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Machine Learning: The Success Story 

Image classification

Machine Learning: The Success Story

Reinforcement Learning

Machine translation

But what do these results really mean?

ImageNet: An ML Home Run
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ML Achieves Superhuman Performance
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Evolution of ML
Big Data Computational 

Resources
Machine 
Learning

ImageNet:
1M images

CIFAR: 
60k images

MNIST: 
60k images

Open Images:  
9M images

1998 2009 2017

Data is growing...
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ML in Physical WorldMachine Learning in Physical World

2

AutonomousDriving

Malware	Classification

Smart CityHealthcare

Fraud Detection Biometrics Recognition
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Consequences in Real-world Applications
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‣ Federated learning: model is moving 
while private training data never 
leaves local device

‣ However, training data can be 
leaked by publicly shared gradients 

Privacy: Deep Leakage from Gradients

(Ligeng Zhu et al., Deep Leakage from Gradients. NeurIPS 2019)

(Goodfellow 2018)

Privacy of training data

X θ X̂
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Building Trust between Human and AI

Training models off of 
sensitive data needs 
privacy preserving 

safeguards

Protect AI systems 
from potential risks 

that may cause 
physical and digital 

harm

Ability to produce 
consistent and reliable 

outputs

Enable equitable and 
unbiased decision 

making

Clearly determine who is 
responsible for the output 

of AI system decisions

Explanations on how and 
why AI systems make the 

decisions for different 
stakeholders



Interpretable/Explainable 
Machine Learning
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Black-box AI Creates Confusions

-RXIVREP�%YHMX��6IKYPEXSVW

-8�
�3TIVEXMSRW

(EXE�7GMIRXMWXW

&YWMRIWW�3[RIV

'ER�-�XVYWX�SYV�%-�
HIGMWMSRW#�

%VI�XLIWI�%-�W]WXIQ�
HIGMWMSRW�JEMV#

'YWXSQIV�7YTTSVX

,S[�HS�-�ERW[IV�XLMW�
GYWXSQIV�GSQTPEMRX#

,S[�HS�-�QSRMXSV�ERH�
HIFYK�XLMW�QSHIP#

-W�XLMW�XLI�FIWX�QSHIP�
XLEX�GER�FI�FYMPX#

&PEGO�FS\�
%-

;L]�-�EQ�KIXXMRK�XLMW�
HIGMWMSR#

,S[�GER�-�KIX�E�
FIXXIV�HIGMWMSR#

4SSV�(IGMWMSR

%ODFN�ER[�$,�FUHDWHV�FRQIXVLRQ�DQG�GRXEW



11

‣ Internals are unknown to observer

‣ Internals are known but uninterpretable

Black-box ModelßɫȴŷȋƟȝࡩ �� ȝȴƌƟȋɻ ŒɫƟ ȴɠŒɧʞƟ
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 Explanations in ML world 
Medical Diagnosis

Fair lending laws [ECOA, FCRA] require credit decisions to be explainable 

Credit Evaluation
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Low-to-High Interpretability

Low Interpretability High Interpretability

Significance:
Strong impacts

Manipulability:
Controllable effects

Complexity:
Gaining insights

Interpretability means that the cause and effect can be determined.
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There is no mathematical definition of interpretability. Two 
proposed definitions in the literature are:

‣ Interpretability is the degree to which a human can understand 
the cause of a decision. — Tim Miller

‣ Interpretability is the degree to which a human can consistently 
predict the model’s result. — Been Kim

What is Interpretable/Explainable ML
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Why Explainability?
Generating Explanation for the End-User

Weld, D., et al, The challenge of crafting intelligible intelligence, Communications of ACM (2018)
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Why Explainability? 
Debug (Mis)-Prediction
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Why Explainability: Verify the ML Model/System 
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Why Explainability? Improve ML Model
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 Why Explainability: Learn New Insights 
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Why Explainability: Learn Insights in the Sciences 
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Why Interpretability: Find Bias and Fairness 
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‣ Data: Which dimensions of the data are most 
relevant for the task?

‣ Model: What concept does a particular neural 
encode?

‣ Prediction: Explain why a certain instance 
has been classified as a certain class 

What kind of Interpretation?
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Model-based

‣ Simpler model to fit the data

‣ Lower predictive accuracy but 
higher descriptive accuracy

Post hoc

‣ Analyze or visualize information of 
a trained model 

‣ Unchanged predictive accuracy 

Model-based vs. Post Hoc Interpretability

Definitions, methods, and applications in interpretable machine learning (Murdoch et al. PNAS 2019)
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Global vs. Local Explanations
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Global interpretation

‣ Understanding how a lamp 
typically looks like

Global vs. Local Interpretation
Local interpretation

‣ Understanding why this 
image contain a lamp
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‣ Local: interpretation for 
specific instance

‣ Global: interpretation for 
model output 

Taxonomy of Interpretability Methods

‣ Model-specific: only for specific 
model class, access to model 
internals

‣ Model-agnostic: for any models, 
post hoc, analyzing input and 
output without access to model 
internals

Model-agnostic

Model-specific

Local Global

NN Layer
Visualization

Feature
Weights

XGBoost
Feature

Importances

Partial
Dependency 

Plots

Input 
Gradients

Shapley
Values

LIME

Occlusion
Maps

Saliency
Maps
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Accuracy vs. Explainability
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Explaining Decision
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Sensitivity Analysis
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Saliency via Backpropagation
Sensitivity analysis of target neuron w.r.t. input pixels

Deep inside convolutional networks, Simonyan, Vedaldi, Zisserman, ICLR, 2014

The “salient” pixels 
usually light up



Saliency maps provide a visual representation of the input sensitivity of 
an output class
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Saliency Map

Sanity Checks for Saliency Maps (Adebayo et al., NeurIPS 2018)  
Deep Inside Convolutional Networks (Simonyan et al., ICLR 2014)
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‣ When randomizing weight, model gives random prediction

‣ Does saliency map change?

Sanity Check-1 

Sanity Checks for Saliency Maps (Adebayo et al. NeurIPS 2018) 
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Class Activation Maps (CAM)
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Grad-CAM
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Extremal Perturbations 

[Fong et al., ICCV 2019]
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Uncertainty Map

What Uncertainties Do We Need in Bayesian Deep Learning for Computer Vision?   
(Kendall  et al. NeurIPS 2017)  

Modeling 
uncertainty

Sensing 
uncertainty



37

‣ Find prototypical example of a category

‣ Find pattern maximizing activity of a neuron

Interpreting Model
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 Visualize the exemplar of class (output layer) or representation (hidden layer) 
by optimization w.r.t. input

Activation Maximization

https://distill.pub/2017/feature-visualization/；https://distill.pub/2018/building-blocks/

max
x

Sc(x)� �R(x)
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https://distill.pub/2018/building-blocks/
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Class maximization w.r.t. inputs

Multifaceted Feature Visualization

Multifaceted Feature Visualization: (Nguyen et al. ICML 2016 Best Paper Award)

max
x

Sc(x)� �R(x)
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Activation Maximization

https://distill.pub/2017/feature-visualization/；https://distill.pub/2018/building-blocks/

https://distill.pub/2017/feature-visualization/
https://distill.pub/2018/building-blocks/
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‣ Surrogate models are trained to approximate the predictions of 
the underlying black box model (model-agnostic approach)

‣ Explain the decision by evidence of interpretable region

 LIME (Local Interpretable Model-Agnostic Explanations)

“Why Should I Trust You?” Explaining the Predictions of Any Classifier (Ribeiro et al. KDD 2016) 
Model-Agnostic Interpretability of Machine Learning (Ribeiro et al. AAAI 2018)
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 LIME: More Examples
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‣ Influence of model’s prediction by training points

‣ Identify the training points “responsible” for a given prediction

‣ How predictions change if removing a training point ?

‣ How predictions change if a training point  is modified?

‣ Poising attack

z
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z
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Influence Functions

Understanding Black-box Predictions via Influence Functions (Koh and Liang, ICML 2017)

Hessian
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Influence Functions

Understanding Black-box Predictions via Influence Functions (Koh and Liang, ICML 2017)
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‣ What do I need to change for the bank to approve my loan?

‣ Which symptoms would lead to a different medical diagnosis? 

‣ Adversarial example with sparsity of perturbations

min
x0

max
�

�(f✓(x
0)� y0)2 + d(x0, x

0)

d(x0, x
0) = kx0 � x0k1

<latexit sha1_base64="WSB8T5SZYYH/DCkg6lH+UOmib04="></latexit>

Counterfactual Explanations
Credit Evaluation

Counterfactual explanations without opening the black box (Wachter et al. 2017)
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Is Google’s DeepDream Art?
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Deep Generative Representation
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‣ Factorize distribution over the latent variables

‣ Single change in factor should lead to single change representations

Disentangled Representations 
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‣ Image resynthesis by manipulating latent factors

Application: Image Translation 

Multi-Attribute Transfer via Disentangled Representation (Zhang et al., AAAI 2019)



Adversarial Machine Learning
(Reliability and Robustness)
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Extreme Reliability and Safety

Autonomous vehicles
Air traffic control

Surgery robotsMedical diagnosis
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Inconsistent perception between human and ML 

Problem: DNNs are Brittle Published as a conference paper at ICLR 2015

+ .007⇥ =

x sign(rxJ(✓,x, y))
x+

✏sign(rxJ(✓,x, y))
“panda” “nematode” “gibbon”

57.7% confidence 8.2% confidence 99.3 % confidence

Figure 1: A demonstration of fast adversarial example generation applied to GoogLeNet (Szegedy
et al., 2014a) on ImageNet. By adding an imperceptibly small vector whose elements are equal to
the sign of the elements of the gradient of the cost function with respect to the input, we can change
GoogLeNet’s classification of the image. Here our ✏ of .007 corresponds to the magnitude of the
smallest bit of an 8 bit image encoding after GoogLeNet’s conversion to real numbers.

Let ✓ be the parameters of a model, x the input to the model, y the targets associated with x (for
machine learning tasks that have targets) and J(✓,x, y) be the cost used to train the neural network.
We can linearize the cost function around the current value of ✓, obtaining an optimal max-norm
constrained pertubation of

⌘ = ✏sign (rxJ(✓,x, y)) .

We refer to this as the “fast gradient sign method” of generating adversarial examples. Note that the
required gradient can be computed efficiently using backpropagation.

We find that this method reliably causes a wide variety of models to misclassify their input. See
Fig. 1 for a demonstration on ImageNet. We find that using ✏ = .25, we cause a shallow softmax
classifier to have an error rate of 99.9% with an average confidence of 79.3% on the MNIST (?) test
set1. In the same setting, a maxout network misclassifies 89.4% of our adversarial examples with
an average confidence of 97.6%. Similarly, using ✏ = .1, we obtain an error rate of 87.15% and
an average probability of 96.6% assigned to the incorrect labels when using a convolutional maxout
network on a preprocessed version of the CIFAR-10 (Krizhevsky & Hinton, 2009) test set2. Other
simple methods of generating adversarial examples are possible. For example, we also found that
rotating x by a small angle in the direction of the gradient reliably produces adversarial examples.

The fact that these simple, cheap algorithms are able to generate misclassified examples serves as
evidence in favor of our interpretation of adversarial examples as a result of linearity. The algorithms
are also useful as a way of speeding up adversarial training or even just analysis of trained networks.

5 ADVERSARIAL TRAINING OF LINEAR MODELS VERSUS WEIGHT DECAY

Perhaps the simplest possible model we can consider is logistic regression. In this case, the fast
gradient sign method is exact. We can use this case to gain some intuition for how adversarial
examples are generated in a simple setting. See Fig. 2 for instructive images.

If we train a single model to recognize labels y 2 {�1, 1} with P (y = 1) = �
�
w>x+ b

�
where

�(z) is the logistic sigmoid function, then training consists of gradient descent on

Ex,y⇠pdata⇣(�y(w>x+ b))

where ⇣(z) = log (1 + exp(z)) is the softplus function. We can derive a simple analytical form for
training on the worst-case adversarial perturbation of x rather than x itself, based on gradient sign

1This is using MNIST pixel values in the interval [0, 1]. MNIST data does contain values other than 0 or
1, but the images are essentially binary. Each pixel roughly encodes “ink” or “no ink”. This justifies expecting
the classifier to be able to handle perturbations within a range of width 0.5, and indeed human observers can
read such images without difficulty.

2 See https://github.com/lisa-lab/pylearn2/tree/master/pylearn2/scripts/
papers/maxout. for the preprocessing code, which yields a standard deviation of roughly 0.5.

3

(Goodfellow et al., ICLR 2015) 
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Reliability: Medical Diagnosis

(Finlayson et al. Science 2019) 
Adversarial attacks on medical machine learning
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Robust Physical-World Attacks

(Eykholt et al., Robust physical-world attacks on deep learning visual classification, CVPR 2018)
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More Examples
Why Is This Brittleness of ML a Problem?

→ Security

[Sharif Bhagavatula Bauer Reiter 2016]: 
Glasses that fool face recognition

[Carlini Wagner 2018]: 
Voice commands that are 
unintelligible to humans

Why Is This Brittleness of ML a Problem?
→ Security

[Sharif Bhagavatula Bauer Reiter 2016]: 
Glasses that fool face recognition

[Carlini Wagner 2018]: 
Voice commands that are 
unintelligible to humans

[Simen Thys et al., 2019]
Fooling automated surveillance cameras: 

adversarial patches to attack person 
detection

Why Is This Brittleness of ML a Problem?
→ Security

[Sharif Bhagavatula Bauer Reiter 2016]: 
Glasses that fool face recognition

[Carlini Wagner 2018]: 
Voice commands that are 
unintelligible to humans

Why Is This Brittleness of ML a Problem?
→ Security

[Sharif Bhagavatula Bauer Reiter 2016]: 
Glasses that fool face recognition

[Carlini Wagner 2018]: 
Voice commands that are 
unintelligible to humans

Adversarial examples in physical world
• 3D-printed adversarial turtle

IBM Research AI

• Real-time traffic sign detector

• Adversarial eye glasses• Adversarial patch
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(Brown et al., 2017) 
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Accuracy vs. Adversarial Robustness

(D. Su et al., Is Robustness the Cost of Accuracy? - A Comprehensive Study on the Robustness of 18 
Deep Image Classification Models, ECCV 2018)

How do we use CLEVER? 

