Discovering Optimal Tensor Network Architectures:

Discrete Optimization for Tensor Network Structure Search

 (TN-SS)Chao Li

Indefinite-Term Research Scientist
Tensor Learning Team (TLT) RIKEN-AIP chao.li@riken.jp

Tensor Network (TN)

TN is an efficient framework for modeling complex systems by decomposing it into simpler, interconnected parts.

Physic-informed machine learning

Representation for complex quantum systems (Orus, Nature Phys. '19)

Acceleration of neural networks via TN

Discovering faster matrix multiplication (AlphaTensor, Fawzi et al., Nature'22)

Vision: Diversity of Tensor Networks

MERA network

Modeling entanglement between A and B

What is the most suitable TN model for our task?
How can we efficiently select the structure-related parameters?

Steps to Attain the Goal

- Formulating TN-SS as discrete optimization
-Solving TN-SS with less computational cost
- TNGA: Genetic Algorithm (Li and Sun, ICML'20)
- TNLS: Stochastic Search (Li et al., ICML'22)
- TnALE: Alternating Enumeration (Li et al., ICML'23)
- Theoretical Analysis
- Symmetry of TN structures
- Search Dynamic in TNLS/TnALE
- Future works

What is TN-SS?

Tensor and TN's Graphical Representation

Tensor is the foundational building block of TNs.

TENSOR is a multi-way number array.

CONTRACTION: "tensor-tensor" multiplication.

CP decomposition [Hitchcock, 1927]

A TENSOR NETWORK (TN) is modeled as an edge-labeled graph depicting a sequence of contractions among many tensors.

Vector

Matrix

$\left(I_{1} \times I_{2} \times \cdots \times I_{N}\right)$
order- N Tensor
$(I \times K)$

$$
\mathcal{X} \times_{1} \mathbf{a} \times_{2} \mathbf{b} \times_{3} \mathbf{c}
$$

$$
(1 \times 1 \times 1)
$$

The TN structures include TN-ranks, vertex-permutation, and TNtopology.
*The dangling edges are ignored.

TN-SS refers to a process of exploring and identifying the optimal combination of those structures to represent the complex system using a tensor network.

Tensor Network Structure Search (TN-SS)

Rank Selection (TN-RS)

Permutation Search (TN-PS)

Topology Search (TN-TS)

The goal is to reduce the computational cost in the search process.

Solving TN-SS is challenging!

-"Most tensor problems are NP-hard." (CJ Hillar and LH Lim, JACM'13)

- TN-SS suffers from the combinatorial explosion issue.

N	The number of TN-Structure candidates
2	5
3	125
4	15625
5	9765625
6	30517578125
7	476837158203125
8	37252902984619139072
9	14551915228366852423942144
10	28421709430404005438427049754624
11	$277555756156289137946709683182497693696^{2}$

Matrices

Tensors

Matrices were created by God. Tensors were created by the Devil.

Solving TN-SS via Discrete Optimization

Mathematically, TN-SS is to solve the following optimization problem:

- \mathbb{G} - graphs associated to TN topology and permutation;
- \mathbb{F}_{G} - positive-integer vectors associated to the TN-rank;
- TN-RS/TS/PS tasks correspond to setting different \mathbb{G} and \mathbb{F}_{G} in the formula.

TN ranks and topology: adjacency matrix

order-6 Tensor Ring

Ranks
vertex permutation: permutation matrix

How to solve TN-SS?

with discrete optimization

Big Picture

search space
(A collection of TN structures)

A bunch of TN structures

Evaluation

Fitness scores (loss values)

$$
\{G, r, L\}_{t}
$$

The sampling distribution is "Markov": $\mathbb{P}\left(\{G, r\}_{t} \mid\{G, r, L\}_{t-1}\right)$

- TNGA: Genetic Algorithm (Li and Sun, ICML’20)
- TNLS: Stochastic Search (Li et al., ICML'22)
- TnALE: Alternating Enumeration (Li et al., ICML’23)

Solution 1: Genetic Algorithm

(Li and Sun, ICML'20)
TNGA: Encoding the TN structures into fixed-length strings.

