Data process Model
\
- }?5"‘1'7.’“‘3”»35"2&{' \‘@
' Weight poisoning
Clean Model Poisoned Model
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Trojan Attack

Modified Samples

(I—szrgle'?) Train

Target Label: 4 . >
e oo EAEARIE -
Modified Training Set Backdoored DNN
Backdoor :
Configuration a) Training
B—  —ubes
In}o#,sgger 5. (Target Label)
w/ Tri
% —> Label 4

(Correct Labels)

woTreeer [ o T el

b) Inference

(Bolun Wang et al., Neural Cleanse: Identifying and Mitigating Backdoor Attacks in Neural Networks.
IEEE Security and Privacy, 2019)
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Backdoor Attack against Federated Learning

DBA: distributed backdoor attack

[ ow

1 local trigger 1 local trigger 2 local trigger 3 local trigger 4

local triggers

S

(Chulin Xie, et al., DBA: Distributed Backdoor Attacks against Federated Learning. ICLR 2020)
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Evasion Attack: Adversarial Examples

Modified Data Model Bad Prediction

e.g. cat

_>y0 _fg(X) close ytrue

AN 7
NE ; " 7,
- i meern
J {l',‘,- I.""'. ;o‘|" ff'\' :‘I‘:‘n
/ \y — g(x’) yfalse
' |
L
e.g. fish

Target vs. non-targeted attack

White-box vs. black-box attack
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Intriguing Properties of NN (1)
Natural basis vector wit 3 x

(a) Unit sensitive to white ﬂowes.r
\ hidden layer

/ arg max<¢(gj)7 ez-> activitions .

'CB (c) Unit senstive to round, spiky ﬂoers. (d) Unit senstive to round green or yellow
/ T E I | \ / objects.
o LRIl ,.; .;;j Basis activation has specific semantic property

Input images hidden layer

\ activations \
L

| WS g S ‘
, n ‘Cubsy AR
= arg max{(o(x), v) Culibed® R SRS S
(a) Direction sensitive to white, spread (b) Direction sensitive to whlte dogs
T E I flowers.
Random vector "N T 8y YT K-
(c) Direction sensitive to spread shapes. (d) Direction sensitive to dogs with brown

heads.
Random activations also has specific semantic property

Uninterpretable and counter-intuitive properties of DNN
> No distinction between individual high level units and random activations

(Szegedy et al. Intriguing properties of neural networks, ICLR 2014)
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Intriguing Properties of NN (2)

Minimize c|r| + loss¢ (@ + 7} [) subject to x + r € [0, 1]™
/ N

Optimization of Adversarial Wrong
Perturbation Example Label

& G

(a) Even columns: adver- (b) Even columns: adver- (c) Randomly distorted
sarial examples for a lin- sarial examples for a 200- samples by Gaussian noise
ear (FC) classifier (std- 200-10 sigmoid network with stddev=1. Accuracy:
dev=0.06) (stddev=0.063) 51%.

Uninterpretable and counter-intuitive properties of DNN
» Hardly perceptible perturbation can cause misclassification of network

» These distorted images or adversarial examples generalize fairly well even
to different models trained by different dataset

(Szegedy et al. Intriguing properties of neural networks, ICLR 2014)
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Why Do Adversarial Examples Happen?

L =T | 8
T Linear ’wTZB _ fwTa: wT’I’]
/ T \ layer
Adversarial Input Perturbation
Example Data T

| W' N X emn
# . . .
n Average Dimensionality
Moo <€ magnitude of W of input

» Early explanations for adversarial examples is highly nonlinearity and overfitting of
NN (is it wrong?)