Before-After robustness comparison
• Will my model become more 

robust if I do/use X?

Other use cases 
• Characterize the behaviors and 

properties of adversarial examples
• Hyperparameter selection for 

adversarial attacks and defenses
• Reward-driven model robustness 

improvement

IBM Research AI

Same set of 
data for 

robustness 
evaluation

Original 
model

Modified 
model

do/use X

CLEVER 
score

CLEVER 
score Ro

bu
st
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ss

Accuracy
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Limitation of ML Framework
A Limitation of the (Supervised) ML Framework

Measure of performance:
Fraction of mistakes during testing

But: In reality, the distributions 
we use ML on are NOT the ones 

we train it on

Training Inference

Training Inference

Measure of performance:
Fraction of mistakes during testing

But: In reality, the distributions 
we use ML on are NOT the ones 

we train it on

What can go wrong?

=
A Limitation of the (Supervised) ML Framework

All training and testing data 
examples drawn 

independently from same 
distribution

Real-world application
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‣ ML has high score of accuracy but not sufficiently 
intelligent

‣ Distinct principles between human perception and ML

‣ Risky for safety critical applications

‣ Limitations of current ML methods

‣ Trust between human and AI

Implication of Adversarial Examples



Inference phrase
Training phrase
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Attacks on ML Pipeline

Training data 
(X, Y )

Model
θ

Test input
x*

Test output 
y*

Poisoning 
Training Set

Adversarial 
Examples

Model Theft

Recovery of sensitive 
training data

Learning 
Algorithm



‣ By poisoning training data, the model will be compromised

‣ Planting backdoors in training data, such that the data with 
backdoors will be misclassified

60

Poisoning Attack

Learning 
process

Data 
poisoning

Weight poisoning
Poisoned ModelClean Model
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Trojan Attack

a) Training

Modified Training Set

Modified Samples

Backdoored DNN

b) Inference

Inputs

w/ Trigger

Inputs

w/o Trigger

Label 4

Label 5

Target Label: 4

Trigger:

Backdoor 

Configura!on

Label 4

(Target)

Label 7

...
...

...
...

Train
Label 4

Label 7

(Target Label)

(Correct Labels)

Fig. 1. An illustration of backdoor attack. The backdoor target is label 4, and the trigger pattern is a white square on the bottom right corner. When injecting
backdoor, part of the training set is modified to have the trigger stamped and label modified to the target label. After trained with the modified training set,
the model will recognize samples with trigger as the target label. Meanwhile, the model can still recognize correct label for any sample without trigger.

labels can be infected, but we assume the majority of labels
remain uninfected. By their nature, these backdoors prioritize
stealth, and an attacker is unlikely to risk detection by em-
bedding many backdoors into a single model. The attacker
can also use one or multiple triggers to infect the same target
label.

B. Defense Assumptions and Goals

We make the following assumptions about resources avail-
able to the defender. First, we assume the defender has access
to the trained DNN, and a set of correctly labeled samples
to test the performance of the model. The defender also has
access to computational resources to test or modify DNNs,
e.g., GPUs or GPU-based cloud services.

Goals. Our defensive effort includes three specific goals:

• Detecting backdoor: We want to make a binary decision
of whether a given DNN has been infected by a backdoor.
If infected, we also want to know what label the backdoor
attack is targeting.

• Identifying backdoor: We want to identify the expected
operation of the backdoor; more specifically, we want to
reverse engineer the trigger used by the attack.

• Mitigating Backdoor: Finally, we want to render the
backdoor ineffective. We can approach this using two
complementary approaches. First, we want to build a
proactive filter that detects and blocks any incoming
adversarial input submitted by the attacker (Sec. VI-A).
Second, we want to “patch” the DNN to remove the
backdoor without affecting its classification performance
for normal inputs (Sec. VI-B and Sec. VI-C).

Considering Viable Alternatives. There are a number of
viable alternatives to the approach we’re taking, from at the
higher level (why patch models at all) to specific techniques
taken for identification. We discuss some of these here.

At the high level, we first consider alternatives to mitigation.
Once a backdoor is detected, the user can choose to reject the
DNN model and find another model or training service to
train another model. However, this can be difficult in practice.
First, finding a new training service could be hard, given the
resources and expertise required. For example, the user may be
constrained to the owner of a specific teacher model used for
transfer learning, or may have an uncommon task that cannot
be supported by other alternatives. Another scenario is when
users have access to only the infected model and validation

Normal
Dimension

A B C

Minimum ∆ needed to
misclassify all samples into A

Trigger
Dimension A

B C

Clean
Model

Infected
Model

Decision Boundary

Label A Input

Label B Input

Label C Input

Adversarial Input

Normal
Dimension

Minimum ∆ needed to
misclassify all samples into A

Fig. 2. A simplified illustration of our key intuition in detecting backdoor.
Top figure shows a clean model, where more modification is needed to move
samples of B and C across decision boundaries to be misclassified into label A.
Bottom figure shows the infected model, where the backdoor changes decision
boundaries and creates backdoor areas close to B and C. These backdoor areas
reduce the amount of modification needed to misclassify samples of B and C
into the target label A.

data, but not the original training data. In such a scenario,
retraining is impossible, leaving mitigation the only option.

At the detailed level, we consider a number of approaches
that search for “signatures” only present in backdoors, some
of which have been briefly mentioned as potential defenses in
prior work [17], [13]. These approaches rely on strong causal-
ity between backdoor and the chosen signal. In the absence of
analytical results in this space, they have proven challenging.
First, scanning input (e.g., an input image) for triggers is hard,
because the trigger can take on arbitrary shapes, and can be
designed to evade detection (i.e. a small patch of pixels in a
corner). Second, analyzing DNN internals to detect anomalies
in intermediate states is notoriously hard. Interpreting DNN
predictions and activations in internal layers is still an open
research challenge [18], and finding a heuristic that generalizes
across DNNs is difficult. Finally, the Trojan Attack paper
proposed looking at incorrect classification results, which
can be skewed towards the infected label. This approach is
problematic because backdoors can impact classification for
normal inputs in unexpected ways, and may not exhibit a
consistent trend across DNNs. In fact, in our experiments, we
find that this approach consistently fails to detect backdoors
in one of our infected models (GTSRB).

C. Defense Intuition and Overview

Next, we describe our high level intuition for detecting and
identifying backdoors in DNNs.

���
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(Bolun Wang et al., Neural Cleanse: Identifying and Mitigating Backdoor Attacks in Neural Networks. 
IEEE Security and Privacy, 2019)

a) Training
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Fig. 1. An illustration of backdoor attack. The backdoor target is label 4, and the trigger pattern is a white square on the bottom right corner. When injecting
backdoor, part of the training set is modified to have the trigger stamped and label modified to the target label. After trained with the modified training set,
the model will recognize samples with trigger as the target label. Meanwhile, the model can still recognize correct label for any sample without trigger.

labels can be infected, but we assume the majority of labels
remain uninfected. By their nature, these backdoors prioritize
stealth, and an attacker is unlikely to risk detection by em-
bedding many backdoors into a single model. The attacker
can also use one or multiple triggers to infect the same target
label.

B. Defense Assumptions and Goals

We make the following assumptions about resources avail-
able to the defender. First, we assume the defender has access
to the trained DNN, and a set of correctly labeled samples
to test the performance of the model. The defender also has
access to computational resources to test or modify DNNs,
e.g., GPUs or GPU-based cloud services.

Goals. Our defensive effort includes three specific goals:

• Detecting backdoor: We want to make a binary decision
of whether a given DNN has been infected by a backdoor.
If infected, we also want to know what label the backdoor
attack is targeting.

• Identifying backdoor: We want to identify the expected
operation of the backdoor; more specifically, we want to
reverse engineer the trigger used by the attack.

• Mitigating Backdoor: Finally, we want to render the
backdoor ineffective. We can approach this using two
complementary approaches. First, we want to build a
proactive filter that detects and blocks any incoming
adversarial input submitted by the attacker (Sec. VI-A).
Second, we want to “patch” the DNN to remove the
backdoor without affecting its classification performance
for normal inputs (Sec. VI-B and Sec. VI-C).

Considering Viable Alternatives. There are a number of
viable alternatives to the approach we’re taking, from at the
higher level (why patch models at all) to specific techniques
taken for identification. We discuss some of these here.

At the high level, we first consider alternatives to mitigation.
Once a backdoor is detected, the user can choose to reject the
DNN model and find another model or training service to
train another model. However, this can be difficult in practice.
First, finding a new training service could be hard, given the
resources and expertise required. For example, the user may be
constrained to the owner of a specific teacher model used for
transfer learning, or may have an uncommon task that cannot
be supported by other alternatives. Another scenario is when
users have access to only the infected model and validation
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Fig. 2. A simplified illustration of our key intuition in detecting backdoor.
Top figure shows a clean model, where more modification is needed to move
samples of B and C across decision boundaries to be misclassified into label A.
Bottom figure shows the infected model, where the backdoor changes decision
boundaries and creates backdoor areas close to B and C. These backdoor areas
reduce the amount of modification needed to misclassify samples of B and C
into the target label A.

data, but not the original training data. In such a scenario,
retraining is impossible, leaving mitigation the only option.

At the detailed level, we consider a number of approaches
that search for “signatures” only present in backdoors, some
of which have been briefly mentioned as potential defenses in
prior work [17], [13]. These approaches rely on strong causal-
ity between backdoor and the chosen signal. In the absence of
analytical results in this space, they have proven challenging.
First, scanning input (e.g., an input image) for triggers is hard,
because the trigger can take on arbitrary shapes, and can be
designed to evade detection (i.e. a small patch of pixels in a
corner). Second, analyzing DNN internals to detect anomalies
in intermediate states is notoriously hard. Interpreting DNN
predictions and activations in internal layers is still an open
research challenge [18], and finding a heuristic that generalizes
across DNNs is difficult. Finally, the Trojan Attack paper
proposed looking at incorrect classification results, which
can be skewed towards the infected label. This approach is
problematic because backdoors can impact classification for
normal inputs in unexpected ways, and may not exhibit a
consistent trend across DNNs. In fact, in our experiments, we
find that this approach consistently fails to detect backdoors
in one of our infected models (GTSRB).

C. Defense Intuition and Overview

Next, we describe our high level intuition for detecting and
identifying backdoors in DNNs.

���

Authorized licensed use limited to: IEEE Xplore. Downloaded on September 20,2020 at 17:59:04 UTC from IEEE Xplore.  Restrictions apply. 



62

Backdoor Attack against Federated Learning 

(Chulin Xie, et al., DBA: Distributed Backdoor Attacks against Federated Learning. ICLR 2020)

Published as a conference paper at ICLR 2020

federated learning aggregator 

global trigger

benign participants

Gt+1

Gt

…

… …

centralized attacker

poison

(a) centralized backdoor attack (current setting)

distributed attackers

federated learning aggregator 

local trigger 1

benign participants

Gt+1

Gt

…

… …

poison

local trigger 2 local trigger 3 local trigger 4

local triggers

(b) DBA: distributed backdoor attack (ours)
Figure 1: Overview of centralized and distributed backdoor attacks (DBA) on FL. The aggregator at
round t+ 1 combines information from local parties (benign and adversarial) in the previous round t,
and update the shared model Gt+1. When implementing backdoor attacks, centralized attacker uses a
global trigger while distributed attacker uses a local trigger which is part of the global one.

they embed the same global trigger pattern to all adversarial parties. We call such attacking scheme
centralized backdoor attack. Leveraging the power of FL in aggregating dispersed information from
local parties to train a shared model, in this paper we propose distributed backdoor attack (DBA)
against FL. Given the same global trigger pattern as the centralized attack, DBA decomposes it into
local patterns and embed them to different adversarial parties respectively. A schematic comparison
between the centralized and distributed backdoor attacks is illustrated in Fig.1.

Through extensive experiments on several financial and image datasets and in-depth analysis, we
summarize our main contributions and findings as follows.
• We propose a novel distributed backdoor attack strategy DBA on FL and show that DBA is more
persistent and effective than centralized backdoor attack. Based on extensive experiments, we report
a prominent phenomenon that although each adversarial party is only implanted with a local trigger
pattern via DBA, their assembled pattern (i.e., global trigger) attains significantly better attack
performance on the global model compared with the centralized attack. The results are consistent
across datasets and under different attacking scenarios such as one-time (single-shot) and continuous
(multiple-shot) poisoning settings. To the best of our knowledge, this paper is the first work studying
distributed backdoor attacks.
• When evaluating the robustness of two recent robust FL methods against centralized backdoor
attack (Fung et al., 2018; Pillutla et al., 2019), we find that DBA is more effective and stealthy, as its
local trigger pattern is more insidious and hence easier to bypass the robust aggregation rules.
• We provide in-depth explanations for the effectiveness of DBA from different perspectives, including
feature visual interpretation and feature importance ranking.
• We perform comprehensive analysis and ablation studies on several trigger factors in DBA, including
the size, gap, and location of local triggers, scaling effect in FL, poisoning interval, data poisoning
ratio, and data distribution.

2 DISTRIBUTED BACKDOOR ATTACK AGAINST FEDERATED LEARNING

2.1 GENERAL FRAMEWORK

The training objective of FL can be cast as a finite-sum optimization: minw2Rd [F (w) :=
1
N

PN
i=1 fi(w)]. There are N parties individually processing N local models, each of whom trains

with the local objective fi : Rd 7! R based on a private dataset Di = {{xi
j , y

i
j}

ai
j=1}, where ai = |Di|

and {xi
j , y

i
j} represents each data sample and its corresponding label. In supervised FL setting, each

local function fi is computed as fi(wi) = l({xi
j , y

i
j}j2Di , wi) where l stands for a loss of prediction

using the local parameters wi. The goal of FL is to obtain a global model which can generalize well
on test data Dtest after aggregating over the distributed training results from N parties.

