Discovering Optimal Tensor Network Architectures: Discrete Optimization for Tensor Network Structure Search (TN-SS)

Chao Li

Indefinite-Term Research Scientist Tensor Learning Team (TLT) RIKEN-AIP chao.li@riken.jp

Tensor Network (TN)

TN is an efficient framework for modeling complex systems by *decomposing it* into simpler, interconnected parts.

Physic-informed machine learning

Representation for complex *quantum systems* ^{∂Ω} (Orus,^Ω Nature Phys. '19)=O(logL)

Acceleration of *neural networks* via TN

^{*st*} Discovering faster *matrix multiplication* (*AlphaTensor, Fawzi et al., Nature'22*)

Vision: Diversity of Tensor Networks

R. Orus, Ann. of Phys. 349, 117-158 (2014)

R

between A and B

What is the most suitable TN model for our task?

How can we efficiently select the structure-related parameters?

Steps to Attain the Goal

Formulating TN-SS as discrete optimization

Solving TN-SS with less computational cost

- TNGA: Genetic Algorithm (Li and Sun, ICML'20)
- TNLS: Stochastic Search (Li et al., ICML'22)
- The Trace of the term and term

Theoretical Analysis

- Symmetry of TN structures
- Search Dynamic in TNLS/TnALE

Future works

What is TN-SS?

Tensor and TN's Graphical Representation

Tensor is the foundational building block of TNs.

TENSOR is a multi-way number array. CONTRACTION: "tensor-tensor" multiplication. _ Order-3 Order-0 Order-1 Order-2 Order-5 matrix decomposition **CP** decomposition Tensor Tensor Tensor Tensor Tensor [Hitchcock, 1927] scalar vector matrix

A **TENSOR NETWORK** (TN) is modeled as an edge-labeled graph depicting a sequence of contractions among many tensors.

The TN structures include *TN-ranks*, *vertex-permutation*, and *TN-topology*.

*The dangling edges are ignored.

Image source: https://staffwww.dcs.shef.ac.uk/people/H.Lu/feeler.html

TN-SS refers to a process of exploring and identifying *the optimal combination of those structures* to represent the complex system using a tensor network.

The goal is to *reduce the computational cost* in the search process.

Solving TN-SS is challenging!

- "Most tensor problems are NP-hard." (CJ Hillar and LH Lim, JACM'13)
- TN-SS suffers from the *combinatorial explosion* issue.

Matrices

Tensors

Max Noether:

Matrices were created by God. Tensors were created by the Devil.

Solving TN-SS via Discrete Optimization

Mathematically, TN-SS is to solve the following optimization problem:

$$(G,r) \in \mathbb{G} \times \mathbb{F}_{G} \left(\underbrace{\phi(G,r)}_{\text{model complexity}} + \lambda \cdot \underbrace{\min_{\mathcal{Z} \in TNS(G,r)} \pi_{\mathcal{X}}(\mathcal{Z})}_{\text{model expressivity}} \right),$$

- \mathbb{G} graphs associated to TN topology and permutation;
- \mathbb{F}_G positive-integer *vectors* associated to the TN-rank;
- TN-RS/TS/PS tasks correspond to setting different \mathbb{G} and \mathbb{F}_G in the formula.

TN ranks and topology: adjacency matrix

How to solve TN-SS? with discrete optimization

Big Picture

The sampling distribution is "Markov": $\mathbb{P}(\{G, r\}_t | \{G, r, L\}_{t-1})$

- TNGA: Genetic Algorithm (Li and Sun, ICML'20)
- TNLS: Stochastic Search (Li et al., ICML'22)
- The Trace of the term and term

Solution 1: Genetic Algorithm

(Li and Sun, ICML'20)

TNGA: Encoding the TN structures into fixed-length strings.

3. Mutation

Pros:

- Global convergence
- Multiobjective friendly
- Parallel computation

Cons:

- Low sample efficiency
- No theoretical guarantee
- Too many tuning parameters.

Solution 2: Local Stochastic Search

(Li et al., ICML'22)

 TNLS: "steepest searching direction" by random sampling.

