

Tensor Network Representation for Machine Learning - Recent Advances and Perspectives

Qibin ZHAO

Tensor Learning Unit RIKEN AIP

> AIP Symposium (Mar. 19, 2019)

Tensor Learning Unit - Members

Postdoctoral Researchers (2)

- Ming Hou, Chao Li
- Part-timer (2)
- Longhao Yuan (PhD student), Xuyang Zhao (PhD student)
 Interns (4)
- Canada, Japan, China
- Visitors (9)
- Andrzej Cichocki, Toshihisa Tanaka, Jianting Cao
- Guillaume Rabusseau, Justin Dauwels, Danilo Mandic, Brahim Chibdraa, Cesar F. Caiafa, Jordi Sole Casals

Neural Nets

Background and Problems

Kernel learning

- $f(\mathbf{x}) = W \cdot \Phi(\mathbf{x})$
- Problems become easier when mapping to higher dimensional space.
- Curse of dimensionality, grows exponentially
- Weights can be exponentially big
- "kernelization" scales quadratically with training set size. In the era of big data, this issue is cited as one reason why neural nets have overtaken kernel methods.

$$W = \sum_{j} \alpha_{j} \Phi(x_{j})$$

Perfect Problem for Tensor Networks to solve

Kernel Learning

Neural Networks

- Weight matrix is huge but highly redundant.
- Low-rank compression: limited compression rate
- Computational inefficient due to huge parameters
- Not applicable for small devices

Neural Nets

Multi-modal deep learning, multi-task deep learning

Tensor Networks is a natural tool to solve these problems

$$f(\mathbf{x}) = \Phi_2\Big(M_2\Phi_1\big(M_1\mathbf{x}\big)\Big)$$

Neural Network (NN) vs. Tensor Network (TN)

Similarity

 Assembling simple units (neurons or tensors) into complicated functions

Difference

- Decision functions in ML vs. wavefunctions in quantum mechanics
- Nonlinear in NN vs. linear in TN
- NN do non-linear things to low-dimensional space vs. TN do linear things in high-dimensional space

What Are Tensor Networks (TNs) ?

- A powerful tool to describe strongly entangled quantum many-body systems in physics
- Decompose a high-order tensor into a collection of loworder tensors connected according to a network pattern
- Tensor network diagram

TT/MPS Representation and Properties

TT: tensor train decomposition; MPS: matrix product state

TNs for Weight Compression & Kernel Learning

 $\begin{bmatrix} \cos\left(\frac{\pi}{2}x_j\right), \sin\left(\frac{\pi}{2}x_j\right) \end{bmatrix} \quad x_j \in [0,1] \\ \mathbf{x} = \begin{bmatrix} x_1, x_2, x_3, \dots, \\ x_n \end{bmatrix} \begin{bmatrix} x_1, x_2, x_3, \dots \\ x_n \end{bmatrix}$

 2^N

Space

Nonlinear mapping by tensor product (Hilbert space)

$$\Phi(\mathbf{x}) = \begin{bmatrix} 1\\ x_j \end{bmatrix} \quad \Phi(\mathbf{x}) = \begin{bmatrix} s_1 & s_2 & s_3 & s_4 & s_5 & s_6 \\ \varphi_{x_j}^{s_1} & \varphi_{y_j}^{s_1} \end{bmatrix} \stackrel{s_1}{\varphi_{y_j}^{s_2}} \quad \Phi_{\varphi_{y_j}^{s_3}} \stackrel{s_2}{\varphi_{y_j}^{s_3}} \stackrel{s_3}{\varphi_{y_j}^{s_4}} \stackrel{s_4}{\varphi_{y_j}^{s_5}} \stackrel{s_6}{\varphi_{y_j}^{s_6}} \stackrel{s_6}{$$

Decision function - W is an Nth-order tensor

$$f(\mathbf{x}) = W \cdot \Phi(\mathbf{x}) = \bigcup_{\mathbf{v} \in \mathbf{V}_T \cup \mathbf{v} \in \mathbf{V}_T \cup \mathbf{v}} \bigcup_{\mathbf{v} \in \mathbf{V}_T \cup \mathbf{v}} \bigcup_{\mathbf{v} \in \mathbf{v}} \Phi(\mathbf{x}) \bigcup_{N_T \in \mathbf{v}} W$$

► TT representation of weight parameter m = $\approx (M_{s_1}M_{s_2}\cdots M_{s_N})\Phi^{s_1s_2\cdots s_N}(\mathbf{x})^{[A. Novikov, NIPS 2015]}$

8

TNs for Weight Compression & Kernel Learning

• Optimization algorithm scaling: $O(NN_Tm^3)$

[E. Stoudenmire, NIPS 2016]

m: TT rank, N_T : Sample size

- Without "kernel trick", avoiding N_T^2 scaling problem
- Without deep layers transformation
- Feature sharing for multi-class function

$$f^{\ell}(\mathbf{x}) = W^{\ell} \cdot \Phi(\mathbf{x})$$

l

ns **o & da paizos stibile**irl**a** bels

 $f^{\ell}(\mathbf{x}) = \mathbf{n}$

Theoretical Analysis of ConvNets

Fundamental theoretical questions:

- Are deep networks efficient w.r.t. shallow one for ConvNets?
- What kind of func can different network arch represent?
- What is the inductive bias of conv/pool window geometry?
- Do overlapping operations introduce efficiency?
- Can connectivity scheme be justified in terms of efficiency?