Specifically, at round t, the central server sends the current shared model Gt to n 2 [N ] selected
parties, where [N ] denotes the integer set {1, 2, . . . , N}. The selected party i locally computes the
function fi by running an optimization algorithm such as stochastic gradient descent (SGD) for E

2

DBA: distributed backdoor attack
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Target vs. non-targeted attack

White-box vs. black-box attack

Evasion Attack: Adversarial Examples
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the vector representations are stable up to a rotation of the space, so the individual units of the vector
representations are unlikely to contain semantic information.

The second property is concerned with the stability of neural networks with respect to small per-
turbations to their inputs. Consider a state-of-the-art deep neural network that generalizes well on
an object recognition task. We expect such network to be robust to small perturbations of its in-
put, because small perturbation cannot change the object category of an image. However, we find
that applying an imperceptible non-random perturbation to a test image, it is possible to arbitrarily
change the network’s prediction (see figure 5). These perturbations are found by optimizing the
input to maximize the prediction error. We term the so perturbed examples “adversarial examples”.

It is natural to expect that the precise configuration of the minimal necessary perturbations is a
random artifact of the normal variability that arises in different runs of backpropagation learning.
Yet, we found that adversarial examples are relatively robust, and are shared by neural networks with
varied number of layers, activations or trained on different subsets of the training data. That is, if
we use one neural net to generate a set of adversarial examples, we find that these examples are still
statistically hard for another neural network even when it was trained with different hyperparameters
or, most surprisingly, when it was trained on a different set of examples.

These results suggest that the deep neural networks that are learned by backpropagation have nonin-
tuitive characteristics and intrinsic blind spots, whose structure is connected to the data distribution
in a non-obvious way.

2 Framework

Notation We denote by x 2 Rm an input image, and �(x) activation values of some layer. We first
examine properties of the image of �(x), and then we search for its blind spots.

We perform a number of experiments on a few different networks and three datasets :

• For the MNIST dataset, we used the following architectures [11]
– A simple fully connected network with one or more hidden layers and a Softmax

classifier. We refer to this network as “FC”.
– A classifier trained on top of an autoencoder. We refer to this network as “AE”.

• The ImageNet dataset [3].
– Krizhevsky et. al architecture [9]. We refer to it as “AlexNet”.

• ⇠ 10M image samples from Youtube (see [10])
– Unsupervised trained network with ⇠ 1 billion learnable parameters. We refer to it as

“QuocNet”.

For the MNIST experiments, we use regularization with a weight decay of �. Moreover, in some
experiments we split the MNIST training dataset into two disjoint datasets P1, and P2, each with
30000 training cases.

3 Units of: �(x)

Traditional computer vision systems rely on feature extraction: often a single feature is easily inter-
pretable, e.g. a histogram of colors, or quantized local derivatives. This allows one to inspect the
individual coordinates of the feature space, and link them back to meaningful variations in the input
domain. Similar reasoning was used in previous work that attempted to analyze neural networks that
were applied to computer vision problems. These works interpret an activation of a hidden unit as a
meaningful feature. They look for input images which maximize the activation value of this single
feature [6, 13, 7, 4].

The aforementioned technique can be formally stated as visual inspection of images x0, which satisfy
(or are close to maximum attainable value):

x0 = argmax
x2I

h�(x), eii

2

Natural basis vector w.r.t. 
-th hidden uniti

hidden layer 
activationsInput images

(a) Unit sensitive to lower round stroke. (b) Unit sensitive to upper round stroke, or
lower straight stroke.

(c) Unit senstive to left, upper round
stroke.

(d) Unit senstive to diagonal straight
stroke.

Figure 1: An MNIST experiment. The figure shows images that maximize the activation of various units
(maximum stimulation in the natural basis direction). Images within each row share semantic properties.

(a) Direction sensitive to upper straight
stroke, or lower round stroke.

(b) Direction sensitive to lower left loop.

(c) Direction senstive to round top stroke. (d) Direction sensitive to right, upper
round stroke.

Figure 2: An MNIST experiment. The figure shows images that maximize the activations in a random direction
(maximum stimulation in a random basis). Images within each row share semantic properties.

where I is a held-out set of images from the data distribution that the network was not trained on
and ei is the natural basis vector associated with the i-th hidden unit.

Our experiments show that any random direction v 2 Rn gives rise to similarly interpretable se-
mantic properties. More formally, we find that images x0 are semantically related to each other, for
many x0 such that

x0 = argmax
x2I

h�(x), vi

This suggests that the natural basis is not better than a random basis for inspecting the properties
of �(x). This puts into question the notion that neural networks disentangle variation factors across
coordinates.

First, we evaluated the above claim using a convolutional neural network trained on MNIST. We
used the MNIST test set for I. Figure 1 shows images that maximize the activations in the natural
basis, and Figure 2 shows images that maximize the activation in random directions. In both cases
the resulting images share many high-level similarities.

Next, we repeated our experiment on an AlexNet, where we used the validation set as I. Figures 3
and 4 compare the natural basis to the random basis on the trained network. The rows appear to be
semantically meaningful for both the single unit and the combination of units.

Although such analysis gives insight on the capacity of � to generate invariance on a particular
subset of the input distribution, it does not explain the behavior on the rest of its domain. We shall
see in the next section that � has counterintuitive properties in the neighbourhood of almost every
point form data distribution.

4 Blind Spots in Neural Networks

So far, unit-level inspection methods had relatively little utility beyond confirming certain intuitions
regarding the complexity of the representations learned by a deep neural network [6, 13, 7, 4].
Global, network level inspection methods can be useful in the context of explaining classification
decisions made by a model [1] and can be used to, for instance, identify the parts of the input which
led to a correct classification of a given visual input instance (in other words, one can use a trained

3

Random vector
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Uninterpretable and counter-intuitive properties of DNN

‣ No distinction between individual high level units and random activations

Intriguing Properties of NN (1)

(Szegedy et al. Intriguing properties of neural networks, ICLR 2014) 

Basis activation has specific semantic property 

(a) Unit sensitive to white flowers. (b) Unit sensitive to postures.

(c) Unit senstive to round, spiky flowers. (d) Unit senstive to round green or yellow
objects.

Figure 3: Experiment performed on ImageNet. Images stimulating single unit most (maximum stimulation in
natural basis direction). Images within each row share many semantic properties.

(a) Direction sensitive to white, spread
flowers.

(b) Direction sensitive to white dogs.

(c) Direction sensitive to spread shapes. (d) Direction sensitive to dogs with brown
heads.

Figure 4: Experiment performed on ImageNet. Images giving rise to maximum activations in a random direc-
tion (maximum stimulation in a random basis). Images within each row share many semantic properties.

model for weakly-supervised localization). Such global analyses are useful in that they can make us
understand better the input-to-output mapping represented by the trained network.

Generally speaking, the output layer unit of a neural network is a highly nonlinear function of its
input. When it is trained with the cross-entropy loss (using the Softmax activation function), it
represents a conditional distribution of the label given the input (and the training set presented so
far). It has been argued [2] that the deep stack of non-linear layers in between the input and the
output unit of a neural network are a way for the model to encode a non-local generalization prior
over the input space. In other words, it is assumed that is possible for the output unit to assign non-
significant (and, presumably, non-epsilon) probabilities to regions of the input space that contain no
training examples in their vicinity. Such regions can represent, for instance, the same objects from
different viewpoints, which are relatively far (in pixel space), but which share nonetheless both the
label and the statistical structure of the original inputs.

It is implicit in such arguments that local generalization—in the very proximity of the training
examples—works as expected. And that in particular, for a small enough radius " > 0 in the vicinity
of a given training input x, an x + r satisfying ||r|| < " will get assigned a high probability of the
correct class by the model. This kind of smoothness prior is typically valid for computer vision
problems. In general, imperceptibly tiny perturbations of a given image do not normally change the
underlying class.

Our main result is that for deep neural networks, the smoothness assumption that underlies many
kernel methods does not hold. Specifically, we show that by using a simple optimization procedure,
we are able to find adversarial examples, which are obtained by imperceptibly small perturbations
to a correctly classified input image, so that it is no longer classified correctly.

In some sense, what we describe is a way to traverse the manifold represented by the network in an
efficient way (by optimization) and finding adversarial examples in the input space. The adversarial
examples represent low-probability (high-dimensional) “pockets” in the manifold, which are hard to
efficiently find by simply randomly sampling the input around a given example. Already, a variety
of recent state of the art computer vision models employ input deformations during training for
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(a) Unit sensitive to white flowers. (b) Unit sensitive to postures.

(c) Unit senstive to round, spiky flowers. (d) Unit senstive to round green or yellow
objects.

Figure 3: Experiment performed on ImageNet. Images stimulating single unit most (maximum stimulation in
natural basis direction). Images within each row share many semantic properties.

(a) Direction sensitive to white, spread
flowers.

(b) Direction sensitive to white dogs.

(c) Direction sensitive to spread shapes. (d) Direction sensitive to dogs with brown
heads.

Figure 4: Experiment performed on ImageNet. Images giving rise to maximum activations in a random direc-
tion (maximum stimulation in a random basis). Images within each row share many semantic properties.

model for weakly-supervised localization). Such global analyses are useful in that they can make us
understand better the input-to-output mapping represented by the trained network.

Generally speaking, the output layer unit of a neural network is a highly nonlinear function of its
input. When it is trained with the cross-entropy loss (using the Softmax activation function), it
represents a conditional distribution of the label given the input (and the training set presented so
far). It has been argued [2] that the deep stack of non-linear layers in between the input and the
output unit of a neural network are a way for the model to encode a non-local generalization prior
over the input space. In other words, it is assumed that is possible for the output unit to assign non-
significant (and, presumably, non-epsilon) probabilities to regions of the input space that contain no
training examples in their vicinity. Such regions can represent, for instance, the same objects from
different viewpoints, which are relatively far (in pixel space), but which share nonetheless both the
label and the statistical structure of the original inputs.

It is implicit in such arguments that local generalization—in the very proximity of the training
examples—works as expected. And that in particular, for a small enough radius " > 0 in the vicinity
of a given training input x, an x + r satisfying ||r|| < " will get assigned a high probability of the
correct class by the model. This kind of smoothness prior is typically valid for computer vision
problems. In general, imperceptibly tiny perturbations of a given image do not normally change the
underlying class.

Our main result is that for deep neural networks, the smoothness assumption that underlies many
kernel methods does not hold. Specifically, we show that by using a simple optimization procedure,
we are able to find adversarial examples, which are obtained by imperceptibly small perturbations
to a correctly classified input image, so that it is no longer classified correctly.

In some sense, what we describe is a way to traverse the manifold represented by the network in an
efficient way (by optimization) and finding adversarial examples in the input space. The adversarial
examples represent low-probability (high-dimensional) “pockets” in the manifold, which are hard to
efficiently find by simply randomly sampling the input around a given example. Already, a variety
of recent state of the art computer vision models employ input deformations during training for
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Uninterpretable and counter-intuitive properties of DNN

‣ Hardly perceptible perturbation can cause misclassification of network

‣ These distorted images or adversarial examples generalize fairly well even 
to different models trained by different dataset 

Intriguing Properties of NN (2)

(a) Even columns: adver-
sarial examples for a lin-
ear (FC) classifier (std-
dev=0.06)

(b) Even columns: adver-
sarial examples for a 200-
200-10 sigmoid network
(stddev=0.063)

(c) Randomly distorted
samples by Gaussian noise
with stddev=1. Accuracy:
51%.

Figure 7: Adversarial examples for a randomly chosen subset of MNIST compared with randomly distorted
examples. Odd columns correspond to original images, and even columns correspond to distorted counterparts.
The adversarial examples generated for the specific model have accuracy 0% for the respective model. Note
that while the randomly distorted examples are hardly readable, still they are classified correctly in half of the
cases, while the adversarial examples are never classified correctly.

Model Name Description Training error Test error Av. min. distortion

FC10(10�4) Softmax with � = 10�4 6.7% 7.4% 0.062

FC10(10�2) Softmax with � = 10�2 10% 9.4% 0.1

FC10(1) Softmax with � = 1 21.2% 20% 0.14

FC100-100-10 Sigmoid network � = 10�5, 10�5, 10�6 0% 1.64% 0.058

FC200-200-10 Sigmoid network � = 10�5, 10�5, 10�6 0% 1.54% 0.065

AE400-10 Autoencoder with Softmax � = 10�6 0.57% 1.9% 0.086

Table 1: Tests of the generalization of adversarial instances on MNIST.

FC10(10�4) FC10(10�2) FC10(1) FC100-100-10 FC200-200-10 AE400-10 Av. distortion

FC10(10�4) 100% 11.7% 22.7% 2% 3.9% 2.7% 0.062

FC10(10�2) 87.1% 100% 35.2% 35.9% 27.3% 9.8% 0.1

FC10(1) 71.9% 76.2% 100% 48.1% 47% 34.4% 0.14

FC100-100-10 28.9% 13.7% 21.1% 100% 6.6% 2% 0.058

FC200-200-10 38.2% 14% 23.8% 20.3% 100% 2.7% 0.065

AE400-10 23.4% 16% 24.8% 9.4% 6.6% 100% 0.086

Gaussian noise, stddev=0.1 5.0% 10.1% 18.3% 0% 0% 0.8% 0.1

Gaussian noise, stddev=0.3 15.6% 11.3% 22.7% 5% 4.3% 3.1% 0.3

Table 2: Cross-model generalization of adversarial examples. The columns of the Tables show the error induced
by distorted examples fed to the given model. The last column shows average distortion wrt. original training
set.

x0 images, where n = 784 is the number of image pixels. The pixel intensities are scaled to be in
the range [0, 1].