 No free lunch: the optimization landscape should be smooth.

Theoretical Results

Neighborhood of permutations

Let G_0 be a simple graph and \mathbb{G}_0 be the search space. The function $d_{G_0} : \mathbb{G}_0 \times \mathbb{G}_0 \to \mathbb{R}$ is a predefined semi-metric on \mathbb{G}_0 . Furthermore, let $\mathbb{I}_d(G)$ be a set constructed as follows:

$$\mathbb{I}_d(G) = \{ G' \in \mathbb{G}_0 | G' = q \prod_{i=1}^d t_i \cdot G_0, q \in g \cdot Aut(G_0), t_i \in \mathbb{T}_N, i \in [d] \}.$$
(10)

Then $\mathbb{N}_D(G) = \bigcup_{d=0}^D \mathbb{I}_d(G)$ is the neighborhood of $G = g \cdot G_0 \in \mathbb{G}_0$ induced by the word metric, with the radius $D \in \mathbb{Z}^+ \cup \{0\}$.

Theorem (convergence rate when p^* is known)

Suppose several assumptions are satisfied, the operator p of (3) is fixed to be p^* , and $0 \le \theta \le 1$. Then, for any **x** with $\|\mathbf{x} - \mathbf{x}^*\|_{\infty} \le c$, we can find a neighborhood $B_{\infty}(\mathbf{x}, r_{\mathbf{x}})$ where $r_{\mathbf{x}} \ge \theta c + \frac{1}{2}$, such that there exists an element $\mathbf{y} \in B_{\infty}(\mathbf{x}, r_{\mathbf{x}})$ satisfying

$$f_{p^*}(\mathbf{y}) - f_{p^*}(\mathbf{x}^*) \leq (1 - \theta)(f_{p^*}(\mathbf{x}) - f_{p^*}(\mathbf{x}^*)) + \frac{7}{8}K.$$

(5)

Curse of dimensionality for TNLS (informally)

Theoretically, $\mathcal{O}(2^{K}/\epsilon)$ samples are required for achieving the probability $Pr \ge \epsilon$ for decreasing the loss function in one iteration.

Solution 3: Alternating Local Enumeration

(Li et al., ICML'23)

In the new algorithm, called *TnALE*, we follow the fundamental scheme of TNLS, but the *random sampling* is replaced by *alternating enumeration*. *Random sampling*

In each neighborhood, the alternating enumeration strongly relates to TT-OPT/cross (Sozykin et al., Neurips'22, Oseledets, 2010)

Theorem (A suitable y can be estimated by TT-cross with $\mathcal{O}(KIr)$ samples)

Let $\mathcal{B} \in \mathbb{R}^{I \times I \times \cdots \times I}$ be a tensor of order-K constructed using $B_{\infty}(x, r_x)$ as above. Then there exists its TT-cross approximation of rank-r as in (Oseledets, 2010), denoted $\hat{\mathcal{B}}$, such that $f(x + \mathbf{i}_{\max} - (\lfloor r_x \rfloor + 1)) = \min_{y \in B_{\infty}(x, r_x)} f(y)$ for $\mathbf{i}_{\max} = \arg \max_{\mathbf{i}} \hat{\mathcal{B}}(\mathbf{i})$, provided that

$$f(y^*) \le f(z) / \left(1 + 2 \frac{(4r)^{\lceil \log_2 K \rceil} - 1}{4r - 1} (r+1)^2 \xi f(z) \right), \, \forall z \in B_{\infty}(x, r_x), \, z \ne y^*, \qquad (7)$$

where $y^* = \arg \min_{y \in B_{\infty}(x,r_x)} f(y)$, and ξ denotes the error between \mathcal{B} and its best approximation of TT-rank r in terms of $\|\cdot\|_{\infty}$. Note that the inequality (7) holds trivially if \mathcal{B} is exactly of the TT format of rank-r, and (Oseledets, 2010) shows that the $f(y^*)$ can be recovered from $\mathcal{O}(KIr)$ entries from \mathcal{B} .