Relations Between TNs and DNNs

Equivalence of Restricted Boltzmann Machines and Tensor Networks

[Chen et al, Physical Review B, 2018]

[Carleo et al, Science, 2017]

Equivalence of Deep Convolutional Network and Hierarchical Tucker

Recurrent Neural Networks and Tensor Train [Khrulkov, ICLR 2018]

Powerful tools to study theory behind DNN

Tensor Networks for Large-Scale Optimization Problems

- Fast ALS/DMRG algorithm
- Applicable to large-scale
 SVD/PCA/CCA and etc

- Study the fundamental principle of tensor networks
- Investigate tensor networks for data representation
- Investigate tensor networks for model representation
- Explore the potential applications of tensor methods

Fundamental Tensor Network Model

- TT representation
- Powerful but still some limitations
- TT-ranks of middle cores are large

Tensor ring representation

- Generalized TT without constraints on boundary cores
- Sum of TT with shared core tensors
- Efficient computation for multilinear operations
- Highly expressive model

$$x_{i_1,i_2,\ldots,i_N} = \operatorname{tr} (\mathbf{G}_{i_1}^{(1)} \ \mathbf{G}_{i_2}^{(2)} \ \cdots \ \mathbf{G}_{i_N}^{(N)})$$

[Zhao et al, ICLR workshop 2018, ICASSP 2019]

Tensor Networks for Data Representation

- Real data is often high-dimensional
- Recommender system (user x item x time)
- Gene expression, remote sensing, fMRI
- Real data is often incomplete

- Low-rank approximation via convex optimization (high computation cost)
- Decomposition based approach (model selection problem)
- How much structure information can be used?

Tensor Networks for Data Imputation

Tensor completion based on TT/TR decomposition

TT/TR decomposition

From Tensorization to Linear Transformation

In the simplest case, the completion problem can be solved by the following optimization problem:

$$\min_{\mathbf{X}\in\mathbb{R}^{m_1\times m_2}} \| \underbrace{\mathcal{Q}}(\mathbf{X}) \|_* \quad s.t. \| \mathcal{P}_{\Omega}(\mathbf{X}) - \mathcal{P}_{\Omega}(\mathbf{Y}) \|_F \leq \delta,$$

Linear transformation
[Chao et al, CVPR'19]

With mild conditions, the solution of the above problem obeys

$$\begin{split} \|\hat{\mathbf{M}} - \mathbf{M}_0\|_F & \hat{\mathbf{M}} - \mathbf{Estimation} \\ &\leq 2\delta \cdot \frac{cond(\mathcal{Q})}{1 - \|\mathbf{R}_{\mathbf{A}}\|_2} \sqrt{\frac{\min\{n_1, n_2\}(p + \|[\mathcal{Q}]_{\langle 2 \rangle}\|_2^2)}{p}}{p}} \cdot \frac{\hat{\mathbf{M}} - \mathsf{Estimation}}{cond(\cdot) - \mathsf{Ground truth}} \\ & cond(\cdot) - \mathsf{Condition number} \\ & \mathbf{R}_{\mathbf{A}} - \mathsf{A} \text{ matrix related to dual certificate} \end{split}$$

Beyond Unfolding: Reshuffling Operation

Fig. Difference between tensor unfolding and reshuffling.

Reshuffled Tensor Decomposition

Image steganography is to hide a secret image into cover image

Tensor Networks for Model Representation

Deep Multi-task Learning

- Cannot handle data from multiple sources/modalities
- Cannot deal with

heterogeneous network for individual task

 Lack flexibility in knowledgesharing mechanism

Tensor Ring Multi-task Learning

Al Support for Epileptic Diagnosis

Challenging problems

- Need special doctors, only about 600 eligible doctors in Japan.
- Need several weeks high-quality iEEG data.
- Time-consuming by several doctors' visual judgment.
- Focal detection is not reliable.

Al Support for Epileptic Diagnosis

Mission: Automatic localization of epileptic focal from iEEG signals as a support technology for doctors

High accuracy

Entropies of different frequency bands for feature extraction and CNN for classification

End to end model

Discovery of iEEG focal without handcraft feature extraction

Less labels

Only need a few labelled data by PU learning [*Prof. Sugiyama's PU algorithms*]

Future Work: Tensor Network for Graphical Model

CP decomposition

10 variables, 10 states each \rightarrow 10¹⁰ entries

$$P(x_1, x_2, x_3, x_4) = \sum_h P(x_1|h) P(x_2|h) P(x_3|h) P(x_4|h) P(h)$$

Markov random field models as tensor train

[Novikov et al., ICML 2014]

Undirected graphical model represented as a TT model

[Glasser et al, 2018]

Future Work - Acceleration of Tensor Convolution

- High-order convolution (computation and storage)
- Fast convolution via tensor network representation

Collaborations within AIP

- A novel schema for hyper-spectral image restoration
 - [He et al., CVPR2019]
- Dementia detection via tensorizing neural networks

[Ruikowski et al., NeurIPS 2018 workshop]

Gene data completion via tensor network

[Iwata et al., ISMB/ECCB 2019]

Mihoko Otake

Yasuo Tabei

- Tensor networks are intriguing alternative to traditional machine learning models
- Better scaling, efficient algorithms, opportunities for theoretical insights
- Promising as a framework for machine learning with quantum computing

Publications (32)

- Conference (19) including AAAI, IJCAI, CVPR, ICASSP, NeurIPS Workshop, ICLR workshop and etc
- Journal (13) including IEEE TNNLS, Signal Processing and etc

Awards

- The 3rd IEEE SPS Japan Best Paper Award
- 2018 SPS Signal Processing Magazine Best Paper