In our first experiment, we generated a set of adversarial instances for a given network and fed
these examples for each other network to measure the proportion of misclassified instances. The
last column shows the average minimum distortion that was necessary to reach 0% accuracy on the
whole training set. The experimental results are presented in Table 2. The columns of Table 2 show
the error (proportion of misclassified instances) on the so distorted training sets. The last two rows
are given for reference showing the error induced when distorting by the given amounts of Gaussian
noise. Note that even the noise with stddev 0.1 is greater than the stddev of our adversarial noise
for all but one of the models. Figure 7 shows a visualization of the generated adversarial instances
for two of the networks used in this experiment The general conclusion is that adversarial examples
tend to stay hard even for models trained with different hyperparameters. Although the autoencoder
based version seems most resilient to adversarial examples, it is not fully immune either.

Still, this experiment leaves open the question of dependence over the training set. Does the hardness
of the generated examples rely solely on the particular choice of our training set as a sample or does
this effect generalize even to models trained on completely different training sets?
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(a) (b)

Figure 5: Adversarial examples generated for AlexNet [9].(Left) is a correctly predicted sample, (center) dif-
ference between correct image, and image predicted incorrectly magnified by 10x (values shifted by 128 and
clamped), (right) adversarial example. All images in the right column are predicted to be an “ostrich, Struthio
camelus”. Average distortion based on 64 examples is 0.006508. Plase refer to http://goo.gl/huaGPb
for full resolution images. The examples are strictly randomly chosen. There is not any postselection involved.

(a) (b)

Figure 6: Adversarial examples for QuocNet [10]. A binary car classifier was trained on top of the last layer
features without fine-tuning. The randomly chosen examples on the left are recognized correctly as cars, while
the images in the middle are not recognized. The rightmost column is the magnified absolute value of the
difference between the two images.

the original training set all the time. We used weight decay, but no dropout for this network. For
comparison, a network of this size gets to 1.6% errors when regularized by weight decay alone and
can be improved to around 1.3% by using carefully applied dropout. A subtle, but essential detail
is that we only got improvements by generating adversarial examples for each layer outputs which
were used to train all the layers above. The network was trained in an alternating fashion, maintain-
ing and updating a pool of adversarial examples for each layer separately in addition to the original
training set. According to our initial observations, adversarial examples for the higher layers seemed
to be significantly more useful than those on the input or lower layers. In our future work, we plan
to compare these effects in a systematic manner.

For space considerations, we just present results for a representative subset (see Table 1) of the
MNIST experiments we performed. The results presented here are consistent with those on a larger
variety of non-convolutional models. For MNIST, we do not have results for convolutional mod-
els yet, but our first qualitative experiments with AlexNet gives us reason to believe that convolu-
tional networks may behave similarly as well. Each of our models were trained with L-BFGS until
convergence. The first three models are linear classifiers that work on the pixel level with various
weight decay parameters �. All our examples use quadratic weight decay on the connection weights:
lossdecay = �

P
w2

i /k added to the total loss, where k is the number of units in the layer. Three
of our models are simple linear (softmax) classifier without hidden units (FC10(�)). One of them,
FC10(1), is trained with extremely high � = 1 in order to test whether it is still possible to generate
adversarial examples in this extreme setting as well.Two other models are a simple sigmoidal neural
network with two hidden layers and a classifier. The last model, AE400-10, consists of a single layer
sparse autoencoder with sigmoid activations and 400 nodes with a Softmax classifier. This network
has been trained until it got very high quality first layer filters and this layer was not fine-tuned. The
last column measures the minimum average pixel level distortion necessary to reach 0% accuracy

on the training set. The distortion is measure by
qP

(x0
i�xi)2

n between the original x and distorted

6

Ostrich, struthio, camelus

increasing the robustness and convergence speed of the models [9, 13]. These deformations are,
however, statistically inefficient, for a given example: they are highly correlated and are drawn from
the same distribution throughout the entire training of the model. We propose a scheme to make this
process adaptive in a way that exploits the model and its deficiencies in modeling the local space
around the training data.

We make the connection with hard-negative mining explicitly, as it is close in spirit: hard-negative
mining, in computer vision, consists of identifying training set examples (or portions thereof) which
are given low probabilities by the model, but which should be high probability instead, cf. [5]. The
training set distribution is then changed to emphasize such hard negatives and a further round of
model training is performed. As shall be described, the optimization problem proposed in this work
can also be used in a constructive way, similar to the hard-negative mining principle.

4.1 Formal description

We denote by f : Rm �! {1 . . . k} a classifier mapping image pixel value vectors to a discrete
label set. We also assume that f has an associated continuous loss function denoted by lossf :
Rm ⇥ {1 . . . k} �! R+. For a given x 2 Rm image and target label l 2 {1 . . . k}, we aim to solve
the following box-constrained optimization problem:

• Minimize krk2 subject to:
1. f(x+ r) = l
2. x+ r 2 [0, 1]m

The minimizer r might not be unique, but we denote one such x + r for an arbitrarily chosen
minimizer by D(x, l). Informally, x + r is the closest image to x classified as l by f . Obviously,
D(x, f(x)) = f(x), so this task is non-trivial only if f(x) 6= l. In general, the exact computation
of D(x, l) is a hard problem, so we approximate it by using a box-constrained L-BFGS. Concretely,
we find an approximation of D(x, l) by performing line-search to find the minimum c > 0 for which
the minimizer r of the following problem satisfies f(x+ r) = l.

• Minimize c|r|+ lossf (x+ r, l) subject to x+ r 2 [0, 1]m

This penalty function method would yield the exact solution for D(X, l) in the case of convex
losses, however neural networks are non-convex in general, so we end up with an approximation in
this case.

4.2 Experimental results

Our “minimimum distortion” function D has the following intriguing properties which we will sup-
port by informal evidence and quantitative experiments in this section:

1. For all the networks we studied (MNIST, QuocNet [10], AlexNet [9]), for each sam-
ple, we have always managed to generate very close, visually hard to distinguish, ad-
versarial examples that are misclassified by the original network (see figure 5 and
http://goo.gl/huaGPb for examples).

2. Cross model generalization: a relatively large fraction of examples will be misclassified by
networks trained from scratch with different hyper-parameters (number of layers, regular-
ization or initial weights).

3. Cross training-set generalization a relatively large fraction of examples will be misclassi-
fied by networks trained from scratch on a disjoint training set.

The above observations suggest that adversarial examples are somewhat universal and not just the
results of overfitting to a particular model or to the specific selection of the training set. They also
suggest that back-feeding adversarial examples to training might improve generalization of the re-
sulting models. Our preliminary experiments have yielded positive evidence on MNIST to support
this hypothesis as well: We have successfully trained a two layer 100-100-10 non-convolutional neu-
ral network with a test error below 1.2% by keeping a pool of adversarial examples a random subset
of which is continuously replaced by newly generated adversarial examples and which is mixed into
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(Szegedy et al. Intriguing properties of neural networks, ICLR 2014) 
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‣ Early explanations for adversarial examples is highly nonlinearity and overfitting of 
NN (is it wrong?)

‣ Adversarial samples are caused by high-dimensionality of input and models being 
too linear rather than too nonlinear

‣ Linear models lack the capacity to resist adversarial perturbation

‣ Generalization of adversarial examples across different models can be explained as 
the perturbations being highly aligned with the weight vectors of model  

Why Do Adversarial Examples Happen?

(Goodfellow et al. Explaining and Harnessing Adversarial Examples, ICLR 2015)

x̃ = x+ ⌘
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• Shallow softmax regression models are also vulnerable to adversarial examples.

• Training on adversarial examples can regularize the model—however, this was not practical
at the time due to the need for expensive constrained optimization in the inner loop.

These results suggest that classifiers based on modern machine learning techniques, even those
that obtain excellent performance on the test set, are not learning the true underlying concepts that
determine the correct output label. Instead, these algorithms have built a Potemkin village that works
well on naturally occuring data, but is exposed as a fake when one visits points in space that do not
have high probability in the data distribution. This is particularly disappointing because a popular
approach in computer vision is to use convolutional network features as a space where Euclidean
distance approximates perceptual distance. This resemblance is clearly flawed if images that have an
immeasurably small perceptual distance correspond to completely different classes in the network’s
representation.

These results have often been interpreted as being a flaw in deep networks in particular, even though
linear classifiers have the same problem. We regard the knowledge of this flaw as an opportunity to
fix it. Indeed, Gu & Rigazio (2014) and Chalupka et al. (2014) have already begun the first steps
toward designing models that resist adversarial perturbation, though no model has yet succesfully
done so while maintaining state of the art accuracy on clean inputs.

3 THE LINEAR EXPLANATION OF ADVERSARIAL EXAMPLES

We start with explaining the existence of adversarial examples for linear models.

In many problems, the precision of an individual input feature is limited. For example, digital
images often use only 8 bits per pixel so they discard all information below 1/255 of the dynamic
range. Because the precision of the features is limited, it is not rational for the classifier to respond
differently to an input x than to an adversarial input x̃ = x+ ⌘ if every element of the perturbation
⌘ is smaller than the precision of the features. Formally, for problems with well-separated classes,
we expect the classifier to assign the same class to x and x̃ so long as ||⌘||1 < ✏, where ✏ is small
enough to be discarded by the sensor or data storage apparatus associated with our problem.

Consider the dot product between a weight vector w and an adversarial example x̃:

w>x̃ = w>x+w>⌘.

The adversarial perturbation causes the activation to grow by w>⌘.We can maximize this increase
subject to the max norm constraint on ⌘ by assigning ⌘ = sign(w). If w has n dimensions and the
average magnitude of an element of the weight vector is m, then the activation will grow by ✏mn.
Since ||⌘||1 does not grow with the dimensionality of the problem but the change in activation
caused by perturbation by ⌘ can grow linearly with n, then for high dimensional problems, we can
make many infinitesimal changes to the input that add up to one large change to the output. We
can think of this as a sort of “accidental steganography,” where a linear model is forced to attend
exclusively to the signal that aligns most closely with its weights, even if multiple signals are present
and other signals have much greater amplitude.

This explanation shows that a simple linear model can have adversarial examples if its input has suf-
ficient dimensionality. Previous explanations for adversarial examples invoked hypothesized prop-
erties of neural networks, such as their supposed highly non-linear nature. Our hypothesis based
on linearity is simpler, and can also explain why softmax regression is vulnerable to adversarial
examples.

4 LINEAR PERTURBATION OF NON-LINEAR MODELS

The linear view of adversarial examples suggests a fast way of generating them. We hypothesize
that neural networks are too linear to resist linear adversarial perturbation. LSTMs (Hochreiter &
Schmidhuber, 1997), ReLUs (Jarrett et al., 2009; Glorot et al., 2011), and maxout networks (Good-
fellow et al., 2013c) are all intentionally designed to behave in very linear ways, so that they are
easier to optimize. More nonlinear models such as sigmoid networks are carefully tuned to spend
most of their time in the non-saturating, more linear regime for the same reason. This linear behavior
suggests that cheap, analytical perturbations of a linear model should also damage neural networks.
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FGSM: Fast Gradient Sign Method

(Goodfellow et al. Explaining and Harnessing Adversarial Examples, ICLR 2015)

x̃ = x+ ⌘
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‣ Adversarial examples are continually updated given current model

‣ The larger model capacity is required to reduce error on adversarial 
examples

‣ Adversarially trained model shows great robustness to adversarial examples

‣ The weight of model are more localized and interpretable

‣ Adversarial training = Active learning 

Objective of Adversarial Training 

Published as a conference paper at ICLR 2015

Szegedy et al. (2014b) showed that by training on a mixture of adversarial and clean examples, a
neural network could be regularized somewhat. Training on adversarial examples is somewhat dif-
ferent from other data augmentation schemes; usually, one augments the data with transformations
such as translations that are expected to actually occur in the test set. This form of data augmenta-
tion instead uses inputs that are unlikely to occur naturally but that expose flaws in the ways that the
model conceptualizes its decision function. At the time, this procedure was never demonstrated to
improve beyond dropout on a state of the art benchmark. However, this was partially because it was
difficult to experiment extensively with expensive adversarial examples based on L-BFGS.

We found that training with an adversarial objective function based on the fast gradient sign method
was an effective regularizer:

J̃(✓,x, y) = ↵J(✓,x, y) + (1� ↵)J(✓,x+ ✏sign (rxJ(✓,x, y)) .

In all of our experiments, we used ↵ = 0.5. Other values may work better; our initial guess of this
hyperparameter worked well enough that we did not feel the need to explore more. This approach
means that we continually update our supply of adversarial examples, to make them resist the current
version of the model. Using this approach to train a maxout network that was also regularized with
dropout, we were able to reduce the error rate from 0.94% without adversarial training to 0.84%
with adversarial training.

We observed that we were not reaching zero error rate on adversarial examples on the training set.
We fixed this problem by making two changes. First, we made the model larger, using 1600 units per
layer rather than the 240 used by the original maxout network for this problem. Without adversarial
training, this causes the model to overfit slightly, and get an error rate of 1.14% on the test set.
With adversarial training, we found that the validation set error leveled off over time, and made
very slow progress. The original maxout result uses early stopping, and terminates learning after
the validation set error rate has not decreased for 100 epochs. We found that while the validation set
error was very flat, the adversarial validation set error was not. We therefore used early stopping
on the adversarial validation set error. Using this criterion to choose the number of epochs to train
for, we then retrained on all 60,000 examples. Five different training runs using different seeds
for the random number generators used to select minibatches of training examples, initialize model
weights, and generate dropout masks result in four trials that each had an error rate of 0.77% on
the test set and one trial that had an error rate of 0.83%. The average of 0.782% is the best result
reported on the permutation invariant version of MNIST, though statistically indistinguishable from
the result obtained by fine-tuning DBMs with dropout (Srivastava et al., 2014) at 0.79%.

The model also became somewhat resistant to adversarial examples. Recall that without adversarial
training, this same kind of model had an error rate of 89.4% on adversarial examples based on the fast
gradient sign method. With adversarial training, the error rate fell to 17.9%. Adversarial examples
are transferable between the two models but with the adversarially trained model showing greater
robustness. Adversarial examples generated via the original model yield an error rate of 19.6% on
the adversarially trained model, while adversarial examples generated via the new model yield an
error rate of 40.9% on the original model. When the adversarially trained model does misclassify an
adversarial example, its predictions are unfortunately still highly confident. The average confidence
on a misclassified example was 81.4%. We also found that the weights of the learned model changed
significantly, with the weights of the adversarially trained model being significantly more localized
and interpretable (see Fig. 3).