Adjacency Matrix

(Search space)

1. Parent selection

2. Mutation

Pros:

- Global convergence
- Multiobjective friendly
- Parallel computation

2. Crossover

3. Elimination

Cons:

- Low sample efficiency
- No theoretical guarantee
- Too many tuning parameters.

Solution 2: Local Stochastic Search

(Li et al., ICML'22)
-TNLS:"steepest searching direction" by random sampling.

1. Constructing a neighborhood
2. Random sampling
3. Find the optimal sample
4. Updating the neighborhood

- No free lunch: the optimization landscape should be smooth.

Theoretical Results

Neighborhood of permutations

Let G_{0} be a simple graph and \mathbb{G}_{0} be the search space. The function $d_{G_{0}}: \mathbb{G}_{0} \times \mathbb{G}_{0} \rightarrow \mathbb{R}$ is a predefined semi-metric on \mathbb{G}_{0}. Furthermore, let $\mathbb{I}_{d}(G)$ be a set constructed as follows:

$$
\begin{equation*}
\mathbb{I}_{d}(G)=\left\{G^{\prime} \in \mathbb{G}_{0} \mid G^{\prime}=q \prod_{i=1}^{d} t_{i} \cdot G_{0}, q \in g \cdot \operatorname{Aut}\left(G_{0}\right), t_{i} \in \mathbb{T}_{N}, i \in[d]\right\} \tag{10}
\end{equation*}
$$

Then $\mathbb{N}_{D}(G)=\bigcup_{d=0}^{D} \mathbb{I}_{d}(G)$ is the neighborhood of $G=g \cdot G_{0} \in \mathbb{G}_{0}$ induced by the word metric, with the radius $D \in \mathbb{Z}^{+} \cup\{0\}$.

Theorem (convergence rate when p^{*} is known)

Suppose several assumptions are satisfied, the operator p of (3) is fixed to be p^{*}, and $0 \leq \theta \leq 1$. Then, for any \mathbf{x} with $\left\|\mathbf{x}-\mathbf{x}^{*}\right\|_{\infty} \leq c$, we can find a neighborhood $B_{\infty}\left(\mathbf{x}, r_{\mathbf{x}}\right)$ where $r_{\mathrm{x}} \geq \theta c+\frac{1}{2}$, such that there exists an element $\mathbf{y} \in B_{\infty}\left(\mathbf{x}, r_{\mathrm{x}}\right)$ satisfying

$$
\begin{equation*}
f_{p^{*}}(\mathbf{y})-f_{p^{*}}\left(\mathbf{x}^{*}\right) \leq(1-\theta)\left(f_{p^{*}}(\mathbf{x})-f_{p^{*}}\left(\mathbf{x}^{*}\right)\right)+\frac{7}{8} K \tag{5}
\end{equation*}
$$

Curse of dimensionality for TNLS (informally)

Theoretically, $\mathcal{O}\left(2^{K} / \epsilon\right)$ samples are required for achieving the probability $\operatorname{Pr} \geq \epsilon$ for decreasing the loss functior in ore iteration.

Solution 3: Alternating Local Enumeration

(Li et al., ICML'23)
In the new algorithm, called TnALE, we follow the fundamental scheme of TNLS, but the random sampling is replaced by alternating enumeration.