No free lunch: the landscape should be low-rank.

Low-Rank Nature in Landscape

(Li et al., ICML'23)

Data: Synthetic tensors in tensor-ring (TR) format.

Setting: order 4~8; mode dimension 3; unknown ranks (in random);

Cont'd: F

Conditions: order 8; lower

The ranks are identified if E [#Eva.] = Number of evalue

Tanaar of order C

IEI		ſC	.Ĕ <u></u> 100	_
Methods	lower-ranks	higher-ranks		
Classic rank-selection methods	Eff.↑	Eff.↑	Bu Bu	
TR-SVD	0.65 ± 0.46	0.13 ± 0.20		
TR-BALS	1.15 ± 0.14	$0.19 {\pm} 0.22$	Lower rai	nks Higher ranks
TR-LM	1.15 ± 0.14	$0.15 {\pm} 0.02$	Rui	nning time
TRAR	$0.55 {\pm} 0.10$	$0.63 {\pm} 0.06$	Lower ranks	Higher ranks
TNGASolution 1TNLSSolution 2TTOpt $(R = 1)$ TTOpt $(R = 2)$ OursSolution 3	Eff. \uparrow [#Eva. \downarrow] 1.08 \pm 0.06 [552] 1.08 \pm 0.06 [492] 1.08 \pm 0.06 [104] 1.02 \pm 0.02 [314] 1.08 \pm 0.06 [80]	Eff. \uparrow [#Eva. \downarrow] 1.00 \pm 0.00 [900] 1.00 \pm 0.00 [588] 1.00 \pm 0.00 [178] 1.00 \pm 0.00 [752] 1.00 \pm 0.00 [119]	-2 -2 -2 -2 -3 -3 -4 -5 -6 -7 0 200 400 600 Evaluations	-1 -1 -1 -1 -1 -1 -1 -1 -1 -1
			Random sam	pling vs. ALE

TNGA

200

Permutatic

Goal: How many san **Data:** Synthetic tenso

Real-World Data: Topology Search

Goal: Search for better TN topologies for natural images using TNGA Data: 10 images random selected from BSD500 (Sheikh et al., 2006)

matrix product state / tensor train

tree tensor network / hierarchical Tucker

MERA network

R. Orus, Ann. of Phys. 349, 117-158 (2014)

What is the most suitable TN model for our task?

Summary of the Three Algorithms

1. Trade-off between exploration and exploitation

2. The search acceleration requires additional structural prior to the optimization landscape.

Prior Arts

Techniques in TN-SS

• Spectrum methods: SVD on unfoldings

Solving TN-SS in Continuous domology search³: (Nie et al., BMVC'21)

3. permutation search: (Chen et al., arXiv'22)

• Regularization-based methods: sparsity/Implicit regularization

- 1. rank search: (Razin et al., ICML'21,22)
- 2. topology search: (Kodryan et al., AISTATS'23, Zheng et al., arXiv'23)
- 3. permutation search: N/A

Bayesian methods: ARD/MGP priors

- 1. rank search: (Tao and Zhao, IJCAI W'20, Long et al., 2021)
- 2. topology search: (Zeng et al., ongoing)
- 3. permutation search: N/A

• Discrete optimization: deterministic, stochastic or RL

- 1. rank search: (Li et al., 2021, Hashemizadel et al., arXiv'20)
- 2. topology search: (Hayashi et al., Neurips'19, Li and Sun, ICML'20)
- 3. permutation search (Li et al., ICML'22, 23)

³Most of TN-TS algorithms can solve TN-RS as well.

Comparison within different techniques

	Efficiency	Precision	Flexibility	Scalability	Guarantees
Spectrum	good	bad	bad	good	good
Regularization	good	bad	good	bad	good
Bayesian	bad	good	medium	medium	medium
Discrete opt.	bad	good	good	good	bad

² "Flexibility" evaluates if the methods adopt different TNs, tasks, loss, etc..

³ "Scalability" evaluates if the methods can be deployed for higher-order tensors.