The adversarial training procedure can be seen as minimizing the worst case error when the data is
perturbed by an adversary. That can be interpreted as learning to play an adversarial game, or as
minimizing an upper bound on the expected cost over noisy samples with noise from U(�✏, ✏) added
to the inputs. Adversarial training can also be seen as a form of active learning, where the model
is able to request labels on new points. In this case the human labeler is replaced with a heuristic
labeler that copies labels from nearby points.

We could also regularize the model to be insensitive to changes in its features that are smaller than
the ✏ precision simply by training on all points within the ✏ max norm box, or sampling many points
within this box. This corresponds to adding noise with max norm ✏ during training. However, noise
with zero mean and zero covariance is very inefficient at preventing adversarial examples. The
expected dot product between any reference vector and such a noise vector is zero. This means that
in many cases the noise will have essentially no effect rather than yielding a more difficult input.

5

Adversarial Training

Adversarial
Example

PerturbationRegularizer for 
Robustness

(Goodfellow et al. Explaining and Harnessing Adversarial Examples, ICLR 2015)

Loss for 
training data
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Optimization for Adversarial Attack

Optimization: max
�

L(✓, x+ �, y) s.t. k�kp  ✏
<latexit sha1_base64="31c6EWNJxCfxGVtOs3RUTlGA4ew="></latexit>

Loss Adversarial
Example

True
Label

Keep
Inperceptible

Standard 
training

min
✓

E(x,y)⇠D L(✓, x, y)
<latexit sha1_base64="nWKvdnzh9EApVTggbL3wZKrHzL8="></latexit>

Loss LabelInputModel 
Parameter

Gradient: r✓L(✓, x, y)
<latexit sha1_base64="1n+g4XysLE8vzn9xTmOC9fojLFI=">AAACH3icbVDLSgNBEJyNr/iOevQyGMQIEnajoMegFw8eIhgNZEPonUzMkNnZZaZXDEs+wY/wG7zq2Zt4zdE/cfI4mMSChqKqm+6uIJbCoOsOnMzC4tLySnZ1bX1jc2s7t7N7b6JEM15lkYx0LQDDpVC8igIlr8WaQxhI/hB0r4b+wxPXRkTqDnsxb4TwqERbMEArNXNHvoJAQtPHDkegfgjYYSDTm35hLJ3Q5xPaO27m8m7RHYHOE29C8mSCSjP347ciloRcIZNgTN1zY2ykoFEwyftrfmJ4DKwLj7xuqYKQm0Y6eqhPD63Sou1I21JIR+rfiRRCY3phYDuHB5tZbyj+59UTbF80UqHiBLli40XtRFKM6DAd2hKaM5Q9S4BpYW+lrAMaGNoMp7YEYd9m4s0mME/uS0XvtFi6PcuXLyfpZMk+OSAF4pFzUibXpEKqhJEX8kbeyYfz6nw6X873uDXjTGb2yBScwS8O7aLc</latexit>

r�L(✓, x+ �, y)
<latexit sha1_base64="ZDDkzsNCTZnp2T1hyPisX2Di0Ik=">AAACJnicbVDLSgNBEJz1/Tbq0ctgEBQl7EZBj6IXDx4imChkQ+iddMzg7Owy0yuGJX/hR/gNXvXsTcSb/omTx8FXQUNR1U13V5Qqacn3372x8YnJqemZ2bn5hcWl5cLKas0mmRFYFYlKzFUEFpXUWCVJCq9SgxBHCi+jm5O+f3mLxspEX1A3xUYM11q2pQByUrNQCjVECpphCxUBD2OgjgCVn/W2QuogwS6/2xmau7y73SwU/ZI/AP9LghEpshEqzcJn2EpEFqMmocDaeuCn1MjBkBQKe3NhZjEFcQPXWHdUQ4y2kQ/+6vFNp7R4OzGuNPGB+n0ih9jabhy5zv7d9rfXF//z6hm1Dxu51GlGqMVwUTtTnBLeD4m3pEFBqusICCPdrVx0wIAgF+WPLVHcc5kEvxP4S2rlUrBXKp/vF4+OR+nMsHW2wbZYwA7YETtlFVZlgt2zR/bEnr0H78V79d6GrWPeaGaN/YD38QV3nqWn</latexit>

Goal:

Perturbation InputModel Model parameter

min
�

k�kp s.t. f✓(x+ �) 6= f✓(x)
<latexit sha1_base64="12L/VfrQDnKx2Jkwsxhc2w38uoE=">AAACSHicbVBNaxRBFOxZjcYYzapHL00WIUEYZpKAAS9BLx5XyCaB7WV40/Mm26S7Z9L9JmSZ7N/yR/gPBC8e9OxNckvvxyEfFjQUVfV4ryuvtfKUJD+izqPHK0+erj5be77+4uVG99XrI181TuJAVrpyJzl41MrigBRpPKkdgsk1Hudnn2f+8QU6ryp7SJMaRwZOrSqVBApS1u0Lo2wmCtQEXFwtiLjKai7OGyi4ILyk1scUT8VHXmaCxkiwdfl+kdzmwuL5LX076/aSOJmDPyTpkvTYEv2s+0sUlWwMWpIavB+mSU2jFhwpqXG6JhqPNcgzOMVhoBYM+lE7//mUvwtKwcvKhWeJz9XbEy0Y7ycmD0kDNPb3vZn4P2/YULk/apWtG0IrF4vKRnOq+KxGXiiHkvQkEJBOhVu5HIMDSaHsO1tyMw2dpPcbeEiOduJ0N975utc7+LRsZ5W9ZZtsi6XsAztgX1ifDZhk39hP9pv9ib5Hf6N/0fUi2omWM2/YHXQ6N2xPsps=</latexit>
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Geometry of -Normlp
<latexit sha1_base64="jHJvyDVhTUHaLRCZxsbPW+B7F/c=">AAAB+XicbVC7SgNBFL0bXzHxEbW0GYyCVdiNhZZBG8uI5gFxCbOT2WTIzOwyMxsISz7BVms7sRX8Ab/C0o/Q2smjMIkHLhzOuZd77wlizrRx3U8ns7K6tr6R3czlt7Z3dgt7+3UdJYrQGol4pJoB1pQzSWuGGU6bsaJYBJw2gv7V2G8MqNIskndmGFNf4K5kISPYWOmWt+N2oeiW3AnQMvFmpFg5/n7/GOR/qu3C130nIomg0hCOtW55bmz8FCvDCKej3H2iaYxJH3dpy1KJBdV+Ojl1hE6s0kFhpGxJgybq34kUC62HIrCdApueXvTG4n9eKzHhhZ8yGSeGSjJdFCYcmQiN/0YdpigxfGgJJorZWxHpYYWJsenMbQnEyGbiLSawTOrlkndWKt/YcC5hiiwcwhGcggfnUIFrqEINCHThAR7hyUmdZ+fFeZ22ZpzZzAHMwXn7BQzkmLI=</latexit>

k�kp  ✏
<latexit sha1_base64="J8xbmptfLQCJAzq7mxRa+7T9Pf0=">AAACEnicbVC7TgJBFJ3FF4IP1E6biWhiRXax0JJoY4mJPBKWkNnZC0yYfTgzS0IWEj/Cb7DVysLO0PoDln6E1s4ChYAnucnJOffm3nuckDOpTPPTSK2srq1vpDcz2a3tnd3c3n5VBpGgUKEBD0TdIRI486GimOJQDwUQz+FQc3rXiV/rg5As8O/UIISmRzo+azNKlJZauUN7aLvAFbGHrRDbHO6xDaFkPDHzZsGcAC8Ta0bypZPv13E/+1Nu5b5sN6CRB76inEjZsMxQNWMiFKMcRhk7khAS2iMdaGjqEw9kM578MMKnWnFxOxC6fIUn6t+JmHhSDjxHd3pEdeWil4j/eY1ItS+bMfPDSIFPp4vaEccqwEkg2GUCqOIDTQgVTN+KaZcIQpWObW6L4410JtZiAsukWixY54XirQ7nCk2RRkfoGJ0hC12gErpBZVRBFD2gJ/SMXoxH4814N8bT1pQxmzlAczA+fgFPRqKn</latexit>

k�k1  ✏
<latexit sha1_base64="lD34OJtmHwBAJoBBxG5vilh11SE=">AAACF3icbVC7SgNBFJ31Gd9RSwuHBEEQwq4WWgZtLCOYKGSWMDu5q4Ozs+vMXWGJKf0DG7/BVms7sbVM6Z84SSx8HRg4nHMu986JMiUt+v7Am5icmp6ZLc3NLywuLa+UV9daNs2NgKZIVWrOI25BSQ1NlKjgPDPAk0jBWXR1NPTPbsBYmepTLDIIE36hZSwFRyd1ypvslnVBIWe3HSZ1jAVlCq4pg8xKNUxU/Zo/Av1Lgi9SrVfYzv2gXjQ65Q/WTUWegEahuLXtwM8w7HGDUijoz7PcQsbFFb+AtqOaJ2DD3ugjfbrllC6NU+OeRjpSv0/0eGJtkUQumXC8tL+9ofif184xPgh7Umc5ghbjRXGuKKZ02ArtSgMCVeEIF0a6W6m45IYLdN392BIlfddJ8LuBv6S1Wwv2arsnrpxDMkaJbJAK2SYB2Sd1ckwapEkEuSOP5Ik8ew/ei/fqvY2jE97XzDr5Ae/9E9J2o7U=</latexit>

k�k2  ✏
<latexit sha1_base64="31LRNbT8x6oYU6BEiHyADPQK6Y0=">AAACEnicbVDJSgNBEO1xjXGLetNLkyAIQpiJBz0GvXiMYBbIDKGnpyZp0rPY3SMMk4AfkW/wqmdv4tUfyNE/sbMcTOKDgsd7VVTVc2POpDLNsbG2vrG5tZ3bye/u7R8cFo6OGzJKBIU6jXgkWi6RwFkIdcUUh1YsgAQuh6bbv5v4zWcQkkXho0pjcALSDZnPKFFa6hRO7YHtAVfEHnQq2ObwhG2IJeMTs2SWzSnwKrHmpFQt2pejcTWtdQo/thfRJIBQUU6kbFtmrJyMCMUoh2HeTiTEhPZJF9qahiQA6WTTH4b4XCse9iOhK1R4qv6dyEggZRq4ujMgqieXvYn4n9dOlH/jZCyMEwUhnS3yE45VhCeBYI8JoIqnmhAqmL4V0x4RhCod28IWNxjqTKzlBFZJo1K2rsqVBx3OLZohh85QEV0gC12jKrpHNVRHFL2gV/SG3o2R8WF8Gl+z1jVjPnOCFmB8/wIwu6Ev</latexit>

k�k1  ✏
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 balllp
<latexit sha1_base64="pqU85S+lNnUPLYFbRBi3V2M25C4=">AAAB+XicbVBNSwMxEJ34WetX1aOXYBE8ld0q6LHoxWNF+wHtUrJptg1NskuSFcrSn+BVz97Eq7/Go//EtN2DbX0w8Hhvhpl5YSK4sZ73jdbWNza3tgs7xd29/YPD0tFx08SppqxBYxHrdkgME1yxhuVWsHaiGZGhYK1wdDf1W89MGx6rJztOWCDJQPGIU2Kd9Ch6Sa9U9ireDHiV+DkpQ456r/TT7cc0lUxZKogxHd9LbJARbTkVbFLspoYlhI7IgHUcVUQyE2SzUyf43Cl9HMXalbJ4pv6dyIg0ZixD1ymJHZplbyr+53VSG90EGVdJapmi80VRKrCN8fRv3OeaUSvGjhCqubsV0yHRhFqXzsKWUE5cJv5yAqukWa34l5Xqw1W5dpunU4BTOIML8OEaanAPdWgAhQG8wCu8oQy9ow/0OW9dQ/nMCSwAff0CCs2UbQ==</latexit>
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Target Attacks

min
�

k�kp s.t. f✓(x+ �) = y0
<latexit sha1_base64="DgSA7cunuijp9IiwKhH+syLebhU="></latexit>

Goal:

Optimization problem:

Target Label

Loss w.r.t. true label Loss w.r.t. target label

max
�

{L(✓, x+ �, y)� L(✓, x+ �, y0)} s.t. k�kp  ✏
<latexit sha1_base64="ssY+oVa7lTDeAyvy4n81ZCYu+rc="></latexit>

DNN model
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Targeted Attacks: Example



73

Fast approaches

‣ Fast gradient sign      

‣ Fast gradient     

Iterative approach

Target specific optimization   

� = ✏ sgn(rxL(✓, x, y))
<latexit sha1_base64="aIA66Q8v7rGLWWsGSLG1TN/jGWA="></latexit>

� = ✏

✓
rxL(✓, x, y)

krxL(✓, x, y)k2

◆

<latexit sha1_base64="svNFd2U8JGq8Dn8Qw7H/kmXryEU="></latexit>

max
�

L(✓, x+ �, y)� �k�kp
<latexit sha1_base64="5tEj5L4J++sZ+a1PKxOpJ6l99bc="></latexit>

min
�

L(✓, x+ �, y0) + �k�kp
<latexit sha1_base64="N9NUpAjw2gXhqoeuLyuzgPmIBk8=">AAACPHicbVBNSxxBEO3R+P21MUcvjYuoKMuMCnqUmIOHHAy4KuwsQ01Prdtsd8/QXSNZxv1D/oj8Bq/mFvAWcs05vR+H+FHQ8HjvVVXXSwslHYXhUzA1/WFmdm5+YXFpeWV1rfZx/crlpRXYFLnK7U0KDpU02CRJCm8Ki6BThddp72yoX9+hdTI3l9QvsK3h1siOFECeSmpfYi1NEmeoCHisgboCVPV1sBNTFwn2+fe9sbjP+9u7fI/Hyg/PvPd+zMf3SZHU6mEjHBV/C6IJqLNJXSS1X3GWi1KjIaHAuVYUFtSuwJIUCgeLcemwANGDW2x5aECja1ejawd8yzMZ7+TWP0N8xP7fUYF2rq9T7xze415rQ/I9rVVS56RdSVOUhEaMF3VKxSnnw+h4Ji0KUn0PQFjp/8pFFywI8gG/2JLqgc8kep3AW3B10IgOGwffjuqnnyfpzLMNtsl2WMSO2Sk7ZxesyQR7YI/sif0MfgTPwe/gz9g6FUx6PrEXFfz9B1ltrh0=</latexit>