Random sampling

Alternating enumeration

In each neighborhood, the alternating enumeration strongly relates to TT-OPT/cross (Sozykin et al., Neurips'22, Oseledets, 2010)

Theorem (A suitable y can be estimated by TT-cross with \mathcal{O} (KIr) samples)

Let $\mathcal{B} \in \mathbb{R}^{I \times I \times \cdots \times I}$ be a tensor of order-K constructed using $B_{\infty}\left(x, r_{x}\right)$ as above. Then there exists its $T T$-cross approximation of rank-r as in (Oseledets, 2010), denoted $\hat{\mathcal{B}}$, such that $f\left(x+\mathbf{i}_{\text {max }}-\left(\left\lfloor r_{x}\right\rfloor+1\right)\right)=\min _{y \in B_{\infty}\left(x, r_{x}\right)} f(y)$ for $\mathbf{i}_{\max }=\arg \max _{\mathbf{i}} \hat{\mathcal{B}}(\mathbf{i})$, provided that

$$
\begin{equation*}
f\left(y^{*}\right) \leq f(z) /\left(1+2 \frac{(4 r)^{\left\lceil\log _{2} k\right\rceil}-1}{4 r-1}(r+1)^{2} \xi f(z)\right), \forall z \in B_{\infty}\left(x, r_{x}\right), z \neq y^{*} \tag{7}
\end{equation*}
$$

where $y^{*}=\arg \min _{y \in B_{\infty}\left(x, r_{x}\right)} f(y)$, and ξ denotes the error between \mathcal{B} and its best approximation of TT-rank r in terms of $\|\cdot\|_{\infty}$. Note that the inequality (7) holds trivially if \mathcal{B} is exactly of the format of rank-r, and (Oseledets, 2010) shows that the $f\left(y^{*}\right)$ can be recovered fronll $\mathcal{O}($ KIr $)$ lentries from B.

No free lunch: the landscape should be low-rank.

Low-Rank Nature in Landscape

(Li et al., ICML'23)
Data: Synthetic tensors in tensor-ring (TR) format.
Setting: order 4~8; mode dimension 3; unknown ranks (in random); Loss: $F(G, \mathbf{r})=\underbrace{\frac{1}{\epsilon(G, \mathbf{r})}}_{\text {compression ratio }(\mathrm{CR})}+\lambda \underbrace{\min _{\mathcal{Z} \in T N S(G, \mathbf{r})}\|\mathcal{X}-\mathcal{Z}\|^{2} /\|\mathcal{X}\|^{2}}_{\text {relative square error (RSE) }}$,

Cont'd: Rank Identification

Conditions: order 8; lower-ranks 1~4; higher-ranks 5~8
The ranks are identified if Eff. $>=1$.
[\#Eva.] = Number of evaluations (samples)
Tensor of order 8

Methods	lower-ranks	higher-ranks
Classic rank-selection methods	Eff. \uparrow	Eff. \uparrow
TR-SVD	0.65 ± 0.46	0.13 ± 0.20
TR-BALS	1.15 ± 0.14	0.19 ± 0.22
TR-LM	1.15 ± 0.14	0.15 ± 0.02
TRAR	0.55 ± 0.10	0.63 ± 0.06
	Eff. \uparrow [\#Eva. \downarrow]	Eff. \uparrow [\#Eva. \downarrow]
TNGA	1.08 ± 0.06 [552]	1.00 ± 0.00 [900]
TNLS ${ }^{\text {Soution } 2}$	1.08 ± 0.06 [492]	1.00 ± 0.00 [588]
TTOpt ($R=1$)	1.08 ± 0.06 [104]	$1.00 \pm 0.00[178]$
TTOpt ($R=2$)	1,02 ± 0.02 [314]	$1,00 \pm 0,00[752]$
Ours Solution 3	1.08 ± 0.06 [80]	$1.00 \pm 0.00[119]$

Higher ranks

Random sampling vs. ALE

Permutation Search for Various TNs

Goal: How many samples are evaluated to identify the permutations? Data: Synthetic tensors of order four in various topologies.

Real-World Data: Topology Search

Goal: Search for better TN topologies for natural images using TNGA Data: 10 images random selected from BSD500 (Sheikh et al., 2006)
(Oseledets, 2011)

matrix product state /
tensor train

tree tensor network /
hierarchical Tucker

(Zhao et al, 2016)

(Tucker, 1966)

What is the most suitable TN model for our task?