» Adversarial samples are caused by high-dimensionality of input and models being
too linear rather than too nonlinear

» Linear models lack the capacity to resist adversarial perturbation
» Generalization of adversarial examples across different models can be explained as
the perturbations being highly aligned with the weight vectors of model

(Goodfellow et al. Explaining and Harnessing Adversarial Examples, ICLR 2015)
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FGSM: Fast Gradient Sign Method

i r — = 7
AI\EdversallrlaI r =X +M ::_,.‘ AAAL ",
xampies : § Pt Pan b
P / | T \ | /\9/\9/\ AN
Adversarial Input  Perturbation _T’ N

Example Data

Model parameter 6

Model Input
Perturbation Parameters Data Label

v ~ 1/

Adxtet;SCakrial N — € &gn(Vm J(Hy L, y))
7

Gradient of loss function
w.r.t. input

(Goodfellow et al. Explaining and Harnessing Adversarial Examples, ICLR 2015)
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Objective of Adversarial Training

Adversarial Training
r N\ (o )

J(0,x,y) =|a] (0, x,y)|+ (1 —a)J(0,x +esign (VS (0, x,y))
/L /k J
Loss for Regularizer for Adversarial Perturbation
training data Robustness Example

> Adversarial examples are continually updated given current model

» The larger model capacity is required to reduce error on adversarial
examples

> Adversarially trained model shows great robustness to adversarial examples
» The weight of model are more localized and interpretable

> Adversarial training = Active learning

(Goodfellow et al. Explaining and Harnessing Adversarial Examples, ICLR 2015)
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Optimization for Adversarial Attack

Standard minE ., ,y~p L£(0, 2,y
trainin I~ N\
9 Model Loss Input Label
Parameter

Goal: min|[dfl, s.t. fo(z +9) # fo(x)

'/ /

Perturbation Model Input  Model parameter
Optimization: ngXE(@,x +0,|y) S-to‘ |0, <€ \
/' g
Loss Adversarial True Keep
Example Label Inperceptible

Gradient:  V,£(0,2,y) wml» V;L(0,2+6,y)
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Geometry of i»-Norm

Example x
o
Jollp < ¢ ~ '
’ 2 — [, ball
A A
[0]]oc <€ [0]]2 < € [0][1 < €

4 <+



Target Attacks

Goal:  mind], st fol+8) =y

5 y, v\

DNN model Target Label

Optimization problem:

mgxx{lﬁ(@, T + 0, y)‘—‘ﬁ(@, T + 0, y’j} s.t. [|0]], < €

T

Loss w.r.t. true label  Loss w.r.t. target label

/1



Targeted Attacks: Example

/2

Note: A targeted attack can
succeed in “fooling” the
classifier, but change to a
different label than target



White-box Attacks

Fast approaches
» Fast gradient sign 0 =esgn(V,L(0,z,y))

VL0, z,y)
o d=c
» Fast gradient V2 L(0, 2, )2

lterative approach

max L0,z +9,y) — A\|d],

Target specific optimization

m(sin LO,z+35,y")+ M0,

Need to know model J¢
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Adversarial Examples with Spatial Constraints

mmZE (0, a;ﬁ(s ')+ |5,
1=1

Subtle Poster

Mimic vandalism

“Hide in the huma
psyche

Camouflage Sticker
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Deepkool

arg min ||7;||2 subject to f(x;) + Vf(x;) ' r; = 0.

r;

Algorithm 1 DeepFool for binary classifiers

input: Image x, classifier f.
output: Perturbation 7.
Initialize g < x, 7 < 0.
while sign(f(x;)) = sign(f(x)) do
ri ¢ o VS (@),
Tit1 < T; + T4,
1 <1+ 1.
end while
return v = ) . 7.

A S A U il > e

> |terative optimization of perturbations for linear classifiers

(Moosavi-Dezfooli et al., DeepFool: A Simple and Accurate Method to Fool Deep Neural Networks, CVPR 2016)
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Application to Transfer Learning

L g 2y
#:g | | Pre-trained
General 9’#’, T 1T T ModelA
Task i’ﬁ’ ‘ ‘
bt
55
2P
Iringfgr pre lrglned
———————————————— " ~~ parameters to new task
Specific o
Task 14
e B AT [ T rI"r 80%T

Freeze Freeze Fine-tune Fine-tune
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Black-box Adversarial Reprogramming (BAR)

» Transfer learning: from finetuning to black-box setting

» Cross domain and data limited transfer learning

Access-limited
Original Domain black-box ML model Tench, ~

Tiger shark, .
Cock,
’ Hen
=
Access-limited Multiple label mapping
7 black-box ML model
, Melanoma , .
" Wi B, ™ Tench,
A :;: O\ P : Goldfish, = ASD
| . U ’ Hammerhead
H — i ¥} -
:1 A i "'7 | N (Tiger shark,
. I W \ N Cock, = non-ASD
4 T l W, N, % Hen
LG | R W .
, :
I > .
. ' Adversarial Program |
( parametrized by W )
Update W Zeroth order optimization