White-box Attacks

Need to know model   f✓
<latexit sha1_base64="PAn6XdOHZomlIVjg/0fDZmIpnsE=">AAAB73icbVBNS8NAEJ3Ur1q/qh69LBbBU0mqoMeiF48V7Ae0oWy2m3bpZhN3J0IJ/RNePCji1b/jzX/jts1BWx8MPN6bYWZekEhh0HW/ncLa+sbmVnG7tLO7t39QPjxqmTjVjDdZLGPdCajhUijeRIGSdxLNaRRI3g7GtzO//cS1EbF6wEnC/YgOlQgFo2ilTtjv4Ygj7ZcrbtWdg6wSLycVyNHol796g5ilEVfIJDWm67kJ+hnVKJjk01IvNTyhbEyHvGupohE3fja/d0rOrDIgYaxtKSRz9fdERiNjJlFgOyOKI7PszcT/vG6K4bWfCZWkyBVbLApTSTAms+fJQGjOUE4soUwLeythI6opQxtRyYbgLb+8Slq1qndRrd1fVuo3eRxFOIFTOAcPrqAOd9CAJjCQ8Ayv8OY8Oi/Ou/OxaC04+cwx/IHz+QMe2ZAF</latexit>
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Adversarial Examples with Spatial Constraints

An	Optimization	Approach	To	Creating	
Robust	Physical	Adversarial	Examples

13

Perturbation/Noise	Matrix

Lp norm	(L-0,	L-1,	L-2,	…) Loss	Function

Adversarial	Target	Label

min
�

nX

i=1

L(✓, xi + �, y0) + �k�kp
<latexit sha1_base64="g8rsC/tTW463Mg7OoenM9khHixc="></latexit>

Optimizing	Spatial	Constraints	
(Handling	Limits	on	Imperceptibility)

14

Subtle	Poster

Camouflage	Sticker
Mimic	vandalism

“Hide	in	the	human	
psyche”

min
�

nX

i=1

L(✓, xi +Mx · �, y0) + �kMx · �kp
<latexit sha1_base64="5edA6qoMrg6Bw7350FOH4GUnya4="></latexit>

Optimizing	Spatial	Constraints	
(Handling	Limits	on	Imperceptibility)

14

Subtle	Poster

Camouflage	Sticker
Mimic	vandalism

“Hide	in	the	human	
psyche”
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‣ Iterative optimization of perturbations for linear classifiers

DeepFool

(Moosavi-Dezfooli et al., DeepFool: A Simple and Accurate Method to Fool Deep Neural Networks, CVPR 2016)

F

f(x) < 0

f(x) > 0

r⇤(x)

�
(x

0 ; f)

x0

Figure 2: Adversarial examples for a linear binary classifier.

be seen that the robustness of f at point x0, �(x0; f)2, is
equal to the distance from x0 to the separating affine hyper-
plane F = {x : wTx + b = 0} (Figure 2). The minimal
perturbation to change the classifier’s decision corresponds
to the orthogonal projection of x0 onto F . It is given by
the closed-form formula:

r⇤(x0) := argmin krk2 (3)
subject to sign (f(x0 + r)) 6= sign(f(x0))

= �f(x0)

kwk22
w.

Assuming now that f is a general binary differentiable clas-
sifier, we adopt an iterative procedure to estimate the robust-
ness �(x0; f). Specifically, at each iteration, f is linearized
around the current point xi and the minimal perturbation of
the linearized classifier is computed as

argmin
ri

krik2 subject to f(xi) +rf(xi)
Tri = 0. (4)

The perturbation ri at iteration i of the algorithm is com-
puted using the closed form solution in Eq. (3), and the next
iterate xi+1 is updated. The algorithm stops when xi+1

changes sign of the classifier. The DeepFool algorithm for
binary classifiers is summarized in Algorithm 1 and a geo-
metric illustration of the method is shown in Figure 3.

In practice, the above algorithm can often converge to a
point on the zero level set F . In order to reach the other side
of the classification boundary, the final perturbation vector
r̂ is multiplied by a constant 1 + ⌘, with ⌘ ⌧ 1. In our
experiments, we have used ⌘ = 0.02.

3. DeepFool for multiclass classifiers

We now extend the DeepFool method to the multiclass
case. The most common used scheme for multiclass clas-
sifiers is one-vs-all. Hence, we also propose our method

2From now on, we refer to a classifier either by f or its correspond-
ing discrete mapping k̂. Therefore, ⇢adv(k̂) = ⇢adv(f) and �(x; k̂) =
�(x; f).

Algorithm 1 DeepFool for binary classifiers
1: input: Image x, classifier f .
2: output: Perturbation r̂.
3: Initialize x0  x, i 0.
4: while sign(f(xi)) = sign(f(x0)) do

5: ri  � f(xi)
krf(xi)k2

2
rf(xi),

6: xi+1  xi + ri,
7: i i+ 1.
8: end while

9: return r̂ =
P

i ri.

Figure 3: Illustration of Algorithm 1 for n = 2. As-
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based on this classification scheme. In this scheme, the
classifier has c outputs where c is the number of classes.
Therefore, a classifier can be defined as f : Rn ! Rc and
the classification is done by the following mapping:

k̂(x) = argmax
k

fk(x), (5)

where fk(x) is the output of f(x) that corresponds to the
kth class. Similarly to the binary case, we first present the
proposed approach for the linear case and then we general-
ize it to other classifiers.

3.1. Affine multiclass classifier

Let f(x) be an affine classifier, i.e., f(x) = W>x + b
for a given W and b. Since the mapping k̂ is the outcome of
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be seen that the robustness of f at point x0, �(x0; f)2, is
equal to the distance from x0 to the separating affine hyper-
plane F = {x : wTx + b = 0} (Figure 2). The minimal
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ness �(x0; f). Specifically, at each iteration, f is linearized
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puted using the closed form solution in Eq. (3), and the next
iterate xi+1 is updated. The algorithm stops when xi+1

changes sign of the classifier. The DeepFool algorithm for
binary classifiers is summarized in Algorithm 1 and a geo-
metric illustration of the method is shown in Figure 3.
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r̂ is multiplied by a constant 1 + ⌘, with ⌘ ⌧ 1. In our
experiments, we have used ⌘ = 0.02.
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We now extend the DeepFool method to the multiclass
case. The most common used scheme for multiclass clas-
sifiers is one-vs-all. Hence, we also propose our method
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Application to Transfer Learning
Transfer Learning via Fine-Tuning
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‣ Transfer learning: from finetuning to black-box setting

‣ Cross domain and data limited transfer learning

Black-box Adversarial Reprogramming (BAR)

Transfer Learning without Knowing: Reprogramming Black-box Machine Learning Models

Figure 1. Schematic overview of our proposed black-box adversarial reprogramming (BAR) method.

white-box transfer learning methods and hence does not
address Question (ii).

To bridge this gap, we propose a novel approach, named
black-box adversarial reprogramming (BAR), to reprogram
a deployed ML model (e.g., an online image classification
service) for black-box transfer learning. Comparing to the
vanilla (white-box) AR approach, our BAR has the follow-
ing substantial differences and unique challenges:

1. Black-box setting. The vanilla AR method assumes
complete knowledge of the pretrained (target) model,
which precludes the ability of reprogramming a well-
trained but access-limited ML models such as predic-
tion APIs or proprietary softwares that only reveal
model outputs based on queried data inputs.

2. Data scarcity and resource constraint. While data
is crucial to most of ML tasks, in some scenarios such
as medical applications, massive data collection can be
expensive, if not impossible, especially when clinical
trials, expert annotation or privacy-sensitive data are
involved. Consequently, without transfer learning, the
practical limitation of data scarcity may hinder the
strength of complex (large-scaled) ML models such as
deep neural networks (DNNs). Moreover, even with
moderate amount of data, researchers may not have
sufficient computation resources or budgets to train a
DNN as large as a commercial ML model or perform
transfer learning on a large pretrained ML model.

Our proposed BAR tackles these two challenges in a cost-
effective manner, which not only firstly extends white-box
transfer learning to the black-box regime but also “unlocks”

the power of well-trained but access-limited ML models
for transfer learning. In particular, we focus on adversarial
reprogramming of black-box image classification models for
solving medical imaging tasks, as image classification is one
of the most mature AI applications and many medical ML
tasks often entail data scarcity challenges. As will be evident
in the Experiments section (Sec. 4), BAR can successfully
leverage the powerful feature extraction capability of black-
box ImageNet classifiers to achieve high performance in
three medical image classification tasks with limited data.

Figure 1 provides an overview of our proposed BAR method.
To adapt to the black-box setting, we leverage zeroth-order
optimization (Ghadimi & Lan, 2013) on iterative input-
output model responses to enable black-box transfer learn-
ing. We also use multi-label mapping of source-domain and
target-domain labels to enhance the performance of BAR.
We summarize our main contributions as follows.

• We propose BAR, a novel approach to reprogram black-
box ML models for transfer learning. To the best of our
knowledge, BAR is the first work that expands transfer
learning to the black-box setting without knowing or
finetuning the pretrained model.

• We evaluate the performance of BAR using three dif-
ferent medical imaging tasks for transfer learning from
pretrained ImageNet models: (a) autism spectrum dis-
order (ASD) classification; (b) diabetic retinopathy
(DR) detection; and (c) melanoma detection. The re-
sults show that our method consistently outperforms
the state-of-the-art methods and improves the accuracy
of the finetuning approach by a significant margin. We
also explain the success of BAR through a representa-

(Y. Tsai et al., Transfer Learning without Knowing: Reprogramming Black-box Machine Learning 
Models with Scarce Data and Limited Resources, ICML 2020)
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Universal perturbation to
‣ Data sample
‣ Models
‣ Input transformations
‣ Ensemble methods

Universal Adversarial Perturbations
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Abstract

Given a state-of-the-art deep neural network classifier,

we show the existence of a universal (image-agnostic) and

very small perturbation vector that causes natural images

to be misclassified with high probability. We propose a sys-

tematic algorithm for computing universal perturbations,

and show that state-of-the-art deep neural networks are

highly vulnerable to such perturbations, albeit being quasi-

imperceptible to the human eye. We further empirically an-

alyze these universal perturbations and show, in particular,

that they generalize very well across neural networks. The

surprising existence of universal perturbations reveals im-

portant geometric correlations among the high-dimensional

decision boundary of classifiers. It further outlines poten-

tial security breaches with the existence of single directions

in the input space that adversaries can possibly exploit to

break a classifier on most natural images.1

1. Introduction

Can we find a single small image perturbation that fools
a state-of-the-art deep neural network classifier on all nat-
ural images? We show in this paper the existence of such
quasi-imperceptible universal perturbation vectors that lead
to misclassify natural images with high probability. Specif-
ically, by adding such a quasi-imperceptible perturbation
to natural images, the label estimated by the deep neu-
ral network is changed with high probability (see Fig. 1).
Such perturbations are dubbed universal, as they are image-
agnostic. The existence of these perturbations is problem-
atic when the classifier is deployed in real-world (and pos-
sibly hostile) environments, as they can be exploited by ad-
versaries to break the classifier. Indeed, the perturbation

∗The first two authors contributed equally to this work.
†École Polytechnique Fédérale de Lausanne, Switzerland
‡ENS de Lyon, LIP, UMR 5668 ENS Lyon - CNRS - UCBL - INRIA,

Université de Lyon, France
1The code is available for download on https://github.com/

LTS4/universal. A demo can be found on https://youtu.be/
jhOu5yhe0rc.
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Figure 1: When added to a natural image, a universal per-
turbation image causes the image to be misclassified by the
deep neural network with high probability. Left images:

Original natural images. The labels are shown on top of
each arrow. Central image: Universal perturbation. Right
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(Moosavi-Dezfooli et al., Universal Adversarial Perturbations, CVPR 2017)

∆v 1

x1,2,3

R1

R2

v
∆v 2

R3

Figure 2: Schematic representation of the proposed algo-
rithm used to compute universal perturbations. In this il-
lustration, data points x1, x2 and x3 are super-imposed, and
the classification regions Ri (i.e., regions of constant esti-
mated label) are shown in different colors. Our algorithm
proceeds by aggregating sequentially the minimal perturba-
tions sending the current perturbed points xi + v outside of
the corresponding classification region Ri.

To ensure that the constraint ‖v‖p ≤ ξ is satisfied, the up-
dated universal perturbation is further projected on the "p
ball of radius ξ and centered at 0. That is, let Pp,ξ be the
projection operator defined as follows:

Pp,ξ(v) = argmin
v′

‖v − v′‖2 subject to ‖v′‖p ≤ ξ.

Then, our update rule is given by v ← Pp,ξ(v + ∆vi).
Several passes on the data set X are performed to improve
the quality of the universal perturbation. The algorithm is
terminated when the empirical “fooling rate” on the per-
turbed data set Xv := {x1 + v, . . . , xm + v} exceeds the
target threshold 1− δ. That is, we stop the algorithm when-
ever Err(Xv) :=

1
m

∑m
i=1 1k̂(xi+v) "=k̂(xi)

≥ 1− δ. The de-
tailed algorithm is provided in Algorithm 1. Interestingly,
in practice, the number of data points m in X need not be
large to compute a universal perturbation that is valid for the
whole distribution µ. In particular, we can set m to be much
smaller than the number of training points (see Section 3).