Summary of the Three Algorithms

1. Trade-off between exploration and exploitation

2. The search acceleration requires additional structural prior to the optimization landscape.

Prior Arts

Techniques in TN-SS

入 ${ }^{\bullet}$ Spectrum methods: SVD on unfoldings

Şolving $T_{1 N-s s i n}^{\text {rank }}$ in search: (Oseledets, 2011, Zhao et al., 2016, Yin et al., AAAI'22); continuou34dot\#aplogy search ${ }^{3}$: (Nie et al., BMVC'21)
3. permutation search: (Chen et al., arXiv'22)

- Regularization-based methods: sparsity/Implicit regularization

1. rank search: (Razin et al., ICML'21,22)
2. topology search: (Kodryan et al., AISTATS'23, Zheng et al., arXiv'23)
3. permutation search: N / A

- Bayesian methods: ARD/MGP priors

1. rank search: (Tao and Zhao, IJCAI W'20, Long et al., 2021)
2. topology search: (Zeng et al., ongoing)
3. permutation search: N / A

- Discrete optimization: deterministic, stochastic or RL

1. rank search: (Li et al., 2021, Hashemizadel et al., arXiv'20)
2. topology search: (Hayashi et al., Neurips'19, Li and Sun, ICML'20)
3. permutation search (Li et al., ICML'22, 23)
${ }^{3}$ Most of TN-TS algorithms can solve TN-RS as well.

Comparison within different techniques

Efficiency Precision Flexibility Scalability Guarantees

Spectrum	good	bad	bad	good	good
Regularization	good	bad	good	bad	good
Bayesian	bad	good	medium	medium	medium
Discrete opt.	bad	good	good	good	bad

2 "Flexibility" evaluates if the methods adopt different TNs, tasks, loss, etc..
3 "Scalability" evaluates if the methods can be deployed for higher-order tensors.
4 "Guarantees" evaluates if there exist theory on error bounds or convergence, etc..

Long-term goal (contributions)

Our works improve the efficiency (bad \rightarrow (medium) \rightarrow good) and theoretical understanding (bad $\rightarrow($ medium $) \rightarrow$ good) for the discrete optimization methods in TN-SS.

Theoretical analysis

- Symmetry in TN-SS
- Convergence analysis in TN-SS

Symmetry in Permutation Search (TN-PS)

We can construct a smaller search space (neighborhood) than \mathbb{S}_{N}

We require a quantitative analysis tool for this property.
The metric between permutations required to be re-defined.

A Group-Theoretic Framework

Construct the isomorphism graph set:

$$
\begin{equation*}
\mathbb{G}_{0}=\left\{G \in \mathbb{G}_{N} \mid G \cong G_{0}\right\}, \tag{2}
\end{equation*}
$$

The TN-PS problem can be thus formulated as follows:

$$
\begin{equation*}
\min _{(G, r) \in \mathbb{G}_{0} \times \mathbb{F}_{G_{0}}} \phi(G, r), \quad \text { s.t. } \mathcal{X} \in T N S(G, r) . \tag{3}
\end{equation*}
$$

According to the Lagrange's theorem (in group theory),

Lemma. Upper bound of $\left|\operatorname{Aut}\left(G_{0}\right)\right|$ for any graph.

Let G_{0} be a simple graph of N vertices, and $\operatorname{Aut}\left(G_{0}\right)$ be the set containing automorphisms of G_{0}. Assume that G_{0} is connected and its maximum degree Δ satisfies $N / \Delta=d>1$, then the following inequality holds:

$$
\left|\operatorname{Aut}\left(G_{0}\right)\right| \leq N!e^{-\gamma(d) \cdot N+\frac{1}{2} \log d+1 / 24}
$$

where $\gamma(d)=\log d+\frac{1}{d}-1$ is a positive and monotonically increasing function for $d>1$.