( estimate gradient VLoss(W) using model outputs )

(Y. Tsai et al., Transfer Learning without Knowing: Reprogramming Black-box Machine Learning
Models with Scarce Data and Limited Resources, ICML 2020)
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Universal Adversarial Perturbations

Universal perturbation to
» Data sample
> Models
> |nput transformations
» Ensemble methods

] l
Joystick 0 Chihuahua

Grille ) Jay

Thresher c Labrador

Flagpole Labrador

Tibetan mastiff 9 Tibetan mastiff [

Lycaenid 0 Brabancon griffon

(Moosavi-Dezfooli et al., Universal Adversarial Perturbations, CVPR 2017)
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Black-box Attacks

Zero-query attack
» Random perturbation
> Difference of means
> Transferability based attack

Query based attack

> Finite difference gradient
estimation

> Query reduced gradient
estimation

79
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and training data



Key Technique

> Black-box system is also vulnerable to adversarial attack

> Gradient estimation from system outputs instead of back-prop

_fx) f&x+pe) - fx—Fe)

Ii = Tox, 28

152
&

A

~

5

,,,,,,,,,

oY)
)

i

+F(x+ fe;)

bagel black-box attack grand piano

3T —
P

T ,:f}_““‘:‘ L
T - .

INput e

Prediction «——
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Zero-Order Optimization

> Estimate gradient using function value coordinate by
coordinate  (cnen etal., 2017)

Of(x)  f(x+ he;) — f(x — he;)

-
~

8$i 2h

SGD (first order) Z0-SGD
X Xo
@
Convergence rate E[||VF (x7)||3] = 0(1/T) Convergence rate E[||VF (x7)[13] = 0(\d/VT)

[Duchi, et al., T-IT’15]

T is # of iterations dis # of variables

Question: Better gradient estimate & ZO
method with better convergence rate?

(S. Ghadimi & G. Lan, Stochastic First- and Zeroth-Order Methods for Nonconvex Stochastic
Programming, SIAM J. Optim. 2013)
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Query Based Attack

> Finite difference gradient

estimation
FDx(g(x),9) =

» An example of approximate FGSM
with finite difference

g(x+tdey)—g(x—de1)-

20

g(x+bey)—g(x—bey)

20 -

Tadv = X + € - sign (FDx (¢£(x,y),9))

» Similar attack success rate with
white-box attack 100 .

N s O
o O

o
T T

Adversarial success (%)

0

82

L. constrained strategies on Model A

FD-xent and FD-logit are

/v overlapped
Difference-of-means —

Random-perturbation -e-
Finite-difference xent -»-
Finite-difference logit ——
Query-reduced PCA-100 logit -=
Transfer Model B FGS xent =
Transfer Model B FGS logit -
White-box FGS logit ——
White-box FGS xent ——

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
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AutoZOOM

» Scaled random full gradient estimation for efficient query

o) _, foxt pu) —fx)

) g=

1 q
- U, Wis a unit-lenght vector ii) g =— Z 8;

ox p 15

> Autoencoder for dimensional reduction of perturbations

---------------------------------------------------------------------------------------------------------------------------------------

s Query count 0 ~25,500 ~195,300 ~1,165,300 ~4,945,900
! Unlabeled natural images Black-box ML model A___83.24% reduction __4
/ under attack — 520
Encoder Decoder

.
.
Prob (0)=0.00 § Z00

Prob (1)=0.05 ¢
Prob (2)=0.91 ,
]

(Contrasted)
perturbation in
the latent space

Initial success Fine-tuned attack

N .