The proposed algorithm involves solving at most m in-
stances of the optimization problem in Eq. (1) for each pass.
While this optimization problem is not convex when k̂ is a
standard classifier (e.g., a deep neural network), several ef-
ficient approximate methods have been devised for solving
this problem [20, 12, 8]. We use in the following the ap-
proach in [12] for its efficency. It should further be noticed
that the objective of Algorithm 1 is not to find the smallest
universal perturbation that fools most data points sampled
from the distribution, but rather to find one such perturba-
tion with sufficiently small norm. In particular, different

Algorithm 1 Computation of universal perturbations.

1: input: Data points X , classifier k̂, desired "p norm of
the perturbation ξ, desired accuracy on perturbed sam-
ples δ.

2: output: Universal perturbation vector v.
3: Initialize v ← 0.
4: while Err(Xv) ≤ 1− δ do

5: for each datapoint xi ∈ X do
6: if k̂(xi + v) = k̂(xi) then

7: Compute the minimal perturbation that
sends xi + v to the decision boundary:

∆vi ← argmin
r
‖r‖2 s.t. k̂(xi + v + r) '= k̂(xi).

8: Update the perturbation:

v ← Pp,ξ(v +∆vi).

9: end if

10: end for

11: end while

random shufflings of the set X naturally lead to a diverse
set of universal perturbations v satisfying the required con-
straints. The proposed algorithm can therefore be leveraged
to generate multiple universal perturbations for a deep neu-
ral network (see next section for visual examples).

3. Universal perturbations for deep nets

We now analyze the robustness of state-of-the-art deep
neural network classifiers to universal perturbations using
Algorithm 1.

In a first experiment, we assess the estimated universal
perturbations for different recent deep neural networks on
the ILSVRC 2012 [16] validation set (50,000 images), and
report the fooling ratio, that is the proportion of images that
change labels when perturbed by our universal perturbation.
Results are reported for p = 2 and p = ∞, where we
respectively set ξ = 2000 and ξ = 10. These numerical
values were chosen in order to obtain a perturbation whose
norm is significantly smaller than the image norms, such
that the perturbation is quasi-imperceptible when added to
natural images2. Results are listed in Table 1. Each result
is reported on the set X , which is used to compute the per-
turbation, as well as on the validation set (that is not used
in the process of the computation of the universal pertur-
bation). Observe that for all networks, the universal per-
turbation achieves very high fooling rates on the validation
set. Specifically, the universal perturbations computed for
CaffeNet and VGG-F fool more than 90% of the validation

2For comparison, the average !2 and !∞ norm of an image in the vali-
dation set is respectively ≈ 5× 104 and ≈ 250.
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Zero-query attack

‣ Random perturbation

‣ Difference of means

‣ Transferability based attack

Query based attack

‣ Finite difference gradient 
estimation

‣ Query reduced gradient 
estimation
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‣ Black-box system is also vulnerable to adversarial attack

‣ Gradient estimation from system outputs instead of back-prop

Key Technique

𝑔 ≔
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Attacking AI/ML systems with Limited Access: Our ZOO Attack

• Now you might think your system is robust to adversarial examples….

• Key technique: gradient estimation from system outputs instead of back-prop

IBM Research AI

AI/ML 
system 
𝐹( )

Input

Prediction

ZOO: Zeroth Order Optimization based Black-box Attacks to Deep Neural Networks without Training Substitute Models, P.-Y. Chen*, H. Zhang*, Y. Sharma, J. Yi, and C.-J. Hsieh, AI-Security 2017
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‣ Estimate gradient using function value coordinate by 
coordinate

Zero-Order Optimization

(S. Ghadimi & G. Lan, Stochastic First- and Zeroth-Order Methods for Nonconvex Stochastic 
Programming, SIAM J. Optim. 2013)

Zeroth-Order (ZO) Optimization

SGD (first order) ZO-SGD

Convergence rate 𝐸 ∇𝐹 𝒙 = 𝑂(1/ 𝑇) Convergence rate 𝐸 ∇𝐹 𝒙 = 𝑂( 𝑑/ 𝑇)
[Duchi, et al., T-IT’15]

𝒙 𝒙

Question: Better gradient estimate & ZO 
method with better convergence rate?

T is # of iterations d is # of variables

IBM Research AI

(Chen et al., 2017)
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‣ Finite difference gradient 
estimation

‣ An example of approximate FGSM 
with finite difference  

‣ Similar attack success rate with 
white-box attack

Query Based Attack

Query Based attacks

• Finite differencegradientestimation
• Given d-dimensional vector x, we can make 2d queries to estimate the

gradient as below

• An example of approximate FGS with finite difference

• Query reduced gradientestimation
• Random grouping
• PCA

xadv = x+ ✏ · sign (FDx(`f (x, y), �)) Similarly, we canalso approximate for
logit-based loss by making2d queries

Query Based attacks

• Finite differencegradientestimation
• Given d-dimensional vector x, we can make 2d queries to estimate the

gradient as below

• An example of approximate FGS with finite difference

• Query reduced gradientestimation
• Random grouping
• PCA

xadv = x+ ✏ · sign (FDx(`f (x, y), �)) Similarly, we canalso approximate for
logit-based loss by making2d queries

Effectivenessof varioussingle stepblack-box attacksonMNIST. The y-axis representsthe
variation in adversarial successas increases.✏

Finite Differencesmethodoutperformother black-boxattacksandachievessimilar
attachsuccessratewith thewhite-boxattack

FD-xent andFD-logit are
overlapped
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‣ Scaled random full gradient estimation for efficient query

‣ Autoencoder for dimensional reduction of perturbations

i) g =
∂f(x)
∂x

= b ⋅
f(x + βu) − f(x)

β
⋅ u, u is a unit-lenght vector ii) ḡ =

1
q

q

∑
j=1

gj

AutoZOOM

(Chun-Chen Tu et al., AutoZOOM: Autoencoder-Based Zeroth Order Optimization Method for Attacking Black-Box Neural Networks, AAAI-19)

Figure 2: Illustration of attack dimension reduction through a “decoder” in AutoZOOM for improving query efficiency in
black-box attacks. The decoder has two modes: (i) An autoencoder (AE) trained on unlabeled natural images that are different
from the attacked images and training data; (ii) a simple bilinear image resizer (BiLIN) that is applied channel-wise to extrapolate
low-dimensional feature to the original image dimension (width ⇥ height). In the latter mode, no additional training is required.

such as (Chen et al. 2017; Nitin Bhagoji et al. 2018), are
not query-efficient since they exploit coordinate-wise gra-
dient estimation and value update, which inevitably incurs
an excessive number of model queries and may give a false
sense of model robustness due to inefficient query designs.
In this paper, we propose to tackle the preceding problem
by using AutoZOOM, an Autoencoder-based Zeroth Order
Optimization Method. AutoZOOM has two novel building
blocks: (i) a new and adaptive random gradient estimation
strategy to balance the query counts and distortion when
crafting adversarial examples, and (ii) an autoencoder that
is either trained offline on other unlabeled data, or based on
a simple bilinear resizing operation, in order to accelerate
black-box attacks. As illustrated in Figure 2, AutoZOOM
utilizes a “decoder” to craft a high-dimensional adversarial
perturbation from the (learned) low-dimensional latent-space
representation, and its query efficiency can be well explained
by the dimension-dependent convergence rate in gradient-
free optimization.
Contributions. We summarize our main contributions and
new insights on adversarial robustness as follows:

1. We propose AutoZOOM, a novel query-efficient black-box
attack framework for generating adversarial examples. Au-
toZOOM features an adaptive random gradient estimation
strategy and dimension reduction techniques (either an
offline trained autoencoder or a bilinear resizer) to reduce
attack query counts while maintaining attack effectiveness
and visual similarity. To the best of our knowledge, Au-
toZOOM is the first black-box attack using random full
gradient estimation and data-driven acceleration.

2. We use the convergence rate of zeroth-order optimiza-
tion to motivate the query efficiency of AutoZOOM and
provide an error analysis of the new gradient estimator
in AutoZOOM to the true gradient for characterizing the
trade-offs between estimation error and query counts.

3. When applied to a state-of-the-art black-box attack pro-
posed in (Chen et al. 2017), AutoZOOM attains a similar
attack success rate while achieving a significant reduction
(at least 93%) in the mean query counts required to at-
tack the DNN image classifiers for MNIST, CIFAR-10
and ImageNet. It can also fine-tune the distortion in the

post-success stage by performing finer gradient estimation.

4. In the experiments, we also find that AutoZOOM with a
simple bilinear resizer as the decoder (AutoZOOM-BiLIN)
can attain noticeable query efficiency, despite that it is still
worse than AutoZOOM with an offline trained autoen-
coder (AutoZOOM-AE). However, AutoZOOM-BiLIN is
easier to be mounted as no additional training is required.
The results also suggest an interesting finding that while
learning effective low-dimensional representations of legit-
imate images is still a challenging task, black-box attacks
using significantly less degree of freedoms (i.e., reduced
dimensions) are certainly plausible.

2 Related Work
Gradient-based adversarial attacks on DNNs fall within the
white-box setting, since acquiring the gradient with respect
to the input requires knowing the weights of the target DNN.
As a first attempt towards black-box attacks, the authors in
(Papernot et al. 2017) proposed to train a substitute model
using iterative model queries, performing white-box attacks
on the substitute model, and implementing transfer attacks to
the target model (Papernot, McDaniel, and Goodfellow 2016;
Liu et al. 2017). However, its attack performance can be
severely degraded due to poor attack transferability (Su et
al. 2018). Although ZOO achieves a similar attack success
rate and comparable visual quality as many white-box at-
tack methods (Chen et al. 2017), its coordinate-wise gradient
estimation requires excessive target model evaluations and
is hence not query-efficient. The same gradient estimation
technique is also used in (Nitin Bhagoji et al. 2018).

Beyond optimization-based approaches, the authors in
(Ilyas et al. 2018) proposed to use a natural evolution strat-
egy (NES) to enhance query efficiency. Although there is a
vector-wise gradient estimation step in the NES attack, we
treat it as a parallel work since its natural evolutionary step
is out of the scope of black-box attacks using zeroth-order
gradient descent. We also note that different from NES, our
AutoZOOM framework uses a theory-driven query-efficient
random-vector based gradient estimation strategy. In addition,
AutoZOOM could be applied to further improve the query
efficiency of NES, since NES does not take into account the
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Abstract
Recent studies have shown that adversarial examples in state-
of-the-art image classifiers trained by deep neural networks
(DNN) can be easily generated when the target model is trans-
parent to an attacker, known as the white-box setting. However,
when attacking a deployed machine learning service, one can
only acquire the input-output correspondences of the target
model; this is the so-called black-box attack setting. The major
drawback of existing black-box attacks is the need for exces-
sive model queries, which may give a false sense of model
robustness due to inefficient query designs. To bridge this gap,
we propose a generic framework for query-efficient black-
box attacks. Our framework, AutoZOOM, which is short for
Autoencoder-based Zeroth Order Optimization Method, has
two novel building blocks towards efficient black-box attacks:
(i) an adaptive random gradient estimation strategy to balance
query counts and distortion, and (ii) an autoencoder that is
either trained offline with unlabeled data or a bilinear resizing
operation for attack acceleration. Experimental results suggest
that, by applying AutoZOOM to a state-of-the-art black-box
attack (ZOO), a significant reduction in model queries can be
achieved without sacrificing the attack success rate and the
visual quality of the resulting adversarial examples. In particu-
lar, when compared to the standard ZOO method, AutoZOOM
can consistently reduce the mean query counts in finding suc-
cessful adversarial examples (or reaching the same distortion
level) by at least 93% on MNIST, CIFAR-10 and ImageNet
datasets, leading to novel insights on adversarial robustness.

1 Introduction
In recent years, “machine learning as a service” has offered
the world an effortless access to powerful machine learning
tools for a wide variety of tasks. For example, commercially
available services such as Google Cloud Vision API and Clar-
ifai.com provide well-trained image classifiers to the public.
One is able to upload and obtain the class prediction results
for images at hand at a low price. However, the existing and
emerging machine learning platforms and their low model-
access costs raise ever-increasing security concerns, as they

⇤equal contribution
Copyright c� 2019, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Figure 1: AutoZOOM significantly reduces the number of
queries required to generate a successful adversarial Bagel
image from the black-box Inception-v3 model.

also offer an ideal environment for testing malicious attempts.
Even worse, the risks can be amplified when these services
are used to build derived products such that the inherent
security vulnerability could be leveraged by attackers.

In many computer vision tasks, DNN models achieve the
state-of-the-art prediction accuracy and hence are widely de-
ployed in modern machine learning services. Nonetheless,
recent studies have highlighted DNNs’ vulnerability to ad-
versarial perturbations. In the white-box setting in which the
target model is entirely transparent to an attacker, visually
imperceptible adversarial images can be easily crafted to
fool a target DNN model towards misclassification by lever-
aging the input gradient information (Szegedy et al. 2014;
Goodfellow, Shlens, and Szegedy 2015). However, in the
black-box setting in which the parameters of the deployed
model are hidden and one can only observe the input-output
correspondences of a queried example, crafting adversarial
examples requires a gradient-free (zeroth order) optimization
approach to gather necessary attack information. Figure 1
displays a prediction-evasive adversarial example crafted via
iterative model queries from a black-box DNN (the Inception-
v3 model (Szegedy et al. 2016)) trained on ImageNet.