Theorem. Bounding \#TN-structures

Assume G_{0} to be a simple and connected graph of N vertices, and \mathbb{G}_{0} is constructed as (2). Let $\delta=N / d_{1}$ and $\Delta=N / d_{2}, d_{1} \geq d_{2}>1$, be the minimum and maximum degree of G_{0}, respectively. The size of the search space of (3), written $\mathbb{L}_{G_{0}, R}:=\mathbb{G}_{0} \times \mathbb{F}_{G_{0}, R}$, is bounded as follows:

$$
R^{\frac{N^{2}}{2 d_{2}}} \cdot N!\geq\left|\mathbb{L}_{G_{0}, R}\right| \geq R^{\frac{N^{2}}{2 d_{1}}} \cdot e^{\gamma\left(d_{2}\right) \cdot N-\frac{1}{2} \log d_{2}-1 / 24}
$$

where $\gamma(d)=\log d+\frac{1}{d}-1$ is defined as the lemma above.

Distance of Vertex Permutation

Suppose $G_{i}=g_{i} G_{0}$ for $i=1,2$, We construct the following function:

$$
\begin{equation*}
d_{G_{0}}\left(G_{1}, G_{2}\right)=\min _{p_{i} \in g_{i} \cdot \hat{A t}\left(G_{0}\right), i=1,2} d_{\text {Win }}\left(p_{1}, p_{2}\right), \tag{7}
\end{equation*}
$$

Lemma. Metric and neighborhood

Let G_{0} be a simple graph and \mathbb{G}_{0} be the set defined as (2). The function $d_{G_{0}}: \mathbb{G}_{0} \times \mathbb{G}_{0} \rightarrow \mathbb{R}$ defined by (7) is a semi-metric on \mathbb{G}_{0}. Furthermore, let $\mathbb{I}_{d}(G)$ be a set constructed as follows:

$$
\begin{aligned}
\mathbb{I}_{d}(G)=\left\{G^{\prime}\right. & \in \mathbb{G}_{0} \mid G^{\prime}=q \prod_{i=1}^{d} t_{i} \cdot G_{0}, \\
& \left.q \in g \cdot \operatorname{Aut}\left(G_{0}\right), t_{i} \in \mathbb{T}_{N}, i \in[d]\right\}
\end{aligned}
$$

Then $\mathbb{N}_{D}(G)=\bigcup_{d=0}^{D} \mathbb{I}_{d}(G)$ is the neighborhood of $G=g \cdot G_{0} \in \mathbb{G}_{0}$ induced by (7), with the radius $D \in \mathbb{Z}^{+} \cup\{0\}$.

Sampling all possible q is computationally hard (NP-intermediate). q is omitted in our algorithm, since "most graphs are not symmetric".

Searching Dynamic for Local sampling

Local sampling is deployed in both TNLS and TnALE.

The convergence is unknown due to the discrete nature of the problem.

How do sampling strategies affect the search efficiency?

Convex analysis in discrete domain

Problem Reformulation

We consider a general form for optimization in TN-SS:

$$
\begin{aligned}
& \text { Objective } f: \mathbb{Z}_{\geq 0}^{L} \rightarrow \mathbb{R}_{+}
\end{aligned}
$$

Any TN-structures (edge-labelled graph) can be represented by $p(\mathbf{x})$.

$$
\mathbf{A}_{1}=\left(\begin{array}{llll}
0 & 0 & 2 & 3 \\
0 & 0 & 4 & 5 \\
2 & 3 & 0 & 0 \\
4 & 5 & 0 & 0
\end{array}\right) \Longleftrightarrow p_{1}(\mathbf{x})=\left(\begin{array}{llll}
0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0
\end{array}\right)\left(\begin{array}{l}
2 \\
3 \\
4 \\
5
\end{array}\right)=\left(\begin{array}{l}
0 \\
2 \\
3 \\
4 \\
5 \\
0
\end{array}\right),
$$

$$
\mathbf{A}_{2}=\left(\begin{array}{llll}
0 & 2 & 0 & 5 \\
2 & 0 & 3 & 0 \\
0 & 3 & 0 & 4 \\
5 & 0 & 4 & 0
\end{array}\right) \Longleftrightarrow p_{2}(\mathbf{x})=\left(\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0
\end{array}\right)\left(\begin{array}{l}
2 \\
3 \\
4 \\
5
\end{array}\right)=\left(\begin{array}{l}
2 \\
0 \\
5 \\
3 \\
0 \\
4
\end{array}\right)
$$