⁴ "Guarantees" evaluates if there exist theory on error bounds or convergence, etc..

Long-term goal (contributions)

Our works improve the *efficiency* (bad \rightarrow (medium) \rightarrow good) and *theoretical understanding* (bad \rightarrow (medium) \rightarrow good) for the discrete optimization methods in TN-SS.

Theoretical analysis

Symmetry in TN-SS
 Convergence analysis in TN-SS

Symmetry in Permutation Search (TN-PS)

We can construct a *smaller* search space (neighborhood) than \mathbb{S}_N

We require a *quantitative* analysis tool for this property.

The metric between permutations required to be re-defined.

A Group-Theoretic Framework

Construct the *isomorphism* graph set:

$$\mathbb{G}_0 = \{ G \in \mathbb{G}_N | G \cong G_0 \}, \tag{2}$$

The TN-PS problem can be thus formulated as follows:

 $\min_{(G,r)\in\mathbb{G}_0\times\mathbb{F}_{G_0}}\phi(G,r), \quad s.t.\,\mathcal{X}\in TNS(G,r).$ (3)

According to the Lagrange's theorem (in group theory),

			Automorphism					
			$\mathbb{S}_N = \mathbb{G}_0 \cdot Aut(G_0) .$			(4)		
TNs	TT	T-Tree	TR	PEPS	CTN			
Graphs G_0	Path P_N	Tree T_N	Cycle C_N	Lattice $L_{m,n}$	Complete K_N			
V	N	N	N	mn	N			
$ E_0 $	N-1	N-1	N	(m-1)(n-1)	N(N-1)/2			
Δ_0	2	[2, N-1]	2	2, 3, 4	N-1	What it arbitrary IN-topology?		
δ_0	1	1	2	2	N - 1 .			
$ Aut(G_0) $	2	[2, (N-1)!]	2N	$\leq mn$	N!			
Examples								

Lemma. Upper bound of $|Aut(G_0)|$ for any graph.

Let G_0 be a simple graph of N vertices, and $Aut(G_0)$ be the set containing automorphisms of G_0 . Assume that G_0 is connected and its maximum degree Δ satisfies $N/\Delta = d > 1$, then the following inequality holds:

$$\operatorname{Aut}(G_0)| \leq N! \cdot e^{-\gamma(d) \cdot N + rac{1}{2} \log d + 1/24}$$

where $\gamma(d) = \log d + \frac{1}{d} - 1$ is a positive and monotonically increasing function for d > 1.

Theorem. Bounding **#TN-structures**

Assume G_0 to be a simple and connected graph of N vertices, and \mathbb{G}_0 is constructed as (2). Let $\delta = N/d_1$ and $\Delta = N/d_2$, $d_1 \ge d_2 > 1$, be the minimum and maximum degree of G_0 , respectively. The size of the search space of (3), written $\mathbb{L}_{G_0,R} := \mathbb{G}_0 \times \mathbb{F}_{G_0,R}$, is bounded as follows:

$$R^{rac{N^2}{2d_2}} \cdot N! \geq |\mathbb{L}_{G_0,R}| \geq R^{rac{N^2}{2d_1}} \cdot e^{\gamma(d_2) \cdot N - rac{1}{2} \log d_2 - 1/24},$$

where $\gamma(d) = \log d + \frac{1}{d} - 1$ is defined as the lemma above.

Distance of Vertex Permutation

Suppose $G_i = g_i G_0$ for i = 1, 2, We construct the following function:

$$d_{G_0}(G_1, G_2) = \min_{\substack{p_i \in g_i \cdot Aut(G_0), i=1,2 \\ \text{word metric}}} d_{\mathbb{T}_N}(p_1, p_2), \quad (7)$$

Lemma. Metric and neighborhood

Let G_0 be a simple graph and \mathbb{G}_0 be the set defined as (2). The function $d_{G_0} : \mathbb{G}_0 \times \mathbb{G}_0 \to \mathbb{R}$ defined by (7) is a **semi-metric** on \mathbb{G}_0 . Furthermore, let $\mathbb{I}_d(G)$ be a set constructed as follows:

$$\mathbb{I}_d\left(G
ight) = \{G' \in \mathbb{G}_0 | G' = q \prod_{i=1}^d t_i \cdot G_0, \ q \in g \cdot Aut(G_0), \ t_i \in \mathbb{T}_N, \ i \in [d]$$

Then $\mathbb{N}_D(G) = \bigcup_{d=0}^D \mathbb{I}_d(G)$ is the neighborhood of $G = g \cdot G_0 \in \mathbb{G}_0$ induced by (7), with the radius $D \in \mathbb{Z}^+ \cup \{0\}$.