Prob (8) = 0.00 :
Prob (9)=0.01
' Unsuccessful attacks

(classified as “Bagel”)

5 DSuccessfuI attacks
: (classified as “Grand Piano”)

in the latent space

/ AutozOoOM =

Original image

Black-box ML model attacking

(with redcued attack space) : =
''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''' Initial success Fine-tuned attack

Autoencoder training

(Chun-Chen Tu et al., AutoZOOM: Autoencoder-Based Zeroth Order Optimization Method for Attacking Black-Box Neural Networks, AAAI-19)
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Summary of Attack Methods

Poisoning Attack

Adversarial Backdoor
Embedding (Tan and
Shokri, 2019)

Backdoor Attack (Gu, et.
al., 2017)

Poisoning Attack on
Support Vector Machines
(SVM) (Biggio et al.,
2013)

Clean Label Feature
Collision Attack (Shafahi,
Huang et. al., 2018)

White-Box

Targeted Universal Adversarial Perturbations (Hirano
Projected Gradient Descent (PGD) (Madry et al., 2017
Universal Perturbation (Moosavi-Dezfooli et al. 2016

DeepFool [Moosavi-Dezfooli et al., CVPR 2016]

Z0O-Natural Gradient Descent [Zhao et. al. AAAI 2019]

Z0O hard-label attack [Cheng et. al. ICLR 2019

Auto-PGD (Croce and Hein, 2020)
Wasserstein Attack (Wong et al., 2020)

and Takemoto, 2019)

)

Elastic Net (Chen et al., 2017)

)

Feature Adversaries (Sabour et al. 2016)

L-BFGS [Szegedy et al. ICLR 2014
FGSM [Goodfellow et al. ICLR 2015]

Z0O-SVRG [Liu et. al. NeurlPS 2018]
ZO-NES [llyas et. al. ICML 2018]
AutoZoom [Chen et al. AAAI 2019]
Z0O-signSGD [Liu et. al. ICLR 2019]

ZO-ADMM [Zhao et. al. ICCL 2019]
ZO-ADAM [Chen et. al. NeurlPS 2019

Sign-OPT [Cheng et. al. ICLR 2020]

Square Attack (Andriushchenko et al., 2020)

Black-Box

84
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https://arxiv.org/abs/1905.13409
https://arxiv.org/abs/1905.13409

Software of Attacks

> https://github.com/bethgelab/foolbox

> https://github.com/IBM/adversarial-robustness-toolbox

> https://github.com/tensorflow/cleverhans

> https://github.com/Trusted-Al/adversarial-robustness-toolbox/
wiki/ART-Attacks



https://github.com/bethgelab/foolbox
https://github.com/IBM/adversarial-robustness-toolbox
https://github.com/tensorflow/cleverhans
https://github.com/Trusted-AI/adversarial-robustness-toolbox/wiki/ART-Attacks
https://github.com/Trusted-AI/adversarial-robustness-toolbox/wiki/ART-Attacks

Adversarial Defense

» Cannot be defensed by weight regularization, dropout and
model ensemble

> Two types

> Passive defense: Find adversarial examples without
modifying the model, special case of Anomaly Detection

> Proactive defense: Training a model that is robust to
adversarial examples
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Passive Defense

Do not influence
Original classification

131
10C
128

15C
175

Tiger Cat
*eybeoera

e.g.
Smoothing

Attack signal Less harmful
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Feature Squeezing

» (Goal: Detect adversarial examples

> Feature Squeezer: coalesces similar samples into a single one

Targetvalue

i 1-bit
ng /
U8 //’
0.7 [7‘—‘
0.6 Z ,
0.5 // 3-DIt
0.4 8-bit |/
0.3
0.2

+

0.1 /r

ﬂ I, 1

0 0102030805050.70809 1
Original value

Signal Quantization

&/ [2[dY]|s|b][7][2]A
-[0 012 0.571 ... 0.159 0.951]
— 1]

," [O. 1. 0. 1. ] . .
I 0. 0. . 0. 1. 1] ..