Gradient in Discrete Domain

Definition (finite gradient)

For any function $f: \mathbb{Z}_{\geq 0}^{L} \rightarrow \mathbb{R}$, its finite gradient $\Delta f: \mathbb{Z}_{\geq 0}^{L} \rightarrow \mathbb{R}^{L}$ at the point \mathbf{x} is defined as the vector

$$
\begin{equation*}
\Delta f(\mathbf{x})=\left[f\left(\mathbf{x}+\mathbf{e}_{1}\right)-f(\mathbf{x}), \ldots, f\left(\mathbf{x}+\mathbf{e}_{L}\right)-f(\mathbf{x})\right]^{\top} \tag{2}
\end{equation*}
$$

where $\mathbf{e}_{i} \forall i \in[L]$ denote the unit vectors with the i-th entry being one and other entries being zeros.

Finite gradient

Strong convexity

Smoothness

Convexity in Discrete Domain

Definition (α-strong convexity with finite gradient)

We say f is α-strongly convex for $\alpha \geq 0$ if $f(\mathbf{y}) \geq f(\mathbf{x})+\left\langle\Delta f(\mathbf{x})-\frac{\alpha}{2} \mathbf{1}, \mathbf{y}-\mathbf{x}\right\rangle+\frac{\alpha}{2}\|\mathbf{y}-\mathbf{x}\|^{2}$ for all $\mathbf{x}, \mathbf{y} \in \mathbb{Z}_{\geq 0}^{L}$, where $\mathbf{1} \in \mathbb{R}^{L}$ denotes the vector with all entries being one. We simply say f is convex if it is α-strongly convex and $\alpha=0$.

Lemma

If f is α-strongly convex in $\mathbb{Z}_{\geq 0}^{L}$, then the following inequalities are held:

1. $g(\mathbf{x})=f(\mathbf{x})-\frac{\alpha}{2}\|\mathbf{x}\|^{2}$ is convex in the discrete scenario for all $\mathbf{x} \in \mathbb{Z}_{\geq 0}^{L}$, and vice versa;
2. $\langle\Delta f(\mathbf{x})-\Delta f(\mathbf{x}), \mathbf{x}-\mathbf{y}\rangle \geq \alpha\|\mathbf{x}-\mathbf{y}\|^{2}$ for any $\mathbf{x}, \mathbf{y} \in \mathbb{Z}_{\geq 0}^{L}$;
3. $\|\Delta f(\mathbf{x})-\Delta f(\mathbf{y})\| \geq \alpha\|\mathbf{x}-\mathbf{y}\|$ for any $\mathbf{x}, \mathbf{y} \in \mathbb{Z}_{\geq 0}^{L}$;

Here $\|\cdot\|$ denotes the l_{2} norm for vectors.

Smoothness in Discrete Domain

Definition ($\left(\beta_{1}, \beta_{2}\right)$-smoothness with finite gradient)

We say f is $\left(\beta_{1}, \beta_{2}\right)$-smooth for $\beta_{1}, \beta_{2}>0$ if

1. $|f(\mathbf{x})-f(\mathbf{y})| \leq \beta_{1}\|\mathbf{x}-\mathbf{y}\|$ for all $\mathbf{x}, \mathbf{y} \in \mathbb{Z}_{\geq 0}^{L} ; \quad$ bound the changing rate of the function
2. The function $I(\mathbf{x}):=\frac{\beta_{2}}{2}\|\mathbf{x}\|^{2}-f(\mathbf{x})$ is convex. bound the changing rate of the gradient

Lemma

If $|f(\mathbf{x})-f(\mathbf{y})| \leq \beta\|\mathbf{x}-\mathbf{y}\|$ for all $\mathbf{x}, \mathbf{y} \in \mathbb{Z}_{\geq 0}^{L}$, then the norm of the finite gradient with respective to \mathbf{x} is bounded, i.e., $\|\Delta f(\mathbf{x})\|_{\infty} \leq \beta$.