Sampling all possible q is computationally hard (NP-intermediate).

q is omitted in our algorithm, since "most graphs are not symmetric".

(C Godsil, GF Royle, 2001)

Searching Dynamic for Local sampling

Local sampling is deployed in both TNLS and TnALE.

The *convergence* is unknown due to the discrete nature of the problem.

How do *sampling strategies* affect the search efficiency?

Convex analysis in discrete domain

Problem Reformulation

We consider a general form for optimization in TN-SS:

$$\begin{array}{l} \text{Objective } f: \mathbb{Z}_{\geq 0}^{L} \to \mathbb{R}_{+} \\ \min_{\mathbf{x} \in \mathbb{Z}_{+}^{K}, p \in \mathbb{P}} \quad f_{p}(\mathbf{x}) := f \circ p(\mathbf{x}), \\ \text{TN-topology (including permutation)} \\ p: \mathbb{Z}_{+}^{K} \to \mathbb{Z}_{\geq 0}^{L} \end{array}$$

Any TN-structures (edge-labelled graph) can be represented by $p(\mathbf{x})$.

Gradient in Discrete Domain

Definition (finite gradient)

For any function $f : \mathbb{Z}_{\geq 0}^L \to \mathbb{R}$, its finite gradient $\Delta f : \mathbb{Z}_{\geq 0}^L \to \mathbb{R}^L$ at the point **x** is defined as the vector

$$\Delta f(\mathbf{x}) = \left[f(\mathbf{x} + \mathbf{e}_1) - f(\mathbf{x}), \dots, f(\mathbf{x} + \mathbf{e}_L) - f(\mathbf{x})\right]^+, \qquad (2)$$

where $\mathbf{e}_i \forall i \in [L]$ denote the unit vectors with the *i*-th entry being one and other entries being zeros.

Convexity in Discrete Domain

Definition (α -strong convexity with finite gradient)

We say f is α -strongly convex for $\alpha \ge 0$ if $f(\mathbf{y}) \ge f(\mathbf{x}) + \langle \Delta f(\mathbf{x}) - \frac{\alpha}{2}\mathbf{1}, \mathbf{y} - \mathbf{x} \rangle + \frac{\alpha}{2} ||\mathbf{y} - \mathbf{x}||^2$ for all $\mathbf{x}, \mathbf{y} \in \mathbb{Z}_{\ge 0}^L$, where $\mathbf{1} \in \mathbb{R}^L$ denotes the vector with all entries being one. We simply say f is convex if it is α -strongly convex and $\alpha = 0$.

Lemma

If f is α -strongly convex in $\mathbb{Z}_{\geq 0}^{L}$, then the following inequalities are held:

1. $g(\mathbf{x}) = f(\mathbf{x}) - \frac{\alpha}{2} \|\mathbf{x}\|^2$ is convex in the discrete scenario for all $\mathbf{x} \in \mathbb{Z}_{\geq 0}^L$, and vice versa;

2.
$$\langle \Delta f(\mathbf{x}) - \Delta f(\mathbf{x}), \mathbf{x} - \mathbf{y} \rangle \geq \alpha \|\mathbf{x} - \mathbf{y}\|^2$$
 for any $\mathbf{x}, \mathbf{y} \in \mathbb{Z}_{\geq 0}^L$;

3.
$$\|\Delta f(\mathbf{x}) - \Delta f(\mathbf{y})\| \ge \alpha \|\mathbf{x} - \mathbf{y}\|$$
 for any $\mathbf{x}, \mathbf{y} \in \mathbb{Z}_{\ge 0}^L$;

Here $\|\cdot\|$ denotes the l_2 norm for vectors.