. [0.312 0471 ... 0.157 0. 8.»1]

X_adv

(Xu et al. NDSS 2018)

Feature Squeezing: Detecting Adversarial Examples in Deep Neural Networks
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Feature Squeezing
» Approach

Adversarial
Prediction, Y i‘/
/\/ max(d1,d2) >T \\/\
Prediction, No
v Legitimate
0
: rediction, d2
\_--! < Bit Depth Reduction
_ » Spatial Smoothing y
> Hypothesis
> Feature squeezing barely change legitimate input
» Destruct adversarial perturbations ,
< 800
(FGSM, BIM, CW._. ol CWa, CW,, JSVA) =1 5"'—’0 Legitimate
MNIST 8 400
1-bit enth b2 1% 99 44'% _}é 200 A dversarial
Mene 2.73% £9.70% é 0 e
et i s 00 04 08 12 16 20
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Passive Defense

» Randomization

Input Image Resized Image Padded Image
X X,
n n
- o
( \
l ‘
| I
I _— I
| I
I I ——
[ : o
[ : <
I | — . b, —
I | CNN
Iy '
I l
| I
[ : CNN
: I Classification
l '
\
—

Random Randomly

Resizing Select One

Layer Pattern

https://arxiv.org/abs/1711.01991
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DeepCloak: Masking DNN

> Motivation: Unnecessary features in DNNs make model vulnerable

Truth, e.g,, Machine Learning model
by human eye “(Extracted an e%;é\verfsggture)
o O I ”
o 5 ors
sep@mo—eocee A o L XX
OU N\ ><
» |dea: Insert a mask layer in DNN model to remove unnecessary
features
Fx)=g(c(x))
Feature Extraction: g(x) Classifier: c(x)
DeepCloak Fully Softmax
conv pooling Mask connected

0
1
@ Extracted n1 : ?:Z:E:SS
‘ r\ features A Soft
[} (0}
’—‘_' E # 11n ﬁ q max
[ g

\

(Gao et al. DeepCloak: Masking Deep Neural Network Models for Robustness Against
Adversarial Samples, ICLR 2017 workshop)
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Proactive Defense: Adversarial Training

1. Choose a set of perturbations: e.g., noise of small £, norm:

2. Foreach example j &2 , find an adversarial example:  §

3. Train the model on § ’

4. Repeat until convergence

T o — Szegedy et al., 2014
Train=Clean, Test=Clean |] Madry et al., 2017
Train=Clean, Test=Adv |/
Train=Adv, Test=Clean ||
Train=Adv, Test=Adv E

100 LR

1071 |

Test misclassification rate

LoV 7 e A, N T YA P - gty A/ TR PN A AP ANy .

10_2 E_ Wy S M

| | | | |
0 50 100 150 200 250 300

Training time (epochs)
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Adversarial Machine Learning

Traditional ML.: Adversarial ML.:
optimization game theory

Minimum Equilibrium

One player, More than one player,
one cost more than one cost
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Standard vs. Adversarial Training

» Standard training minE, p L(6,x y,K
NN

Model Loss Input Label
Parameter

» Adversarial examples

mgxxﬁ(@,a:nt& y) s.t.| [|6]l, <e
/ ™ '_l\

Loss Adversarial True Keep
Example Label Inperceptible

» Adversarial training as a minimax problem

m@in Cen~p | L0, 2,y) mgxxﬁ(@,:z; 0, 1)

Optimize Defense NN

Optimize Attack
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Adversarial Training

> Adversarial training as a minimax problem

min E(az,y)ND ‘C((g? Ly y) +

max L(0,x + 9, y)

0

s.t. ||d]|, < e

7’9

Optimize Defense

> Be simplified as

=

Optimize Attack

0 o)

minE, y)op |[maxL(0,z +6,y)

¥ |

Outer Minimization

—

s.t. [|0]], < €

Inner Maximization

Active Learning or Data Augmentation or Regularization
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Adversarial Training

Inner maximization G Outer maximization

mgxxﬁ(@,x—k&y) s.t. |[0]|p, < e

» Local search (lower bound
on objective)

» Combinatorial optimization
(exactly solve objective)

> Convex relaxation (upper
bound on objective)

Hlé.lIl <lj(zrz,y)ND [:(9, T + 5/7 y)

> Adversarial training

> Provably rousting training
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Adversarial Robustness is Not Free

> Optimization during training more difficult and models need to
be larger
> More training data might be required

MNIST CIFAR10
100 A 100
80 A 80 A
3 60 - 60 -
S

é 40 A 40 -

m—= Adversarial train m—= Adversarial train

20 1 = Adversarial test 20 - m Adversarial test

0 === Standard test 0- === Standard test
0 20000 40000 60000 0 20000 40000 60000 80000
Training Steps Training Steps