Lemma

If $I(\mathbf{x})=\frac{\beta}{2}\|\mathbf{x}\|^{2}-f(\mathbf{x})$ is convex, then for all $\mathbf{x}, \mathbf{y} \in \mathbb{Z}_{\geq 0}^{L}$

1. $f(\mathbf{y}) \leq f(\mathbf{x})+\left\langle\Delta f(\mathbf{x})-\frac{\beta}{2} \mathbf{1}, \mathbf{y}-\mathbf{x}\right\rangle+\frac{\beta}{2}\|\mathbf{y}-\mathbf{x}\|^{2}$ and vise versa;
2. $\langle\Delta f(\mathbf{x})-\Delta f(\mathbf{y}), \mathbf{x}-\mathbf{y}\rangle \leq \beta\|\mathbf{x}-\mathbf{y}\|^{2}$.

Properties for Strongly Convex, Smooth Function in Discrete Domain

Lemma (convex combination in the discrete domain)

Suppose $\mathbf{q}=\theta \mathbf{x}+(1-\theta) \mathbf{y}, \forall \theta \in[0,1]$, and there is $\hat{\mathbf{q}} \in \mathbb{Z}_{\geq 0}^{L}$ where $\boldsymbol{\Lambda}=\mathbf{q}-\hat{\mathbf{q}}$. If f is α-strongiy convex, then

$$
\begin{equation*}
\left.\theta f(\mathbf{x})+(1-\theta) f(\mathbf{y}) \geq f(\hat{\mathbf{q}})+\Delta f(\hat{\mathbf{q}})-\frac{\alpha}{2} \mathbf{1}, \boldsymbol{\Lambda}\right\rangle+\frac{\alpha}{2}\|\boldsymbol{\Lambda}\|^{2} \tag{3}
\end{equation*}
$$

Definition (sub-level set)

The level set of f at point $\mathbf{x} \in \mathbb{Z}_{\geq 0}^{L}$ is $\mathbb{L}_{\mathbf{x}}(f)=\left\{\mathbf{y} \in \mathbb{Z}_{\geq 0}^{L}: f(\mathbf{y})=f(\mathbf{x})\right\}$. The sub-level set of f at point $\mathbf{x} \in \mathbb{Z}_{\geq 0}^{L}$ is $\mathbb{L}_{\mathbf{x}}^{\downarrow}(f)=\left\{\boldsymbol{y} \in \mathbb{Z}_{\geq 0}^{L}: f(\mathbf{y}) \leq f(\mathbf{x})\right\}$.

Lemma (the sub-level cube)

Assume that $f: \mathbb{Z}_{\geq 0}^{L} \rightarrow \mathbb{R}$ is α-strongly convex, $\left(\beta_{1}, \beta_{2}\right)$-smooth, and its minimum, denoted $f\left(\mathbf{x}^{*}\right)$, satisfies $\left\|\frac{\beta_{2}}{2} \mathbf{1}-\Delta f\left(\mathbf{x}^{*}\right)\right\| \leq \gamma$ where γ is a constant and $0 \leq \gamma<\alpha$. Then, for all $\mathbf{x} \in \mathbb{Z}_{\geq 0}^{L}$, there is a L-dimensional cube, which is of the edge length $\frac{2(\alpha-\gamma)}{\beta_{2} \sqrt{L}}\left\|\mathbf{x}-\mathbf{x}^{*}\right\|$, tangent at \mathbf{x}, and inside the sub-level set $\mathbb{L}_{\mathbf{x}}^{\downarrow}(f)$.