Smoothness in Discrete Domain

bound the changing rate of the gradient

Definition $((\beta_1, \beta_2)$ -smoothness with finite gradient)

We say f is (β_1, β_2) -smooth for $\beta_1, \beta_2 > 0$ if 1. $|f(\mathbf{x}) - f(\mathbf{y})| \le \beta_1 ||\mathbf{x} - \mathbf{y}||$ for all $\mathbf{x}, \mathbf{y} \in \mathbb{Z}_{\ge 0}^L$; bound the changing rate of the function

2. The function $I(\mathbf{x}) := \frac{\beta_2}{2} \|\mathbf{x}\|^2 - f(\mathbf{x})$ is convex.

Lemma

If $|f(\mathbf{x}) - f(\mathbf{y})| \leq \beta ||\mathbf{x} - \mathbf{y}||$ for all $\mathbf{x}, \mathbf{y} \in \mathbb{Z}_{\geq 0}^{L}$, then the norm of the finite gradient with respective to \mathbf{x} is bounded, i.e., $\|\Delta f(\mathbf{x})\|_{\infty} \leq \beta$.

Lemma

If
$$I(\mathbf{x}) = \frac{\beta}{2} \|\mathbf{x}\|^2 - f(\mathbf{x})$$
 is convex, then for all $\mathbf{x}, \mathbf{y} \in \mathbb{Z}_{\geq 0}^L$
1. $f(\mathbf{y}) \leq f(\mathbf{x}) + \left\langle \Delta f(\mathbf{x}) - \frac{\beta}{2}\mathbf{1}, \mathbf{y} - \mathbf{x} \right\rangle + \frac{\beta}{2} \|\mathbf{y} - \mathbf{x}\|^2$ and vise versa;
2. $\left\langle \Delta f(\mathbf{x}) - \Delta f(\mathbf{y}), \mathbf{x} - \mathbf{y} \right\rangle \leq \beta \|\mathbf{x} - \mathbf{y}\|^2$.

Properties for Strongly Convex, Smooth Function in Discrete Domain

Lemma (convex combination in the discrete domain)

Suppose $\mathbf{q} = \theta \mathbf{x} + (1 - \theta) \mathbf{y}$, $\forall \theta \in [0, 1]$, and there is $\hat{\mathbf{q}} \in \mathbb{Z}_{\geq 0}^{L}$ where $\mathbf{\Lambda} = \mathbf{q} - \hat{\mathbf{q}}$. If f is α -strongly convex, then

$$\theta f(\mathbf{x}) + (1 - \theta)f(\mathbf{y}) \ge f(\hat{\mathbf{q}}) + \left\langle \Delta f(\hat{\mathbf{q}}) - \frac{\alpha}{2}\mathbf{1}, \mathbf{\Lambda} \right\rangle + \frac{\alpha}{2} \|\mathbf{\Lambda}\|^2$$
(3)

Definition (**sub-level set**)

The level set of f at point $\mathbf{x} \in \mathbb{Z}_{\geq 0}^{L}$ is $\mathbb{L}_{\mathbf{x}}(f) = \{\mathbf{y} \in \mathbb{Z}_{\geq 0}^{L} : f(\mathbf{y}) = f(\mathbf{x})\}$. The sub-level set of f at point $\mathbf{x} \in \mathbb{Z}_{\geq 0}^{L}$ is $\mathbb{L}_{\mathbf{x}}^{\downarrow}(f) = \{\mathbf{y} \in \mathbb{Z}_{\geq 0}^{L} : f(\mathbf{y}) \leq f(\mathbf{x})\}$.