Albeit achieving remarkable attack effectiveness by the
use of gradient estimation, current black-box attack methods,
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Summary of Attack Methods
White-Box

Black-Box

Evasion Attack

Poisoning Attack

ZO-SVRG [Liu et. al. NeurIPS 2018] 
ZO-NES [Ilyas et. al. ICML 2018]

AutoZoom [Chen et al. AAAI 2019]
ZO-signSGD [Liu et. al. ICLR 2019]

ZO-Natural Gradient Descent [Zhao et. al. AAAI 2019]
ZO-ADMM [Zhao et. al. ICCL 2019] 

ZO-ADAM [Chen et. al. NeurIPS 2019] 
ZO hard-label attack [Cheng et. al. ICLR 2019] 

Sign-OPT [Cheng et. al. ICLR 2020]
Square Attack (Andriushchenko et al., 2020) 

Auto-PGD (Croce and Hein, 2020)
Wasserstein Attack (Wong et al., 2020)

Targeted Universal Adversarial Perturbations (Hirano 
and Takemoto, 2019)

Projected Gradient Descent (PGD) (Madry et al., 2017)
Elastic Net (Chen et al., 2017)

Universal Perturbation (Moosavi-Dezfooli et al. 2016)
Feature Adversaries (Sabour et al. 2016)

DeepFool [Moosavi-Dezfooli et al., CVPR 2016]
L-BFGS [Szegedy et al. ICLR 2014] 

FGSM [Goodfellow et al. ICLR 2015] 

Adversarial Backdoor 
Embedding (Tan and 
Shokri, 2019)


Backdoor Attack (Gu, et. 
al., 2017)


Poisoning Attack on 
Support Vector Machines 
(SVM) (Biggio et al., 
2013)


Clean Label Feature 
Collision Attack (Shafahi, 
Huang et. al., 2018)

https://arxiv.org/abs/1905.13409
https://arxiv.org/abs/1905.13409
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‣  https://github.com/bethgelab/foolbox

‣  https://github.com/IBM/adversarial-robustness-toolbox

‣  https://github.com/tensorflow/cleverhans

‣ https://github.com/Trusted-AI/adversarial-robustness-toolbox/
wiki/ART-Attacks

Software of Attacks

Ian Goodfellow

https://github.com/bethgelab/foolbox
https://github.com/IBM/adversarial-robustness-toolbox
https://github.com/tensorflow/cleverhans
https://github.com/Trusted-AI/adversarial-robustness-toolbox/wiki/ART-Attacks
https://github.com/Trusted-AI/adversarial-robustness-toolbox/wiki/ART-Attacks
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‣ Cannot be defensed by weight regularization, dropout and 
model ensemble

‣ Two types

‣ Passive defense: Find adversarial examples without 
modifying the model, special case of Anomaly Detection

‣ Proactive defense: Training a model that is robust to 
adversarial examples

Adversarial Defense
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Passive Defense
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‣ Goal: Detect adversarial examples 

‣ Feature Squeezer: coalesces similar samples into a single one

Feature Squeezing

(Xu et al. NDSS 2018)  
Feature Squeezing: Detecting Adversarial Examples in Deep Neural Networks
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‣ Approach

‣ Hypothesis

‣ Feature squeezing barely change legitimate input

‣ Destruct adversarial perturbations

Feature Squeezing
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‣ Randomization 

Passive Defense
Randomization at Inference Phase

https://arxiv.org/abs/1711.01991
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‣ Motivation: Unnecessary features in DNNs make model vulnerable

‣ Idea: Insert a mask layer in DNN model to remove unnecessary 
features

DeepCloak: Masking DNN

(Gao et al. DeepCloak: Masking Deep Neural Network Models for Robustness Against 
Adversarial Samples, ICLR 2017 workshop)

DeepCloak:	Masking	Deep	Neural	Network	Models	for	
Robustness	Against	Adversarial	Samples	

Ji	Gao,	Beilun	Wang,	Zeming	Lin,	Weilin	Xu,	Yanjun	Qi	
Department	of	Computer	Science,	University	of	Virginia		 

• Unnecessary	features	in	the	deep	neural	
networks	make	the	model	vulnerable.	
• Defend	adversarial	samples	by	removing	
unnecessary	features.	
• An	efBicient	approach	to	remove	unnecessary	
features	without	retraining	the	model.	

Method:	
	

• Adversarial	samples:	deliberately	generated	samples	to	fool	DNN	
classiBiers.		
• An	adversarial	sample	x^′	can	be	deBined	as:
x↑′ =x+Δx, |Δx|<ϵ	

	F(x)≠F( x↑′ )	
• An	adversarial	sample	must	be	similar	to	its	seed	sample.		
• Adversarial	samples	can	greatly	reduce	the	effectiveness	of	deep	
learning	models.		
• A	Recent	study	[1]	shows	that	extra	unnecessary	features	extracted	
by	the	machine	classiBier	are	a	vulnerability	to	adversarial	samples.		

Truth,	e.g.,		
by	human	eye	

Example	of	the	vulnerability:	

Experiment	result:	
	Key:	Insert	a	mask	layer	in	a	DNN	model	

right	before	the	linear	layer	handling	
classiBication.	

No	retraining	needed!	

On	Res-net152:	
	
	
	
	
	
	
	
	
	
	
Get	10%	increase	with	masking	1%	nodes!	

Machine	Learning	model	
(Extracted	an	extra	feature)	

To	use	the	mask:	

The	algorithm	to	learn	the	mask:	

[1]	Wang	Beilun,	Ji	Gao,	and	Yanjun	Qi.	"A	
Theoretical	Framework	for	Robustness	of	(Deep)	
ClassiSiers	Under	Adversarial	Noise."	arXiv:
1612.00334	(2016).	
[2]	Gao,	Ji,	Beilun	Wang,	and	Yanjun	Qi.	"DeepMask:	
Masking	DNN	Models	for	robustness	against	
adversarial	samples."	arXiv	preprint	arXiv:
1702.06763	(2017).	
	

	
	

Adversarial	samples:	
Motivation:	

We’ve	renamed	our	paper	from	
DeepMask	to	DeepCloak.	

Summary:	

Model:	(())=*(+()))	

Reference:	

Next:	On	other	layers.	
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Proactive Defense: Adversarial Training

Adversarial Training and Robustness for Multiple Perturbations

Adversarial training

Szegedy et al., 2014 
Madry et al., 2017

1. Choose a set of perturbations: e.g., noise of small ℓ∞ norm:

2. For each example          , find an adversarial example:

3. Train the model on  

4. Repeat until convergence

(Goodfellow 2016)

Training on Adversarial Examples
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Adversarial Machine Learning
Traditional ML: 

optimization
Adversarial ML:

game theory

Minimum Equilibrium

One player,
one cost

More than one player,
more than one cost



‣ Standard training

‣ Adversarial examples

‣ Adversarial training as a minimax problem
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Standard vs. Adversarial Training
min
✓

E(x,y)⇠D L(✓, x, y)
<latexit sha1_base64="nWKvdnzh9EApVTggbL3wZKrHzL8="></latexit>

Loss LabelInputModel 
Parameter

max
�

L(✓, x+ �, y) s.t. k�kp  ✏
<latexit sha1_base64="31c6EWNJxCfxGVtOs3RUTlGA4ew="></latexit>

Loss Adversarial
Example

True
Label

Keep
Inperceptible

Optimize Attack

min
✓

E(x,y)⇠D


L(✓, x, y) + max

�
L(✓, x+ �, y)

�

<latexit sha1_base64="kNzSohNsKsYPbw6zb52PBj3BQtk="></latexit>

Optimize Defense



‣ Adversarial training as a minimax problem

‣ Be simplified as 
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Adversarial Training

Inner MaximizationOuter Minimization

min
✓

E(x,y)⇠D


max

�
L(✓, x+ �, y)

�
s.t. k�kp  ✏

<latexit sha1_base64="O6suxlOFtxfgGYjzqoC+Nh+znLc=">AAACknicbVFNb9QwEHVCgbZ8LR83LhYr0CJWaVKQQHAptEgceigS21ZaR5HjTHat2klqT9Cu0vyR/jOO/BOczQrRlpEsPb1582Y8k1ZKWgzDX55/a+P2nbubW9v37j94+Gjw+MmxLWsjYCJKVZrTlFtQsoAJSlRwWhngOlVwkp7td/mTn2CsLIsfuKwg1nxWyFwKjo5KBpdMyyJhOAfklGmO8zRtvrZJM1qMl6+ZlXpFCq6ag7al7BNlCnKcdtpF0rAMFPL2r+awHfVe48WbPjemzsbI2Rxjys5rnlGGsMDGBhi0nd1Fr2MXSdV5n1MGlZWqG24YBuEq6E0QrcGQrOMoGfxmWSlqDQUKxa2dRmGFccMNSqGg3Wa1hYqLMz6DqYMF12DjZrXDlr50TEbz0rhXIF2x/1Y0XFu71KlTdp+113Md+b/ctMb8Q9zIoqoRCtE3ymtFsaTdQWgmDQhUSwe4MNLNSsWcGy7Qne1Kl1S3bifR9Q3cBMe7QfQ22P3+brj3Zb2dTfKcvCAjEpH3ZI98I0dkQoRHvFfejhf6z/yP/md/v5f63rrmKbkS/uEfrcfJ/w==</latexit>

Optimize AttackOptimize Defense

min
✓

E(x,y)⇠D


L(✓, x, y) + max

�
L(✓, x+ �, y)

�
s.t. k�kp  ✏

<latexit sha1_base64="cOhyDbx+fbbZuuoHYO4bG2g2JTk="></latexit>

Active Learning or Data Augmentation or Regularization 
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‣ Local search (lower bound 
on objective)

‣ Combinatorial optimization 
(exactly solve objective)

‣ Convex relaxation (upper 
bound on objective)

Adversarial Training

max
�

L(✓, x+ �, y) s.t. k�kp  ✏
<latexit sha1_base64="31c6EWNJxCfxGVtOs3RUTlGA4ew="></latexit>

min
✓

E(x,y)⇠D L(✓, x+ �0, y)
<latexit sha1_base64="cnEpSj/JgvzCu/mHkLbuoAQRbYg="></latexit>

Inner maximization Outer maximization

‣ Adversarial training

‣ Provably rousting training 
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‣ Optimization during training more difficult and models need to 
be larger
‣ More training data might be required

‣ Might need to lose on “standard” measures of performance

Adversarial Robustness is Not Free

Adversarial Robustness is Not Free
→ Optimization during training more difficult

and models need to be larger

+"

−"

→ More training data might be required
[Schmidt Santurkar Tsipras Talwar M 2018]

→ Might need to lose on “standard” measures of performance
[Tsipras Santurkar Engstrom Turner M 2018] (Also see: [Bubeck Price Razenshteyn 2018])

Adversarial Robustness is Not Free
→ Optimization during training more difficult

and models need to be larger

+"

−"

→ More training data might be required
[Schmidt Santurkar Tsipras Talwar M 2018]

→ Might need to lose on “standard” measures of performance
[Tsipras Santurkar Engstrom Turner M 2018] (Also see: [Bubeck Price Razenshteyn 2018])

State Of The Art in     -Robustness
Robust optimization as in [Madry, Makelov, Schmidt, Tsipras, Vladu, 2017]:

`1

(Schmidt et al., Adversarially Robust Generalization Requires More Data, NeurIPS 2018)

(Tsipras et al. 2018)
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But There Are (Unexpected) Benefits

(Tsipras et al. Robustness may be at odds with accuracy, NeurIPS 2018)

Loss gradient w.r.t. input

‣ The representation learned by robust model is more 
interpretable

‣ Align better to human perception 
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Taxonomy of Adversarial ML
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Game-based approach

‣ Specify a set of players (attacks and defenses)

‣ Benchmark the performance against each attacker-defender 
pair

‣ No guarantee on unseen threats and future attacks

Verification-based approach

‣ Attack-independent: does not use attacks for evaluation

‣ Can provide robustness certificate: e.g., no attacks can alter 
the decision of the ML model if the attack strength is limited

‣ Optimal verification is computationally impractical for large 
DNN

How to Evaluate Adversarial Robustness?

Zhang et al., Efficient Neural Network Robustness Certification with General Activation Functions, NIPS 2018 
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Verification: Lower Bounds on Robustness

Verification: lower bounds on robustness

IBM Research AI

Decision boundary

Other Decision boundaries

Decision boundary

Ostrich label

Vacuum Cleaner
label Certified robustness 

Lower bound on perturbation so 
that any perturbations within 
green region cannot cause 
misclassification

Shoe Shop
label

Amount of 
Perturbation

0

Shoe Shop Attack

Maximum Safe 
Perturbation

Lower 
Bound

∆
∆

Vacuum Cleaner Attack



Efficient certified bound with activation bounds

Input

Trained CNN

Image

±𝜀

Perturbation 
Size 𝜀

Propagate 
Bounds

Check if 
robust

𝑙
> 𝑢

[ 𝑙 , 𝒖ퟏ ]
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[ 𝒍ퟑ, 𝑢 ]

[ 𝑙 , 𝑢 ]
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𝑥
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𝑙 > 𝑢
IBM Research AI
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Robustness Certificate: Given a data input and a model, the top-1 
prediction of the perturbed input will not be altered if the perturbation 
(e.g. 𝐿𝑝 norm ball) is smaller than 𝜀𝑐𝑒𝑟𝑡𝑖𝑓𝑖𝑒𝑑 

Efficient Certified Bound with Activation Bounds
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Timeline of Robustness Certification

Robustness Estimation Robustness Certification

AAAI ‘19
CNN-Cert

POPL ‘19
DeepPoly (Singh etal)DeepZ (Singh etal),  Neurify (Wang etal)

NeurIPS ‘18
other teams 

MIT-IBM 
teams 

ICLR ‘18
CLEVER (Weng etal)

CNN General
Activation

https://arxiv.org/abs/1801.10578

MLP ReLU

ICML ‘18
Fast-Lin (Weng etal)

https://arxiv.org/abs/1804.09699

MLP General
Activation

NeurIPS ‘18
CROWN (Zhang etal)

https://arxiv.org/abs/1811.00866

Overview

CNN General
Activation

https://arxiv.org/abs/1811.12395

IBM Research AI
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‣ How to improve the state-of-the-art adversarial training methods

‣ Adversarial training is effective, but not scalable and efficient

‣ Tradeoff between accuracy and robustness

‣ Understand the nature of vulnerability of DNNs

‣ How to evaluate and certificate model robustness

‣ Robustness to adaptive adversary, i.e. attack-agnostic defense

‣ Need for human-like machine perception and understanding

Challenges