(Schmidt et al., Adversarially Robust Generalization Requires More Data, NeurlPS 2018)

> Might need to lose on “standard” measures of performance

CIFAR-10 Restricted ImageNet

~ 5 100 100
X g E—o—n 09
> © 75 50
O 5
1
S —o
(&) 50 0 2 4 6 8 0 0.00 0.02 0.04 0.06 0.08 0.10
5] 100 100
- = N
B ® 5 —e —9
- .
S (Tsipras et al. 2018)
50 0 50 100 150 200 250 300 8 0.0 0.2 04 0.6 0.8 1.0
ETrain ETrain
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But There Are (Unexpected) Benefits

> The representation learned by robust model is more
interpretable

> Align better to human perception

bird airplane frog

.....
......

ined Standard

f.-tra

I-trained  [.-trained Standard

(-Q\-
~ f .‘:
a '
N
t d

I,-traine

(a) MNIST (b) CIFAR-10 (c) Restricted ImageNet

Loss gradient w.r.t. input

(Tsipras et al. Robustness may be at odds with accuracy, NeurlPS 2018)
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Taxonomy of Adversarial ML

Training Attack (Poisoning attack)

Inference Attack (Fvasion attack)

White-box Attack

Adversarial

Attacks Black-box Attack
Targeted Attack
Adversarial Non-targeted Attack
ML
Retraining
Adversarial . -
e Adversarial Training
Defenses

Feature Squeezing

Defensive Distillation
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How to Evaluate Adversarial Robustness?

Game-based approach
> Specify a set of players (attacks and defenses)
» Benchmark the performance against each attacker-defender
pair
> No guarantee on unseen threats and future attacks
Verification-based approach
> Attack-independent: does not use attacks for evaluation

» Can provide robustness certificate: e.g., no attacks can alter
the decision of the ML model if the attack strength is limited

> Optimal verification is computationally impractical for large
DNN

Zhang et al., Efficient Neural Network Robustness Certification with General Activation Functions, NIPS 2018
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Verification: Lower Bounds on Robustness

Amount of -

-
Perturbation I\;a:;um Cleaner \ Certified robustness
Lower bound on perturbation so
that any perturbations within
green region cannot cause

misclassification

Vacuum Cleaner Attack

Shoe Shop Attack

- Shoe Shop
‘ label

Maximum Safe /
Perturbation

Bound

I
Lower |
I

0 Dec’isio_u beundary

e ==L LN Other Decision boundaries
\~ — -_— s s —

Decision\q\u ndary

IBM Research Al
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Efficient Certified Bound with Activation Bounds

Shoeshop

—

lx = xoll < &

Ostrich

Image X

Input

Perturbation | Propagate | Check if lcorrect

\, Size € | Bounds | robust >utarget
@ lostrich >

Robustness Certificate: Given a data input and a model, the top-1
prediction of the perturbed input will not be altered if the perturbation

(e.9. Lp norm ball) is smaller than eceryi fied
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Timeline of Robustness Certification

. DeepZ (Singh etal), Neurify (Wang etal) DeepPoly (Singh etal)
Ove rvView NeurlPS ‘18 POPL ‘19
other teams - .
MIT-IBM e — —
teams
ICLR ‘18 ICML ‘18 NeurlPS ‘18 AAAIl ‘19 -
CLEVER (Weng etal) Fast-Lin (Weng etal) CROWN (Zhang etal) CNN-Cert

https://arxiv.org/abs/1801.10578 https://arxiv.org/abs/1804.09699 https://arxiv.org/abs/1811.00866 https://arxiv.org/abs/1811.12395

i¥o %3 =g

CNN General ReLU General CNN Ge.ner.al
Activation Activation Activation
\ ] | J
| |
. . IBM Resegrch Al P .
Robustness Estimation Robustness Certification
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Challenges

How to improve the state-of-the-art adversarial training methods

Adversarial training is effective, but not scalable and efficient
Tradeoff between accuracy and robustness

Understand the nature of vulnerability of DNNs

How to evaluate and certificate model robustness

Robustness to adaptive adversary, i.e. attack-agnostic defense

Need for human-like machine perception and understanding
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