Lemma (the sub-level cube)

Assume that $f : \mathbb{Z}_{\geq 0}^{L} \to \mathbb{R}$ is α -strongly convex, (β_{1}, β_{2}) -smooth, and its minimum, denoted $f(\mathbf{x}^{*})$, satisfies $\|\frac{\beta_{2}}{2}\mathbf{1} - \Delta f(\mathbf{x}^{*})\| \leq \gamma$ where γ is a constant and $0 \leq \gamma < \alpha$. Then, for all $\mathbf{x} \in \mathbb{Z}_{\geq 0}^{L}$, there is a L-dimensional cube, which is of the edge length $\frac{2(\alpha - \gamma)}{\beta_{2}\sqrt{L}} \|\mathbf{x} - \mathbf{x}^{*}\|$, tangent at \mathbf{x} , and inside the sub-level set $\mathbb{L}_{\mathbf{x}}^{\downarrow}(f)$.

Intuition in One-Dimensional Case

Convergence for Strongly Convex, Smooth Function in Discrete Domain

Assumption

Assume that $f : \mathbb{Z}_{\geq 0}^{L} \to \mathbb{R}_{+}$ of is α -strongly convex, (β_{1}, β_{2}) -smooth, and its minimum, denoted $(p^{*}, \mathbf{x}^{*}) = \arg \min_{p, \mathbf{x}} f \circ p(\mathbf{x})$, satisfies $\|\Delta f_{p^{*}}(\mathbf{x}^{*}) - \frac{\beta_{2}}{2}\mathbf{1}\| \leq \gamma$ where $0 \leq \gamma < \alpha \leq \beta_{1} \leq \beta_{2} \leq 1$.

Theorem (convergence rate)

Suppose the Assumption above is satisfied, the operator p is fixed to be p^* , and $0 \le \theta \le 1$. Then, for any \mathbf{x} with $\|\mathbf{x} - \mathbf{x}^*\|_{\infty} \le c$, we can find a neighborhood $B_{\infty}(\mathbf{x}, r_{\mathbf{x}})$ where $r_{\mathbf{x}} \ge \theta c + \frac{1}{2}$, such that there exist a element $\mathbf{y} \in B_{\infty}(\mathbf{x}, r_{\mathbf{x}})$ satisfying

$$f_{p^*}(\mathbf{y}) - f_{p^*}(\mathbf{x}^*) \le (1 - \theta)(f_{p^*}(\mathbf{x}) - f_{p^*}(\mathbf{x}^*)) + \frac{7}{8}K.$$
 (4)

Corollary (convergence guarantee)

Suppose p^* is known and a series $\{\mathbf{x}_n\}_{n=0}^{\infty}$, where \mathbf{x}_0 is randomly chosen in \mathbb{Z}_+^K , and for each n > 0, \mathbf{x}_n is equal to the \mathbf{y} in Theorem 10. Then we can achieve the following limit when $\Omega(1/K) \le \theta \le 1$,

$$\lim_{\to\infty} \left(f_{p^*}(\mathbf{x}_n) - f_{p^*}(\mathbf{x}^*) \right) = O(1)$$

Curse of Dimensionality in TNLS

One-dimensional case:

sampling in $B_{\infty}(\mathbf{x}, r_{\mathbf{x}})$ with $r_{\mathbf{x}} \geq \theta c + \frac{1}{2}$ equals $O(2^{-K})$.

Conclusion

chao.li@riken.jp

- TN-SS can boost the performance of tensor learning.
- TN-SS can be solved by genetic algorithm, stochastic search, and alternating enumeration.
- TN-SS algorithms can explore unknown and more efficient tensor networks than the ones proposed in the literature.

1. **TNGA**: <u>Li, Chao</u>, and Sun, Zhun. "Evolutionary topology search for tensor network decomposition." International Conference on Machine Learning (ICML). PMLR, 2020.

2. **TNLS**: <u>Li, Chao</u>, et al. "Permutation search of tensor network structures via local sampling." International Conference on Machine Learning (ICML). PMLR, 2022.

3. **TnALE**: <u>Li, Chao</u>, et al. "Alternating Local Enumeration (TnALE): Solving Tensor Network Structure Search with Fewer Evaluations ." International Conference on Machine Learning (ICML). PMLR, 2023.

Contributors