Intuition in One-Dimensional Case

Convergence for Strongly Convex, Smooth Function in Discrete Domain

Assumption

Assume that $f: \mathbb{Z}_{\geq 0}^{L} \rightarrow \mathbb{R}_{+}$of is α-strongly convex, $\left(\beta_{1}, \beta_{2}\right)$-smooth, and its minimum, denoted $\left(p^{*}, \mathbf{x}^{*}\right)=\arg \min _{p, \mathbf{x}} f \circ p(\mathbf{x})$, satisfies $\left\|\Delta f_{p^{*}}\left(\mathbf{x}^{*}\right)-\frac{\beta_{2}}{2} \mathbf{1}\right\| \leq \gamma$ where $0 \leq \gamma<\alpha \leq \beta_{1} \leq \beta_{2} \leq 1$.

Theorem (convergence rate)

Suppose the Assumption above is satisfied, the operator p \square is fixed to be p^{*}, and $0 \leq \theta \leq 1$. Then, for any \mathbf{x} with $\left\|\mathbf{x}-\mathbf{x}^{*}\right\|_{\infty} \leq c$, we can find a neighborhood $B_{\infty}\left(\mathbf{x}, r_{\mathbf{x}}\right)$ where $r_{\mathbf{x}} \geq \theta c+\frac{1}{2}$, such that there exist a element $\mathbf{y} \in B_{\infty}\left(\mathbf{x}, r_{\mathbf{x}}\right)$ satisfying

$$
\begin{equation*}
f_{p^{*}}(\mathbf{y})-f_{p^{*}}\left(\mathbf{x}^{*}\right) \leq(1-\theta)\left(f_{p^{*}}(\mathbf{x})-f_{p^{*}}\left(\mathbf{x}^{*}\right)\right)+\frac{7}{8} K . \tag{4}
\end{equation*}
$$

Corollary (convergence guarantee)

Suppose p^{*} is known and a series $\left\{\mathbf{x}_{n}\right\}_{n=0}^{\infty}$, where \mathbf{x}_{0} is randomly chosen in \mathbb{Z}_{+}^{K}, and for each $n>0, \mathbf{x}_{n}$ is equal to the \mathbf{y} in Theorem 10. Then we can achieve the following limit when $\Omega(1 / K) \leq \theta \leq 1$,

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left(f_{p^{*}}\left(\mathbf{x}_{n}\right)-f_{p^{*}}\left(\mathbf{x}^{*}\right)\right)=O(1) \tag{5}
\end{equation*}
$$

Curse of Dimensionality in TNLS

 One-dimensional case:

Higher dimension:

1/2

The ratio of the overlapped area gets smaller exponentially with increasing the dimension.

Proposition (curse of dimensionality for TNLS)
Let the assumptions in the Theorem be satisfied. Furthermore, assume that \mathbf{x}^{*} is sufficiently smaller (or larger) than x entry-wisely except for a constant number of entries. Then the probability of achieving a suitable \mathbf{y} as mentioned in Theorem 10 by uniformly randomly sampling in $B_{\infty}\left(\mathrm{x}, r_{\mathrm{x}}\right)$ with $r_{\mathrm{x}} \geq \theta c+\frac{1}{2}$ equals $O\left(2^{-K}\right)$.

Conclusion

- TN-SS can boost the performance of tensor learning.
- TN-SS can be solved by genetic algorithm, stochastic search, and alternating enumeration.
- TN-SS algorithms can explore unknown and more efficient tensor networks than the ones proposed in the literature.

1. TNGA: Li, Chao, and Sun, Zhun. "Evolutionary topology search for tensor network decomposition." International Conference on Machine Learning (ICML). PMLR, 2020.
2. TNLS: Li, Chao, et al. "Permutation search of tensor network structures via local sampling." International Conference on Machine Learning (ICML). PMLR, 2022.
3. TnALE: Li, Chao, et al. "Alternating Local Enumeration (TnALE): Solving Tensor Network Structure Search with Fewer Evaluations ." International Conference on Machine Learning (ICML). PMLR, 2023.

Contributors

